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Abstract. Thismonograph aims to provide a guide to the literature on topo-
logical 4-manifolds. Foundational theorems on 4-manifolds are stated, espe-
cially in the topological category. Precise references are given, with indica-
tions of the strategies employed in the proofs. Where appropriate we give
statements for manifolds of all dimensions.

Many intuitively plausible theorems which are standard results in differ-
ential topology are either extraordinarily deep results in the topological cate-
gory, are open, or are known to be false. Hence one must proceed with cau-
tion. We seek to help 4-manifold topologists navigate potential pitfalls, and
to apply the many powerful results that do exist with confidence.
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1. Introduction
Our aim in this monograph is to provide readers who have trained in alge-

braic topology and perhaps differential topology or Riemannian geometry, with
a guide to the literature on topological manifolds. We aim to state some foun-
dational theorems in topological manifolds, with a strong bias towards dimen-
sion four. If we were considering manifolds with a smooth atlas, many of these
statements would be familiar textbook-level tools. In the topological category,
navigating which of these tools can still be used, and where to find proofs of
these facts, can be a challenging endeavour. On the other hand, particularly
in dimension four, some of the results we describe are not familiar results in
the smooth category and often no result of the sort holds for smoothmanifolds.
This second type of statement demonstrates one of the attractions of working
with 4-manifolds in the topological category, where major classification state-
ments can be achieved.
Our hope is that with the statements from this book the “working topologist”

will be equipped to handle most situations. We make no claims of originality.

1.1. High-dimensional topological manifolds. Though we have a strong
bias in this monograph towards thinking about 4-dimensional manifolds, in or-
der to do this in the topological category one must have a good understanding
of manifold topology in higher dimensions.
Spectacular results on the classification of smooth manifolds in dimensions

≥ 5 arose fromSurgeryTheory, due to Smale [178], Kervaire–Milnor [88], Brow-
der [16], Novikov [146], Sullivan [186], and Wall [203], among others. These
methods were extended to topological manifolds by Newman [144], Kirby [90],
and Siebenmann [91] in dimensions at least five, and to dimension four by
Freedman and Quinn [51, 159, 50]. To paraphrase Andrew Ranicki,

Smooth manifolds in dimensions at least five exhibit a beautiful
correspondence between geometry and algebra. Topological man-
ifolds in dimension at least four are in this sense like smooth high-
dimensional manifolds, but even more so.

To what does “even more so” refer? One instance is the principle that topo-
logical manifolds are governed by their homotopy type which, in turn, is often
governed by algebraic invariants. Many specific instances of this principle hold
uniformly across all dimensions for topological manifolds and we highlight a
few of these now to demonstrate the point. Most famous is the (topological)
Poincaré conjecture, which characterises the sphere𝑆𝑛, up to homeomorphism,
in terms of algebraic topological invariants. This result is known to be true in
all dimensions, due to Newman, Freedman, and Perelman [143, 51, 136]. Lo-
cally flat topological embeddings of spheres in spheres are also well understood
in these terms. In codimension zero, every orientation preserving homeomor-
phism of 𝑆𝑛 is isotopic to the identity, due to Fisher, Kirby, and Quinn [46, 90,
159]. For codimension 1, we have the Schoenflies conjecture, that every locally
flat embedding 𝑆𝑛−1 ⊆ 𝑆𝑛 is trivial. This is true in all dimensions, and due to
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Brown, Mazur, and Morse [18, 124, 137]. A codimension two locally flat em-
bedding 𝑆𝑛−2 ⊆ 𝑆𝑛 is topologically unknotted if and only if the complement
is homotopy equivalent to 𝑆1, due to Papakyriakopoulos [150], Stallings [179],
and Freedman-Quinn [50, Theorem 11.7A]. Finally for high codimension, ev-
ery knot 𝑆𝑛−𝑘 ⊆ 𝑆𝑛 is trivial, for 𝑘 ≥ 3, which is again due to Stallings [179],
cf. [209].
Formanifold classification results, there is also an especially close correspon-

dence between topology and algebra in the topological category in dimensions
at least four. Wall [197], Freedman, and Quinn [50] proved that topological
manifolds of dimension 2𝑛 that are (𝑛−1)-connected are classified up to home-
omorphism by their intersection forms on the 𝑛th homology groups, together
with a quadratic extension. The Borel conjecture holds in many cases [4, 117].
In particular for every 𝑛 ≥ 1, every homotopy equivalence𝑀𝑛 → 𝑇𝑛 = (𝑆1)𝑛
is homotopic to a homeomorphism, see [50, p. 205] and [117]. Finally, an im-
portant example, though somewhat more specialised, is that the Surgery Exact
Sequence becomes an exact sequence of abelian groups in the topological cat-
egory, due to Quinn [161] and Nicas [145], with a purely algebraic formulation
due to Ranicki [164].
These examples demonstrate a tight connection between the study of topo-

logical manifolds and the associated homotopy types, and related algebra. In
dimension four, many of the significant classification results we state in this
monograph will also hew to this principle. The results mentioned do not hold
smoothly, although in high dimensions, as promised by the “beautiful corre-
spondence”, the failure can often be measured precisely, for example by study-
ing exotic spheres.

1.2. A focusondimension four. In theRanicki quotation paraphrased above,
the only dimension not common to both ranges is dimension four. Indeed,most
of the deep classification results that are known about 4-manifolds are only pos-
sible in the topological category. Studying topological 4-manifolds combines
the visual nature of low-dimensional topology, with the ability to apply power-
ful high-dimensional methods to classification problems.
An additional special feature of dimension four is that here the contrast be-

tween the smooth and topological manifold categories is starkest. Indeed, the
indications are that smooth 4-manifolds fail in every way imaginable to exhibit
a close correspondence to their underlying homotopy type. Although in this
monograph we focus very heavily on topological 4-manifolds, we will hint at
this dramatic divergence in some places, for example in Chapter 8.
The geometric topologist who wishes to study topological 4-manifolds, with

all the rich rewards suggested above, must navigate the challenge that even
basic results from differential topology are either false, unknown, or extraor-
dinarily deep results in the absence of a smooth atlas. For example it is not
true in general that topological submanifolds admit tubular neighbourhoods,
and in cases where this is known, such as for codimension two submanifolds,
the proofs use all the available technology developed by Kirby-Siebenmann and
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Freedman-Quinn. As another example, it was not knownuntil Quinn’s work in
1982 that connected sum of topological 4-manifolds is a well-defined operation.

1.3. What is in this monograph? This brings us, at last, to one of the main
practical purposes of thismonograph. We seek to clarify exactlywhich of the fa-
miliar tools of geometric topology are available in the topological category, and
to provide a precise guide for where to find proofs. Below, we give a sample
of the statements discussed in this book. (Here, and throughout, “manifold”
refers to what is often called a “topological manifold”; see Chapter 2 for a pre-
cise definition.)

(1) Existence and uniqueness of collar neighbourhoods (Theorem 2.16).
(2) The Isotopy Extension Theorem 2.20.
(3) Existence of CW structures (Theorem 3.16).
(4) Multiplicativity of the Euler characteristic under finite covers (Corollary

3.19).
(5) TheAnnulus Theorem4.1 and the StableHomeomorphismTheorem4.3.
(6) Connected sum of two oriented connected 4-manifolds is well-defined

(Theorem 4.12).
(7) Existence and uniqueness of tubular neighbourhoods of submanifolds

(Theorems 5.5 and 5.6).
(8) Stiefel-Whitney classes for topological manifolds (Chapter 7).
(9) Intersection forms of compact, connected, oriented 4-manifolds are even

(Proposition 8.4).
(10) Noncompact connected 4-manifolds admit a smooth structure (Theorem

9.1).
(11) When the Kirby-Siebenmann invariant of a connected 4-manifold van-

ishes, both connected sum with copies of 𝑆2 × 𝑆2 and taking the product
with ℝ yield smoothable manifolds (Theorem 9.9).

(12) Transversality for submanifolds and formaps (Theorems 10.3 and 10.10).
(13) Codimension one and two homology classes can be represented by sub-

manifolds (Theorem 10.17).
(14) Classification of 4-manifolds up to homeomorphismwith trivial and cyclic

fundamental groups (Chapter 12).
(15) Compact orientable manifolds that are homeomorphic are stably diffeo-

morphic (Theorem 13.2 and Corollary 13.4).
(16) Multiplicativity of signatures under finite covers (Theorem 8.6).
(17) The definition of Reidemeister torsion for compact manifolds and some

of its key technical properties (Section 14.3).
(18) Obstructions to concordance of knots and links (Theorem 15.2).
(19) Poincaré duality for compactmanifolds (with possibly non-empty bound-

ary) with twisted coefficients (Theorems A.15 and A.16).

Remark 1.1. We make a remark here about a notable omission. We have not
written in any great detail about non-compact 4-manifolds. This is itself a rich
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topic, exhibiting some of themost exciting and distinctive features of dimension
4. However, it was decided to be beyond the scope of the current monograph.

Conventions.
(1) Given a subset𝐴 of a topological space𝑋 we denote the interior by Int𝐴.
(2) For 𝑛 ∈ ℕ0, 𝑥 ∈ ℝ𝑛 and 𝑟 ≥ 0 we write 𝐷𝑛

𝑟 (𝑥) = {𝑦 ∈ ℝ𝑛 ∣ ‖𝑦 − 𝑥‖ ≤ 𝑟}.
We write 𝐷𝑛

𝑟 = 𝐷𝑛
𝑟 (0) and we write 𝐷𝑛 = 𝐷𝑛

1 (0) for the closed unit ball in
ℝ𝑛. We refer to Int𝐷𝑛 = {𝑥 ∈ ℝ𝑛 ∣ ‖𝑥‖ < 1} as the open 𝑛-ball.

(3) Unless indicated otherwise 𝐼 denotes the interval 𝐼 = [0, 1].
(4) All maps between topological spaces are understood to be continuous.
(5) A topological space 𝑋 is called simply connected if it is nonempty, path-

connected and if the fundamental group is trivial.
(6) On several occasions we use cup and cap products and we cite several

results from [36, 15, 72, 52]. Different books on algebraic topology of-
ten have different sign conventions for cup and cap products, but in all
statements that we give, the sign conventions are irrelevant, so it is not a
problem to mix results from different sources.

Acknowledgments. Thanks to Steve Boyer, Anthony Conway, Jim Davis,
Mauricio Gómez López, Fabian Hebestreit, JonathanHillman, MinHoon Kim,
Alexander Kupers, Markus Land, Tye Lidman, Chuck Livingston, Ciprian
Manolescu, Erik Pedersen, George Raptis, Arunima Ray, and Eamonn Tweedy
for very helpful conversations.
We are particularly grateful to Gerrit Herrmann for providing us with de-

tailed notes which form the basis of Appendix A.
Jim Davis brought the Ranicki quotation above to our attention, and dis-

cussed its significance with us. He also provided crucial assistance with the
proof of Theorem 9.2.
We wish to thank the referee for an extraordinarily thorough and helpful

report.
SFwas supported by the SFB 1085 ‘Higher Invariants’ at theUniversity of Re-

gensburg, funded by the Deutsche Forschungsgemeinschaft (DFG). MN grate-
fully acknowledges support by the SNSF Grant 181199. MP was supported by
an NSERC Discovery Grant, EPSRC New Investigator grant EP/T028335/2 and
EPSRC New Horizons grant EP/V04821X/2. SF wishes to thank the Université
du Québec à Montréal, Durham University, Glasgow University, and Cal Poly
for hospitality.
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2. Manifolds
In this chapter we introduce the very basic notions of a manifold, of a sub-

manifold, of locally flat embeddings and of immersions. We also state two fun-
damental results, namely the Collar Neighbourhood Theorem 2.16 and the Iso-
topy Extension Theorem 2.20.

2.1. Definition of manifolds. In the literature the notion of a “manifold”
gets defined differently, depending on the preferences of the authors. Thus we
state here what we mean by a manifold.
Definition 2.1. Let 𝑋 be a topological space.
(1) We say that 𝑋 is second countable if there exists a countable basis for the

topology.
(2) An 𝑛-dimensional chart for 𝑋 at a point 𝑥 ∈ 𝑋 is a homeomorphism

Φ∶ 𝑈 → 𝑉 where 𝑈 is an open neighbourhood of 𝑥 and
(i) 𝑉 is an open subset of ℝ𝑛 or
(ii) 𝑉 is an open subset of the half-space𝐻𝑛 = {(𝑥1,… , 𝑥𝑛) ∈ ℝ𝑛 ∣ 𝑥𝑛 ≥

0} and Φ(𝑥) lies on 𝐸𝑛−1 = {(𝑥1,… , 𝑥𝑛) ∈ ℝ𝑛 ∣ 𝑥𝑛 = 0}.
In the former case we say that Φ is a chart of type (i); in the latter case we
say that Φ is a chart of type (ii).

(3) We say that 𝑋 is an 𝑛-dimensional manifold if 𝑋 is second countable and
Hausdorff, and if for every 𝑥 ∈ 𝑋 there exists an 𝑛-dimensional chart
Φ∶ 𝑈 → 𝑉 at 𝑥.

(4) We say that a point 𝑥 on a manifold is a boundary point if 𝑥 admits a
chart of type (ii). (A point cannot admit charts of both types [72, Theo-
rem 2B.3].) We denote the set of all boundary points of 𝑋 by 𝜕𝑋.

(5) An atlas for a manifold 𝑋 consists of a family of charts such that the do-
mains cover all of 𝑋. An atlas {Φ𝑖 ∶ 𝑈𝑖 → 𝑉𝑖}𝑖∈𝐼 is smooth if all transition
maps Φ𝑖◦Φ−1

𝑗 ∶ Φ𝑗(𝑈𝑖 ∩𝑈𝑗) → Φ𝑖(𝑈𝑖 ∩𝑈𝑗) are smooth. A smooth man-
ifold is a manifold together with a smooth atlas. Usually one suppresses
the choice of a smooth atlas from the notation.

To avoid misunderstandings we want to stress once again that what we call
a “manifold” is often referred to as a “topological manifold”.
Definition 2.2. An orientation of an 𝑛-manifold 𝑀 is a choice of generators
𝛼𝑥 ∈ 𝐻𝑛(𝑀,𝑀 ⧵ {𝑥};ℤ) for each 𝑥 ∈ 𝑀 ⧵ 𝜕𝑀 such that for every 𝑥 ∈ 𝑀 ⧵ 𝜕𝑀
there exists an openneighbourhood𝑈 ⊆ 𝑀⧵𝜕𝑀 of𝑥 and a class𝛽 ∈ 𝐻𝑛(𝑀,𝑀⧵
𝑈;ℤ) such that 𝛽 projects to 𝛼𝑦 for each 𝑦 ∈ 𝑈.
Using the cross product one can show that the product of two oriented man-

ifolds admits a natural orientation. Furthermore, the boundary of an oriented
manifold also comes with a natural orientation. The proof of the latter state-
ment is slightly delicate; we refer to [59, Chapter 28] or to [52, Chapter 125.5]
for details.
The following theorem [72, Theorem 2B.3] is one of the foundational results

on 𝑛-manifolds.
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Theorem2.3. (Invariance ofDomainTheorem) If𝑈 ⊆ ℝ𝑛 is an open subset
and if ℎ∶ 𝑈 → ℝ𝑛 is an injective map, then ℎ(𝑈) is an open subset ofℝ𝑛.

We conclude this section with the following lemma.

Lemma 2.4. Let𝑀 be a connected manifold of dimension 𝑛 ≥ 2. Then for any
two sets of pairwise disjoint points {𝑥1,… , 𝑥𝑚}, {𝑦1,… , 𝑦𝑚} ∈ 𝑀 ⧵ 𝜕𝑀, there exists
a homeomorphism 𝑓∶ 𝑀 → 𝑀 with 𝑓(𝑥𝑖) = 𝑦𝑖 for 𝑖 = 1,… , 𝑚.

Proof. Since𝑀 is connected we see that𝑀⧵𝜕𝑀 is path-connected. Thus there
exist points 𝑥1 = 𝑡0, 𝑡1,… , 𝑡𝑘+1 = 𝑦1 in 𝑀 ⧵ 𝜕𝑀 such that there are charts
(𝑈𝑖, 𝜓𝑖 ∶ 𝑈𝑖 → Int𝐷𝑛) for 𝑖 = 0,… , 𝑘 and both 𝑡𝑖, 𝑡𝑖+1 are contained in 𝑈𝑖.
It is elementary to show that given any two points 𝑎, 𝑏 ∈ Int𝐷𝑛 there exists a
homeomorphism 𝑓∶ Int𝐷𝑛 → Int𝐷𝑛 with 𝑓(𝑎) = 𝑏 and which is the identity
outside of a compact subset. It is now clear that one can find a homeomorphism
𝑓∶ 𝑀 → 𝑀 with 𝑓(𝑥1) = 𝑦1 such that 𝑓 is the identity outside of a compact
subset. We now consider the image of the remaining points in𝑀 ⧵ {𝑦1} and we
restart the engine. □

2.2. Definition of submanifolds. Wemove on to the definition of a subman-
ifold. Again there aremanydifferent definitions in the literature, so let us define
carefully what we mean by a submanifold.

Definition 2.5. Let𝑀 be an 𝑛-dimensional manifold. We say a subset 𝑋 ⊆ 𝑀
is a 𝑘-dimensional submanifold if given any 𝑥 ∈ 𝑋 one of the following holds:
(𝛼) there exists a chart Φ∶ 𝑈 → 𝑉 of type (i) for𝑀 and 𝑥 such that

Φ(𝑈 ∩ 𝑋) ⊆ {(0,… , 0, 𝑥1,… , 𝑥𝑘) ∣ 𝑥1,… , 𝑥𝑘 ∈ ℝ},
(𝛽) there exists a chartΦ∶ 𝑈 → 𝑉 of type (ii) for𝑀 and 𝑥 such thatΦ(𝑥) lies

in 𝐸𝑛−1 and
Φ(𝑈 ∩ 𝑋) ⊆ {(0,… , 0, 𝑥1,… , 𝑥𝑘) ∈ ℝ𝑛 ∣ 𝑥𝑘 ≥ 0},

(𝛾) there exists a chart Φ∶ 𝑈 → 𝑉 of type (i) for𝑀 and 𝑥 such that Φ(𝑥) lies
in 𝐸𝑛−1 and

Φ(𝑈 ∩ 𝑋) ⊆ {(0,… , 0, 𝑥1,… , 𝑥𝑘) ∈ ℝ𝑛 ∣ 𝑥𝑘 ≥ 0}.
If for every 𝑥 ∈ 𝑋 we can find charts as in (𝛼) and (𝛽), and 𝑋 ⊆ 𝑀 is a closed
subset, then we call 𝑋 a proper submanifold.

The following proposition is a straightforward consequence of the defini-
tions. The proposition often makes it possible to reduce arguments about man-
ifolds with boundary to the case of closed manifolds.

Proposition 2.6.
(1) Let 𝑁 be an 𝑛-manifold, possibly disconnected. Let 𝐴 and 𝐵 be collections

of components of 𝜕𝑁 such that 𝐴 ∩ 𝐵 = ∅. Let 𝑓∶ 𝐴 → 𝐵 be a home-
omorphism. Then the quotient 𝑁∕ ∼ under the relation 𝑎 ∼ 𝑓(𝑎) is an
𝑛-manifold with boundary 𝜕(𝑁∕∼) = 𝜕𝑁 ⧵ (𝐴 ∪ 𝐵). Moreover, the image
of 𝐴 in𝑁∕∼ is a submanifold.
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topological manifold 𝑋

submanifold chart
of type (𝛽)

submanifold 𝑁

𝑥1

𝑥2𝑥2

𝑥1

𝜕𝑋

𝑥2

𝑥1

submanifold chart
of type (𝛾)

manifold
chart of
type (i)

manifold
chart of
type (i)

submanifold
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type (𝛼)

manifold chart
of type (ii)

Figure 1. Definition of submanifolds.

(2) Let𝑀 be an 𝑛-manifold. Its double 𝐷𝑀 ∶= 𝑀 ∪𝑀, where the boundaries
are identified via Id𝜕𝑀 , is an 𝑛-manifold with empty boundary. Moreover,
𝑀 ⊆ 𝐷𝑀 is a submanifold.

Definition 2.7. A map 𝑓∶ 𝑋 → 𝑀 from a 𝑘-manifold to an 𝑚-manifold𝑀 is
called a (proper) locally flat embedding if 𝑓 is a homeomorphism onto its image
and if the image is a (proper) submanifold of𝑀.

Remark 2.8.

(1) Note that if 𝑀 is a 𝑘-manifold and 𝑈 is an open subset of ℝ𝑘, then it
follows from the Invariance of Domain Theorem 2.3 that the image of
any injective map 𝑓∶ 𝑈 → 𝑀 is an open subset of𝑀. In particular 𝑓(𝑈)
is a submanifold of𝑀. Put differently, 𝑓 is locally flat.

(2) In point set topology, one often defines a topological embedding to be a
map 𝑓∶ 𝑋 → 𝑌 of topological spaces that is a homeomorphism to its
image. The image of a topological embedding is not necessarily a sub-
manifold and such an image is sometimes called wild due to the bizarre
properties that such objects can exhibit. For example, the famousAlexan-
der horned sphere [2] is not a submanifold of 𝑆3 under Definition 2.5, but
it is the image of a wild topological embedding 𝑆2 → 𝑆3.

(3) In the literature a compact subset 𝐹 of 4-manifold is often called a locally
flat surface if 𝐹 is homeomorphic to a compact 2-dimensional manifold
with 𝜕𝐹 = 𝐹 ∩ 𝜕𝑀 and if 𝐹 has the following properties.
(a) Given any 𝑥 ∈ 𝐹 ⧵ 𝜕𝐹 there exists a topological embedding 𝜑∶ 𝐷2 ×

𝐷2 → 𝑀 ⧵ 𝜕𝑀 with 𝜑(𝐷2 × 𝐷2) ∩ 𝐹 = 𝜑(𝐷2 × {0}) and with 𝑥 ∈
𝜑(𝐷2 × {0}).

(b) Given any 𝑥 ∈ 𝜕𝐹 there exists a topological embedding 𝜑∶ 𝐷2
≥0 ×

𝐷2 → 𝑀 such that𝜑(𝐷2
≥0×𝐷

2)∩𝐹 = 𝜑(𝐷2
≥0×{0}),𝜑(𝐷

2
≥0×𝐷

2)∩𝜕𝑀 =
𝜑(𝜕𝑦=0𝐷2

≥0 × 𝐷2), and with 𝑥 ∈ 𝜑(𝐷2
≥0 × {0}). Here, we used the

following abbreviations 𝐷2
≥0 = {(𝑥, 𝑦) ∈ 𝐷2 ∣ 𝑦 ≥ 0} and 𝜕𝑦=0𝐷2 =

{(𝑥, 0) ∈ 𝐷2}.
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It follows easily from the definitions that 𝐹 ⊆ 𝑀 is a locally flat surface
if and only if 𝐹 is proper 2-dimensional submanifold of𝑀.

The following proposition gives examples of embeddings 𝐷2 → 𝐷4 that are
not locally flat.

Proposition 2.9. Given a knot 𝐾 ⊆ 𝑆3 the corresponding cone
Cone(𝐾) ∶= {𝑟 ⋅ 𝑄 ∣ 𝑄 ∈ 𝐾 and 𝑟 ∈ [0, 1]} ⊆ 𝐷4.

is locally flat if and only if 𝐾 is the unknot.

Proof. Consider the specific unknot 𝑈 that is the equator of the equator 𝑈 =
𝑆1 ⊆ 𝑆2 ⊆ 𝑆3 = 𝜕𝐷4. Taking the cone radially inwards to the origin of 𝐷4 ex-
hibits cone(𝑈) as a locally flatly (properly) embedded disc. Any other unknot-
ted 𝐾 ⊆ 𝑆3 is related to 𝑈 by a homeomorphism of 𝑆3. By the Alexander trick
4.4(1), this homeomorphism extends radially inwards to a homeomorphism of
𝐷4 fixing the origin. Thus the cone on any other unknot 𝐾 is locally flatly em-
bedded, as we obtain a chart as in Definition 2.5(1) at the origin of 𝐷4.
Conversely, suppose 𝐾 ⊆ 𝑆3 is a knot such that 𝐶 ∶= Cone(𝐾) is locally flat.

This implies that there is a chart Φ∶ 𝑈 → 𝐷4 where 𝑈 is an open neighbour-
hood of the cone point 0, such thatΦ(0) = 0 and such thatΦ(𝐷4∩𝐶) = 𝐷2×{0}.
We set Ψ ∶= Φ−1∶ 𝐷4 → 𝑈. We introduce the following notation.
(i) Given 𝐽 ⊆ [0, 1] we write 𝐷𝐽 ∶= {𝑣 ∈ 𝐷4 ∣ ‖𝑣‖ ∈ 𝐽}.
(ii) Given 𝐽 ⊆ [0, 1] we write 𝑁𝐽 ∶= Ψ(𝐷𝐽).

An elementary argument shows that there exist 𝑠1 < 𝑡1 < 𝑠2 < 𝑡2 < 𝑠3 such that
𝐷[0,𝑠1] ⊆ 𝑁[0,𝑡1] ⊆ 𝐷[0,𝑠2] ⊆ 𝑁[0,𝑡2] ⊆ 𝐷[0,𝑠3]. Wemake the following observations:
(1) For any 𝐽 ⊆ [0, 1] we have homeomorphisms 𝐷𝐽 ⧵ 𝐶 ≅ (𝑆3 ⧵ 𝐾) × 𝐽 and

𝑁𝐽 ⧵ 𝐶
Φ
,→ 𝐷𝐽 ⧵ Cone(𝑈) ≅ (𝑆3 ⧵𝑈) × 𝐽.

(2) For any inclusion 𝐽 ⊆ 𝐽′ of intervals the inclusion inducedmap𝐷𝐽 → 𝐷𝐽′
is a homotopy equivalence.

We consider the following commutative diagram where all maps are induced
by inclusions

𝜋1(𝑆3 ⧵ 𝐾) ≅ 𝜋1(𝐷{𝑠2} ⧵ 𝐶)

𝜋1(𝑁[𝑡1,𝑡2] ⧵ 𝐶) ≅ ℤ

𝜋1(𝑆3 ⧵ 𝐾) ≅ 𝜋1(𝐷[𝑠1,𝑠3] ⧵ 𝐶).

≅

Since the inclusion𝐷{𝑠2}⧵𝐶 → 𝐷[𝑠1,𝑠3]⧵𝐶 is a homotopy equivalence we see that
the left map is an isomorphism. Thus we see that we have an automorphism
of 𝜋1(𝑆3 ⧵ 𝐾) that factors through ℤ. Since the abelianisation of 𝜋1(𝑆3 ⧵ 𝐾) is
isomorphic toℤwe see that 𝜋1(𝑆3 ⧵𝐾) ≅ ℤ. It follows from the Loop Theorem
that 𝐾 is in fact the unknot [166, Theorem 4.B.1]. □
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We conclude this section with the following lemma, which provides us with
examples of locally flat embeddings:

Lemma 2.10. Let 𝑀 be a connected manifold. Then any two points 𝑥 ≠ 𝑦 ∈
𝑀 ⧵ 𝜕𝑀 are connected by a locally flat embedded arc.

Proof. By Lemma 2.4 we only have to deal with the case that 𝑥 and 𝑦 lie in a
subspace that is homeomorphic to an open 𝑛-ball. But this case is trivial. □

2.3. Immersions. Wedefine immersions and generic immersions in the topo-
logical category cf. [?, Section 2]. In the smooth category immersions are re-
quired to have injective derivative at each point. In the topological category we
cannot make such a definition, but instead define immersions as follows.

Definition 2.11. A continuous map 𝐹∶ Σ𝑘 → 𝑀𝑛 between manifolds of di-
mensions 𝑘 ≤ 𝑛 is an immersion if for each 𝑝 ∈ Σ there is a codimension zero
submanifold 𝑈 ⊆ Σ containing 𝑝 such that 𝐹|𝑈 ∶ 𝑈 → 𝑀 is a locally flat em-
bedding.

Recall that a continuousmap is said to be proper if the inverse image of every
compact set in the codomain is compact. With this notion we can define proper
immersions.

Definition 2.12. Aproper continuousmap𝐹∶ Σ𝑘 → 𝑀𝑛 betweenmanifolds of
dimensions 𝑘 ≤ 𝑛 is a proper immersion if for each𝑝 ∈ Σ there is a codimension
zero submanifold 𝑈 ⊆ Σ containing 𝑝 such that 𝑈 ⊆ Σ is an open subset,
𝐹|𝑈 ∶ 𝑈 → 𝑀 is a locally flat embedding, and every for 𝑢 ∈ 𝑈 we can find a
chart for 𝐹(𝑢) in𝑀 as in (𝛼) and (𝛽) of Definition 2.5.

We now consider surfaces in 4-manifolds, that is we restrict to 𝑘 = 2 and 𝑛 =
4. We take𝑀 to be a connected 4-manifold. The singular set of an immersion
𝐹∶ Σ→ 𝑀 is

𝒮(𝐹) ∶= {𝑚 ∈ 𝑀 ∣ |𝐹−1(𝑚)| ≥ 2}.

Definition2.13. LetΣ be a surface, possibly noncompact. A continuous, proper
map 𝐹∶ Σ → 𝑀 is said to be a generic immersion, denoted 𝐹∶ Σ ↬ 𝑀, if it is
a proper immersion and the singular set is a closed, discrete subset of 𝑀 con-
sisting only of transverse double points, each of whose preimages lies in the
interior of Σ. The requirement that all singular points be transverse double
points means that whenever𝑚 ∈ 𝒮(𝐹), there are exactly two points 𝑝1, 𝑝2 ∈ Σ
with 𝐹(𝑝1) = 𝑚 = 𝐹(𝑝2), and there are disjoint charts 𝜑𝑖 around 𝑝𝑖, for 𝑖 = 1, 2,
where 𝜑1 and 𝜑2 are as in (1), with respect to the same chart Ψ around 𝑚 and
the standard inclusions

𝜄1∶ ℝ2 = ℝ2 × {0}↪ ℝ2 ×ℝ2 = ℝ4 and

𝜄2∶ ℝ2 = {0} ×ℝ2 ↪ ℝ2 ×ℝ2 = ℝ4.
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(1) ℝ2 𝜄𝑖 //

𝜑𝑖
��

ℝ4

Ψ
��

Σ 𝐹 // 𝑀

Typically one prefers to workwith generic immersions of surfaces in 4-mani-
folds than arbitrary immersions. As the name suggests we can always arrange
by a homotopy thatmaps of surfaces are generic immersions; see Theorem10.6.

2.4. Collar neighbourhoods. We discuss the existence of a collar neighbour-
hood of the boundary of a manifold. First we recall the definition of a neigh-
bourhood.

Definition 2.14 (Neighbourhood). Let 𝑋 be a space. A neighbourhood of a
subset 𝐴 ⊆ 𝑋 is a set 𝑈 ⊆ 𝑋 for which there is an open set 𝑉 satisfying 𝐴 ⊆
𝑉 ⊆ 𝑈.

Next we give our definition of a collar neighbourhood.

Definition 2.15 (Collar neighbourhood). Let 𝑀 be a manifold and let 𝐵 be a
union of components of 𝜕𝑀. A collar neighbourhood is amapΦ∶ 𝐵×[0, 𝑟]→ 𝑀
for some 𝑟 > 0 with the following three properties:
(1) Φ is a locally flat embedding,
(2) for all 𝑥 ∈ 𝐵 we have Φ(𝑥, 0) = 𝑥,
(3) we have Φ−1(𝐵 × [0, 𝑟]) ∩ 𝜕𝑀 = 𝐵.

Often, by a slight abuse of language, we identify 𝐵 × [0, 𝑟]with its image Φ(𝐵 ×
[0, 𝑟]) and we refer to 𝐵 × [0, 𝑟] also as a collar neighbourhood.

Note that a collar neighbourhood of a union 𝐵 of components of 𝜕𝑀 is a
neighbourhood of 𝐵. Now we can state the Collar Neighbourhood Theorem in
the formulation of [3, Theorem 1]. The existence of collars is originally due to
Brown [17], and there is another easier proof due to Connelly [32].

Theorem 2.16. (Collar Neighbourhood Theorem) Let𝑀 be an 𝑛-manifold,
let 𝐶 be a compact submanifold of 𝜕𝑀 and let 𝑓∶ 𝐶 × [0, 2]→ 𝑀 be a map with
𝑓(𝑥, 0) = 𝑥 for all 𝑥 ∈ 𝐶. We assume that we are in one of the following two
settings:
(1) 𝐶 is closed as a manifold and 𝑓 is a locally flat embedding;
(2) 𝐶 ⊆ 𝜕𝑀 is a codimension zero submanifold and the restriction of𝑓 to (𝜕𝐶×

[0, 2]) ∪ (𝐶 × {2}) is a locally flat embedding.
Then there exists a collar neighbourhood 𝑔∶ 𝜕𝑀 × [0, 1]→ 𝑀 with 𝑔|𝐶×[0,1] = 𝑓.

An isotopy of a space 𝑌 is a continuous one parameter family of maps 𝐻 =
{𝐻𝑡}𝑡∈[0,1]∶ 𝑌 × [0, 1] → 𝑌 such that 𝐻𝑡 ∶ 𝑌 → 𝑌 is a homeomorphism for all
𝑡 ∈ [0, 1]. To formulate a uniqueness result for collar neighbourhoods it helps
to introduce the following definition.
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Definition 2.17. Let 𝑓, 𝑔∶ 𝑋 → 𝑌 be two maps between topological spaces
and let 𝑍 be a subset of 𝑋. We say 𝑓 and 𝑔 are ambiently isotopic rel. 𝑍 if there
exists an isotopy𝐻 = {𝐻𝑡}𝑡∈[0,1]∶ 𝑌×[0, 1]→ 𝑌 such that𝐻0 = Id,𝐻𝑡|𝑍 = Id𝑍
for all 𝑡, and such that𝐻1◦𝑓 = 𝑔.

Theorem2.18. Let𝑀 be amanifold. Given two collar neighbourhoodsΦ∶ 𝜕𝑀×
[0, 2]→ 𝑀 andΨ∶ 𝜕𝑀 × [0, 2]→ 𝑀, their restrictionsΦ|𝜕𝑀×[0,1] andΨ|𝜕𝑀×[0,1]
are ambiently isotopic rel. 𝜕𝑀 × {0}.

Proof. The theorem is due to [3, Theorem 2], although Armstrong comments
that the proofwas told to himbyLashof. See also [91, Essay I, TheoremA.2, p. 40].

□

2.5. The Isotopy Extension Theorem. In the smooth setting the Isotopy Ex-
tension Theorem gets used frequently and often subconsciously. In the non-
smooth setting the formulation of the IsotopyExtensionTheorem requires some
care.

Definition 2.19. Let 𝑋 be a 𝑘-dimensional manifold and let 𝑀 be a compact
𝑚-dimensional manifold. Let ℎ∶ 𝑋 × [0, 1]→ 𝑀 be a homotopy.
(1) We say ℎ is locally flat if for every (𝑥, 𝑡) ∈ 𝑋 × [0, 1] there exists a neigh-

bourhood [𝑡0, 𝑡1] of 𝑡 and level-preserving embeddings 𝛼∶ 𝐷𝑘×[𝑡0, 𝑡1]→
𝑋 × [0, 1] and 𝛽∶ 𝐷𝑘 × 𝐷𝑚−𝑘 × [𝑡0, 𝑡1] → 𝑀 × [0, 1] to neighbourhoods
of (𝑥, 𝑡) and (ℎ𝑡(𝑥), 𝑡) respectively, such that the following diagram com-
mutes:

𝐷𝑘 × {0} × [𝑡0, 𝑡1]
𝛼
��

� � // 𝐷𝑘 × 𝐷𝑚−𝑘 × [𝑡0, 𝑡1]
𝛽
��

𝑋 × [0, 1]
(𝑥,𝑡)↦(ℎ𝑡(𝑥),𝑡) // 𝑀 × [0, 1].

(2) We say ℎ is proper if for every 𝑡 ∈ [0, 1] we have ℎ𝑡(𝑋) ∩ 𝜕𝑀 = ℎ𝑡(𝜕𝑋).

This definition allowsus to formulate the followinguseful theorem [41, Corol-
lary 1.4] (see [109, p. 530] for a related result.)

Theorem 2.20. (Isotopy Extension Theorem) Let ℎ∶ 𝑋 × [0, 1] → 𝑀 be a
locally flat proper isotopy of a compactmanifold𝑋 into amanifold𝑀. Thenℎ can
be covered by an ambient isotopy of𝑀, i.e. there exists an isotopy𝐻∶ 𝑀×[0, 1]→
𝑀 such that𝐻0 = Id and ℎ𝑡 = 𝐻𝑡◦ℎ0 for all 𝑡 ∈ [0, 1].

Using the Isotopy Extension Theorem 2.20 we can now prove the following
refinement of the Collar Neighbourhood Theorem 2.16.

Theorem 2.21. (Collar Neighbourhood Theorem for Proper Submani-
folds) Let 𝑀 be a manifold and let 𝑋 ⊆ 𝑀 be a proper submanifold. There
exists a collar neighbourhood 𝜕𝑀 × [0, 1] such that (𝜕𝑀 × [0, 1]) ∩ 𝑋 is a collar
neighbourhood for 𝜕𝑋 ⊆ 𝑋.
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Proof. By the earlier Collar Neighbourhood Theorem 2.16 we can pick a collar
neighbourhood 𝜕𝑀×[0, 2] for 𝜕𝑀 andwe can also pick a collar neighbourhood
𝜕𝑋 × [0, 2] for 𝜕𝑋. Given 𝑡 ∈ [0, 1] we consider the obvious homeomorphisms
𝑓𝑡 ∶ 𝑀 = (𝑀⧵(𝜕𝑀×[0, 2)))∪(𝜕𝑀×[0, 2]) → (𝑀⧵(𝜕𝑀×[0, 2)))∪(𝜕𝑀×[𝑡, 2])
and
𝑔𝑡 ∶ 𝑋 = (𝑋 ⧵ (𝜕𝑋 × [0, 2))) ∪ (𝜕𝑋 × [0, 2]) → (𝑋 ⧵ (𝜕𝑋 × [0, 2))) ∪ (𝜕𝑋 × [𝑡, 2]).
Next we consider the following proper locally flat isotopy:
ℎ∶ 𝑋 × [0, 1] → 𝑀

(𝑥, 𝑡) ↦ { (𝑦, 𝑠) ∈ 𝜕𝑀 × [0, 𝑡], if 𝑥 = (𝑦, 𝑠), 𝑦 ∈ 𝜕𝑋, 𝑠 ∈ [0, 𝑡],
𝑓𝑡(𝑔−1𝑡 (𝑥)), otherwise.

Note that the collar neighbourhood 𝜕𝑀 × [0, 1] is of the desired form for the
proper submanifold ℎ1(𝑋). By the Isotopy Extension Theorem 2.20 we can ex-
tend ℎ to a isotopy 𝐻 of𝑀. Thus 𝐻−1

1 (𝜕𝑀 × [0, 1]) is the desired collar neigh-
bourhood for𝑀. □

��������

𝜕𝑀 × [0, 2]
𝑀

𝜕𝑋 × [0, 2]

𝑋 ⧵ (𝜕𝑋 × [0, 2]) ℎ1(𝑋 ⧵ (𝜕𝑋 × [0, 2]))

Figure 2. Illustration of the proof of the Collar Neighbour-
hood Theorem 2.21.
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3. CW structures, triangulations, and handle structures on
manifolds
In this chapter we will discuss the existence of various types of structures on

compactmanifolds. The results of this chapter are summarised in the following
diagram. We use the following colour code.
(1) A green arrow from 𝐴 to 𝐵 means that existence of structure 𝐴 implies

the existence of structure 𝐵.
(2) A dashed blue arrow from 𝐴 to 𝐵 means that existence of structure 𝐴

implies the existence of structure 𝐵, under the hypothesis that is written
next to the blue arrow.

��
��
��
��

��
��
��
��

ANR

finite simplicial
structure

homotopy type of
a finite CW-complex

finite CW-structure
if 𝑋 closed

manifold

smooth structure

PL-structure
dim ≤ 7

smooth handle
structure

PL-handle structure

topological handle
structure

dim ≤ 3
if dim = 4

if dim > 4if dim ≤ 4

Figure 3. Existence of structures on a compact manifold.

In the following we will explain some of the structures mentioned in the
diagram and we explain the various arrows.

Definition 3.1. An 𝑛-dimensional PL manifold is a simplicial complex 𝑋 such
that each 𝑥 ∈ 𝑋 admits a neighbourhood that is PL homeomorphic to the stan-
dard PL 𝑛-ball.
Given a topological 𝑛-manifold𝑀, a PL structure is a triangulation of𝑀 such

that the resulting simplicial complex is an 𝑛-dimensional PL manifold.

Remark 3.2. Note that Dedecker [35] and Zeeman [210] showed that a PL-
manifold can also be defined as a topological manifold together with a “piece-
wise linear” atlas. We refer to the the above references for precise definitions.

Definition 3.3. LetCAT = TOP,PL, orDif f . Let𝑀 be aCAT-manifold and let
𝑊 be a (possibly empty) union of components of 𝜕𝑀. A CAT-handle structure
rel.𝑊 is aCAT-isomorphism to aCAT-manifold that is obtained from𝑊×[0, 1]
by iteratively attaching handles of dimension 0, 1, 2,… alongCAT-gluingmaps.

With these definitions we can now formulate the theorems which in partic-
ular contain all the results mentioned in the diagram in Figure 3.
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Theorem 3.4.
(1) Every compact smooth manifold admits a smooth handle structure rel. any

union of boundary components.
(2) Every smooth manifold admits a PL structure.
(3) Every manifold that admits a smooth handle structure also admits a PL

handle structure.

Proof.
(1) In [128, Section 3] and [76, Section 6.4] it was shown that every compact

smooth manifold admits a smooth handle decomposition.
(2) In [139, Theorem 10.6] and [208, Chapter IV.12] it was shown that every

smooth manifold admits a PL structure.
(3) Every manifold that admits a smooth handle structure is by definition

smooth. It follows from (2) and Theorem 3.5 (1) that every smooth man-
ifold admits a PL handle structure. One might expect that one can turn
every smooth handle structure into a PL handle structure by suitable
choices of PL structures on handles and by applying isotopies to the at-
taching maps. But it is not clear to us whether or not this approach can
be made to work. □

Theorem 3.5.
(1) Every compact PL manifold admits a PL handle structure rel. any fixed

union of boundary components.
(2) Every compact PL manifold of dimension ≤ 7 admits a smooth structure,

which is unique up to isotopy in dimensions ≤ 6.
(3) Everymanifold that admits a PL handle structure also admits a topological

handle structure.

Proof.
(1) This statement is proved in [167, Proposition 6.8].
(2) The 0-dimensional case is clear and the 1-dimensional case can be proved

fairly easily by hand. The 2-dimensional case can also done by hand: one
picks obvious charts for the interiors of the 2-simplices and one can easily
find charts that cover the interiors of the 1-simplices. For each 0-simplex
one can pick a single chart by combining the various 2-simplices and ad-
justing the angle. The transitionmaps of such an atlas will all be smooth.
Alternatively [73, Theorem A] shows that every 2-dimensional topologi-
cal manifold admits a smooth structure. Furthermore, [73, Theorem B]
says that every homeomorphism between smooth surfaces is isotopic to
a diffeomorphism.
We turn to manifolds of dimension 3, 4, 5, 6, and 7. By smoothing the-

ory for PLmanifolds, due to Munkres [140, 141] and Hirsch-Mazur [79,
Part II, Theorem 4.2], isotopy classes of smooth structures on a compact
PL manifold𝑀 are in one to one correspondence with homotopy classes
of sections of a fibre bundle over 𝑀 with fibre PL ∕O. It follows from
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work of Munkres [138], Cerf [26], and Kervaire–Milnor [88] that PL ∕O
is 6-connected. It then follows from obstruction theory that every com-
pact PL manifold of dimension ≤ 7 admits a smooth structure, which is
unique up to isotopy in dimensions ≤ 6.
We remark that uniqueness of smooth structures in dimension 3 was

proven earlier by Munkres [140, p. 333], [138], [141, Theorems 6.2 and
6.3], and independently by Whitehead [?, Corollary 1.18]. See also [194,
Chapter 3.10] for a more detailed discussion.

(3) This statement follows immediately from the definitions. □

Theorem 3.6.

(1) Every manifold of dimension ≥ 5 admits a topological handle structure
rel. any fixed union of boundary components.

(2) (a) Every compact manifold of dimension 1,2 or 3 admits a PL structure.
(b) In dimension ≤ 4 a manifold that admits a simplicial structure also

admits a PL structure.
(c) Given any 𝑛 ≥ 4 there exists a closed 𝑛-manifold that does not admit

a simplicial structure.

Proof.

(1) For manifolds of dimension ≥ 6 this statement was proven by Kirby-
Siebenmann [91, Essay III, Theorem 2.1, p. 104]. Quinn [159, Theorem
2.3.1] extended this result to manifolds of dimension 5.

(2) (a) Radó [163] showed in 1926 that every compact 2-manifold has a
simplicial structure. (Uniqueness was proved by Papakyriakopou-
los [149] in 1946.) Moise [134, 135] proved the analogous result for
3-manifolds. We refer to [8, Theorems 6 and 8], [68, Theorem 2] and
[177] for alternative proofs of the 3-dimensional case.

(b) By (a) we only need to consider the case of a 4-dimensional mani-
fold 𝑀. We will defer the proof to Proposition 3.11 below. In fact,
in Proposition 3.11 we will show the stronger fact that every tri-
angulation of a manifold 𝑀 of dimension 𝑛 at most 4 is in fact a
PL-structure. The inductive nature of the proof of Proposition 3.11
means that we need to consider all 𝑛 ≤ 4, even though only 𝑛 = 4
is logically required at this point.

(c) Casson [1, p. xvi] showed in the 1980s that there exist closed 4-manifolds
that do not have a simplicial structure. It is now known that in ev-
ery dimension 𝑛 ≥ 5, there exists a closed 𝑛-manifold that does
not admit a simplicial structure. This question was reduced to a
problemabout homology 3-spheres [121, 55], whichwas then solved
by Manolescu [118]. Manolescu’s examples are necessarily nonori-
entable.
We remark that orientable topological manifolds in dimension 𝑛 ≥
5 that do not admit a PL structure were constructed much earlier by
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Siebenmann in [91, Annex C, Section 2]. However each of Sieben-
mann’s manifolds admits a simplicial structure. □

In order to prove Theorem 3.6 (2b), wewill need some facts about polyhedral
homology manifolds. We are grateful to Arunima Ray for assistance with this
proof.

Definition 3.7. A locally finite 𝑛-dimensional simplicial complex 𝑃 is an 𝑛-
dimensional polyhedral homology manifold if for every 𝑥 ∈ 𝑃 and for any sub-
division of 𝑃 with 𝑥 as a vertex,

𝐻∗(Lk(𝑥);ℤ) ≅ 𝐻∗(𝑆𝑛−1;ℤ).

Remark 3.8.
(1) It is immediate from the definition that if 𝑃 is an 𝑛-dimensional polyhe-

dral homology manifold, then so is any subdivision.
(2) There is an extensions of the definition for polyhedral homology mani-

folds with nonempty boundary, but we will not give it here.

We need two facts about polyhedral homology manifolds. The first is that
triangulated topological manifolds are examples of polyhedral homology man-
ifolds.

Proposition 3.9 ([55, Proposition 1.2]). Let 𝑀 be a topological manifold with
empty boundary, with a simplicial structure. Then 𝑀 is a polyhedral homology
manifold.

The second factweneed, whichwill drive the induction in the proof of Propo-
sition 3.11, is that the polyhedral homologymanifold property descends to links
of vertices.

Proposition 3.10. Let 𝑃 be an 𝑛-dimensional polyhedral homology manifold.
Then for all vertices 𝑣 ∈ 𝑃, the link Lk(𝑣) is a polyhedral homology manifold.

Proof. If 𝑛 = 1, the link of a vertex consists of a collection of points, so is
certainly a polyhedral homology manifold. So from now on we let 𝑛 ≥ 2. A
lemma of Maunder [122, Lemma 5.4.7, p. 188] implies the following. Let 𝐾 be
a simplicial complex, let 𝑥 ∈ 𝐾 be a vertex, and let 𝐿 ∶= Lk𝐾(𝑥), and let 𝑦 ∈ 𝐿
be a vertex. Let 𝑧 be the midpoint of the line segment 𝑥𝑦. Then

�̃�∗(Lk𝐾(𝑧);ℤ) ≅ �̃�∗−1(Lk𝐿(𝑦);ℤ)

where Lk𝐾(𝑧) is understood to be the link of 𝑧 in the simplicial complex ob-
tained from 𝐾 by subdividing at 𝑧.
To apply this, let 𝐾 ∶= 𝑃 and let 𝑥 ∈ 𝑃. Then since 𝑧 ∈ 𝑃 is a vertex in some

subdivision of 𝑃,

�̃�∗(𝑆𝑛−2;ℤ) ≅ �̃�∗+1(𝑆𝑛−1;ℤ) ≅ �̃�∗+1(Lk𝐾(𝑧);ℤ) ≅ �̃�∗(Lk𝐿(𝑦);ℤ).

Since this holds for every vertex 𝑦 of 𝐿, it follows that 𝐿 = Lk𝑃(𝑥) is a polyhedral
homology manifold. □
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Now we prove the main result of our digression into polyhedral homology
manifolds. In particular note that the case 𝑛 = 4 (b) implies Theorem 3.6 (2b).

Proposition 3.11. Let 𝑛 ≤ 4.
(a) Let 𝑃 be a finite (𝑛 − 1)-dimensional polyhedral homology manifold with

𝐻∗(𝑃;ℤ) ≅ 𝐻∗(𝑆𝑛−1;ℤ). If 𝑛 = 4, suppose that 𝜋1(𝑃) = {1}. Then 𝑃 is a
PL (𝑛 − 1)-manifold and is PL homeomorphic to 𝑆𝑛−1.

(b) Every triangulation of a topological 𝑛-manifold𝑀 without boundary is a
PL structure.

Proof. We work inductively on 𝑛, starting with 𝑛 = 1. In this proof all homol-
ogy groups are with ℤ coefficients, which will be omitted for brevity.
We also make the following observation before we begin. Let 𝑋 be a simpli-

cial complex such that for every vertex 𝑥 ∈ 𝑋, the link Lk𝑋(𝑥) is PL homeo-
morphic to the standard PL (𝑛 − 1)-sphere. Then for each 𝑥, the star of 𝑥 is
the cone on the link of 𝑥, and so the star is PL homeomorphic to the standard
𝑛-ball. Hence 𝑋 is a PL 𝑛-manifold without boundary.

The case 𝑛 = 1 (a). This means that 𝑃 is dimension 0, so is a finite collection of
points. Thus 𝑃 is certainly a PL manifold. Also 𝐻∗(𝑃) ≅ 𝐻∗(𝑆0), so we deduce
that 𝑃 consists of two points, that is 𝑃 ≅ 𝑆0.

The case 𝑛 = 1 (b). By Proposition 3.9, 𝑀 is a 1-dimensional polyhedral ho-
mology manifold, so the link Lk(𝑣) is dimension 0, with 𝐻∗(Lk(𝑣)) ≅ 𝐻∗(𝑆0)
for every vertex 𝑣 ∈ 𝑀. Hence by the case 𝑛 = 1 (a), Lk(𝑣) ≅ 𝑆0, and so the
triangulation of𝑀 is a PL structure.

The case 𝑛 = 2 (a). Let 𝑃 be a finite 1-dimensional polyhedral homology mani-
fold with𝐻∗(𝑃) ≅ 𝐻∗(𝑆1). We have that 𝑃 is a graph. By definition of a polyhe-
dral homology manifold, links of vertices have 𝐻∗(Lk(𝑣)) ≅ 𝐻∗(𝑆0), for every
vertex 𝑣 ∈ 𝑃. Hence vertices have valency two, so 𝑃 is a PL 1-manifold. Since
𝐻∗(𝑃) ≅ 𝐻∗(𝑆1), we must have that 𝑃 ≅ 𝑆1, by the classification of compact PL
1-manifolds.

The case 𝑛 = 2 (b). By Proposition 3.9,𝑀 is a 2-dimensional polyhedral homol-
ogy manifold, so by Proposition 3.10 the link Lk(𝑣) is a polyhedral homology
manifold of dimension 1 with 𝐻∗(Lk(𝑣)) ≅ 𝐻∗(𝑆1) for every vertex 𝑣 ∈ 𝑀.
Hence by the case 𝑛 = 2 (a), Lk(𝑣) ≅ 𝑆1, and so the triangulation of𝑀 is a PL
structure.

The case 𝑛 = 3 (a). Now 𝑃 is a 2-dimensional finite polyhedral homology mani-
fold, with𝐻∗(𝑃) ≅ 𝐻∗(𝑆2). By Proposition 3.10, Lk(𝑣) is a polyhedral homology
manifold and 𝐻∗(Lk(𝑣)) ≅ 𝐻∗(𝑆1) by the definition of a polyhedral homology
manifold, for every vertex 𝑣 of 𝑃. Then by the case 𝑛 = 1 (a), Lk(𝑣) is a PLman-
ifold and Lk(𝑣) ≅ 𝑆1. Hence 𝑃 is a PL manifold with 𝐻∗(𝑃) ≅ 𝐻∗(𝑆2). Thus
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𝑃 ≅ 𝑆2 by the classification of compact PL 2-manifolds.

The case 𝑛 = 3 (b). By Proposition 3.9,𝑀 is a 3-dimensional polyhedral homol-
ogy manifold, so by Proposition 3.10 the link Lk(𝑣) is a polyhedral homology
manifold of dimension 2 with 𝐻∗(Lk(𝑣)) ≅ 𝐻∗(𝑆2) for every vertex 𝑣 ∈ 𝑀.
Hence by the case 𝑛 = 3 (a), Lk(𝑣) ≅ 𝑆2. Thus the triangulation of𝑀 is a PL
structure, as desired.

The case 𝑛 = 4 (a). Now 𝑃 is a 3-dimensional finite polyhedral homology man-
ifold, with𝐻∗(𝑃) ≅ 𝐻∗(𝑆3). In addition, since 𝑛 = 4we have by the hypotheses
of the proposition that 𝜋1(𝑃) = {1}. By Proposition 3.10, for every vertex 𝑣 of 𝑃,
Lk(𝑣) is a polyhedral homology manifold with 𝐻∗(Lk(𝑣)) ≅ 𝐻∗(𝑆2). Hence by
the case 𝑛 = 3 (a), Lk(𝑣) is a PL 2-manifold and Lk(𝑣) ≅ 𝑆2. Hence 𝑃 is a PL
3-manifold. Since 𝑃 is simply-connected, compact, and has the homology of 𝑆3
the Poincaré conjecture in dimension three [153, 152, 151], implies that 𝑃 ≅ 𝑆3.

The case 𝑛 = 4 (b). Let𝑀 be a 4-dimensional topological manifold with a sim-
plicial structure. By Proposition 3.9,𝑀 is a 4-dimensional polyhedral homology
manifold, so by Proposition 3.10 for every vertex 𝑣 ∈ 𝑀, the link Lk(𝑣) is a poly-
hedral homologymanifold of dimension 3with𝐻∗(Lk(𝑣)) ≅ 𝐻∗(𝑆3). Moreover,
for a triangulation of a topological manifold of dimension 𝑛 ≥ 3, a standard
argument, similar to the proof of Proposition 2.9 (see [55, Theorem 1.5] for a
proof), shows that 𝜋1(Lk(𝑣)) = {1} for every vertex 𝑣. Hence we can apply the
case 𝑛 = 3 (a), to deduce that Lk(𝑣) is a PL manifold and Lk(𝑣) ≅ 𝑆3. Thus the
triangulation of𝑀 is a PL structure, as desired. □

We continue by recalling the definition of a CW structure.

Definition 3.12. A CW complex is a topological space 𝑋 together with a filtra-
tion

∅ = 𝑋−1 ⊆ 𝑋0 ⊆ 𝑋1 ⊆ 𝑋2 ⊆⋯
such that 𝑋 = 𝑐𝑜𝑙𝑖𝑚

⟶
𝑋𝑛 and such that for each 𝑛 ≥ 0, the space 𝑋𝑛 arises as a

pushout
∐

𝑗∈𝒥𝑛
𝑆𝑛−1 //

��

𝑋𝑛−1

��∐
𝑗∈𝒥𝑛

𝐷𝑛 // 𝑋𝑛

where 𝒥𝑛 indexes the discs 𝐷𝑛. The interiors Int𝐷𝑛 of the discs are called the
𝑛-cells. For 𝑛 ≥ 0, a CW complex𝑋 is said to be 𝑛-dimensional if𝑋𝑛 ⧵𝑋𝑛−1 ≠ ∅
and 𝑋𝑖 = 𝑋𝑖+1 for all 𝑖 ≥ 𝑛. We say a topological space 𝑋 admits a CW structure
if 𝑋 admits such a filtration.

The above results can be used to prove the following theorem on the exis-
tence of CW structures.
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Theorem 3.13.
(1) Every PL manifold (and thus every smooth manifold) admits a CW struc-

ture.
(2) For 𝑛 ≤ 3 every compact 𝑛-manifold admits the structure of a finite 𝑛-

dimensional CW complex.
(3) Let 𝑛 ≥ 5 and let𝑀 be a compact 𝑛-manifold. Then𝑀 is homeomorphic

to the mapping cylinder of some map 𝑓∶ 𝜕𝑀 → 𝑋, where 𝑋 is a finite CW
complex.

(4) For𝑛 ≥ 5, every closed𝑛-manifold admits the structure of a finite𝑛-dimen-
sional CW complex.

Proof.
(1) Every simplicial complex is evidently a CW complex. The statement for

PL manifold thus holds by definition. For smooth manifolds this state-
ment now follows from Theorem 3.4 (2). Also note that it follows from
[128, Theorem 3.5] and the existence of a handle decomposition that ev-
ery compact smooth 𝑛-dimensional manifold is homotopy equivalent to
a compact 𝑛-dimensional CW complex. For most purposes it suffices to
know that a compact smooth manifold has the homotopy type of a com-
pact CW complex.

(2) In Theorem 3.6 we saw that every compact 𝑛-manifold of dimension ≤ 3
admits a PL structure. It follows from (1) that every suchmanifold admits
a CW structure.

(3) Let𝑀 be a manifold with (possibly empty) boundary of dimension ≥ 5.
In Theorem 3.6 we saw that𝑀 admits a topological handle structure rel.
𝜕𝑀 × 𝐼. Kirby-Siebenmann [91, Essay III, Theorem 2.2, p. 107] then says
that𝑀 is homeomorphic to themapping cylinder of somemap𝑓∶ 𝜕𝑀 →
𝑋, where 𝑋 is a finite CW complex. Thus (2) holds.

(4) If𝑀 is a closed manifold of dimension ≥ 5, then it follows from (3) that
𝑀 admits the structure of a finite 𝑛-dimensional CW complex. □

It is not clear to uswhether Theorem3.13 suffices to show that every compact
high-dimensional manifold admits a CW structure. Put differently, to the best
of our knowledge the following question is open for manifolds with nonempty
boundary.

Question 3.14. Let 𝑛 ≥ 5. Does every compact 𝑛-manifold have a CW structure?

The following question also seems to still be open, even in the closed case.

Question 3.15. Does every compact 4-manifold have a CW structure?

In Theorem3.13we showed thatmany compactmanifolds admit aCWstruc-
ture, but we saw that there are still open cases. In many applications it suffices
to know that a topological space is homotopy equivalent to a finite CWcomplex.
This leads us to the following theorem.
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Theorem 3.16.
(1) Every connected closed nonempty 𝑛-manifold is homotopy equivalent to an

𝑛-dimensional finite CW complex.
(2) Every connected compact nonempty 𝑛-manifold with nonempty boundary

is homotopy equivalent to an (𝑛 − 1)-dimensional finite CW complex.

In the proof of Theorem 3.16 we will use the following theorem proven by
Wall [200, Corollary 5.1].

Theorem 3.17. Let𝑋 be a finite connected CW complex with fundamental group
𝜋 = 𝜋1(𝑋). Suppose that there is an integer 𝑛 ≥ 3 such that𝐻𝑖(𝑋;ℤ[𝜋]) = 0 for
all 𝑖 > 𝑛. (Here 𝐻𝑖(𝑋;ℤ[𝜋]) = 0 denotes cohomology with twisted coefficients,
which we will introduce in Appendix A.1.) Then 𝑋 is homotopy equivalent to an
𝑛-dimensional finite CW complex.

We will also need the definition of an Absolute Neighbourhood Retract.

Definition 3.18 (ANR). A space 𝑋 is called an absolute neighbourhood retract
(ANR) if 𝑋 is metrisable and if whenever 𝑋 ⊆ 𝑌 is a closed subset of a metris-
able space 𝑌, then 𝑋 is a neighbourhood retract of 𝑌. That is, there is an open
neighbourhood 𝑈 ⊆ 𝑌 containing 𝑋, with a map 𝑟∶ 𝑈 → 𝑋 such that the
composition 𝑋 → 𝑈

𝑟
,→ 𝑋 is equal to the identity on 𝑋.

Proof of Theorem 3.16. We start out with the following claim.

Claim. Every compact manifold is homotopy equivalent to a finite CW com-
plex.

We provide two different proofs of the claim.
(a) Let𝑀 be a compact 𝑛-manifold. If 𝑛 ≥ 6, then it follows also from The-

orem 3.13 (3) and (4) together with the Cellular Approximation Theo-
rem [15, Theorem IV.11.4] that𝑀 is homotopy equivalent to a finite CW
complex. If 𝑛 < 5, then we just replace𝑀 by𝑀×𝐷6 and apply the above
argument. (see also Kirby-Siebenmann [93, Section 1 (III), p. 744].)

(b) We now provide a second proof, which is of a very different flavour. It
follows from the Dugundji Extension Theorem [173, Theorem 6.1.1] and
work ofHanner [69, Theorem3.3] that everymanifold (possibly noncom-
pact) is anANR, andWest [206, Corollary 5.3] showed that every compact
ANR is homotopy equivalent to a finite CW complex.

With this claim it remains to prove the dimension statements of the theorem.
(1) By Theorem 3.13 we only need to prove (1) in the case 𝑛 = 4. But since

the subsequent argument works for all 𝑛 ≥ 4we also give it for all 𝑛 ≥ 4.
We follow the argument provided in [206, Corollary 5.4].
Let 𝑀 be a compact connected nonempty 𝑛-manifold. By the claim,

𝑀 is homotopy equivalent to a finite CW complex 𝑋.
First we consider the case that 𝑀 is orientable. Since 𝑀 is 𝑛-dimen-

sional it follows from the Universal Poincaré Duality Theorem A.15 that
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for every 𝑘 > 𝑛 and every ℤ[𝜋1(𝑋)]-module Λ we have

𝐻𝑘(𝑋; Λ) ≅ 𝐻𝑘(𝑀; Λ) ≅ 𝐻𝑛−𝑘(𝑀, 𝜕𝑀; Λ) = 0.

By Theorem 3.17, 𝑋 is homotopy equivalent to an 𝑛-dimensional finite
CW complex. Note that to apply Theorem 3.17 we have used that 𝑛 ≥ 3.
If 𝑀 is nonorientable, then in the above one needs to apply Poincaré

Duality for nonorientable manifolds. In the closed case, a proof can be
found in [187]. The case for manifolds with boundary can be proved by
combining the ideas of [187] and the Universal Poincaré Duality Theo-
rem A.15.

(2) Nowwe turn to the proof of (2). Let𝑀 be a compact connected𝑛-manifold
with nonempty boundary. We start with 𝑛 = 1, 2, or 3. We saw in
Theorem 3.6 that in this dimension range every compact connected 𝑛-
manifold admits a simplicial structure. It is well known that a compact
connected 𝑛-manifold with nonempty boundary and a simplicial struc-
ture is homotopy equivalent to an (𝑛 − 1)-dimensional simplicial com-
plex: iteratively collapse top dimensional simplices starting with those
that have a face on the boundary. In particular such a manifold is homo-
topy equivalent to an (𝑛 − 1)-dimensional finite CW complex.
Now suppose that 𝑛 ≥ 4. By the claim𝑀 is homotopy equivalent to a

finite CW complex 𝑋. Let 𝑘 ≥ 𝑛 and let Λ be a ℤ[𝜋1(𝑋)]-module. By the
Universal Poincaré Duality Theorem A.15 we have that

𝐻𝑘(𝑋; Λ) ≅ 𝐻𝑘(𝑀; Λ) ≅ 𝐻𝑛−𝑘(𝑀, 𝜕𝑀; Λ) = 0.

Here the last conclusion is obvious for 𝑘 > 𝑛. For 𝑘 = 𝑛 the conclu-
sion follows from the fact that 𝜕𝑀 ≠ ∅, that𝑀 is connected and the ex-
plicit calculation of 0-th twisted homology groups as given in [75, Chap-
ter VI.3]. It follows from Theorem 3.17 that 𝑋 is homotopy equivalent
to an (𝑛 − 1)-dimensional finite CW complex. Note here that to apply
Theorem 3.17 we used 𝑛 ≥ 4. □

Theorem 3.16 is strong enough to recover many familiar statements.

Corollary 3.19. Let𝑀 be a compact, connected, nonempty manifold.
(1) The group 𝜋1(𝑀) is finitely presented.
(2) All homology groups 𝐻𝑘(𝑀;ℤ) are finitely generated abelian groups, in

particular it makes sense to define the Euler characteristic

𝜒(𝑀) ∶=
∑

𝑛
(−1)𝑛 ⋅ 𝑏𝑛(𝑀).

(3) Let 𝑝∶ �̃� → 𝑀 be a finite covering. Then

𝜒(�̃�) = [�̃� ∶ 𝑀] ⋅ 𝜒(𝑀).

Proof. The first two statements in the corollary are an immediate consequence
of Theorem 3.16 and standard results on fundamental groups and homology
groups of finite CW complexes. We turn to the final statement. Let𝑋 be a finite
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CW complex homotopy equivalent to 𝑀. Use the fact that the Euler charac-
teristic is multiplicative for finite covers of finite CW complexes and use that
a 𝑘-fold cover �̃� of 𝑀 induces a 𝑘-fold cover 𝑋 of 𝑋 such that �̃� and 𝑋 are
homotopy equivalent, to deduce the result.
Here is an alternative approach to proving the first two statements. Let 𝑀

be a compact, connected manifold. Borsuk’s Theorem that 𝑀 is a Euclidean
NeighbourhoodRetract shows that𝑀 is a retract of a finiteCWcomplex; see [72,
Appendix A, Corollary A.9], [15, Appendix E], [47], and [52, Theorem 124.3
and Proposition 124.7]. This fact is nontrivial but it is much easier to prove
than Theorem 3.16. Borsuk’s Theorem implies immediately that the homol-
ogy groups of𝑀 are finitely generated and that the fundamental group of𝑀 is
finitely generated. In fact using a group theoretic lemma as in [199, Lemma 1.3]
or [44, Theorem3.1], one actually obtains that𝜋1(𝑀) is finitely presented. But it
is not clear howBorsuk’s Theorem can be used to prove the third statement. □

Remark 3.20. As pointed out above, every compact smoothmanifold admits the
structure of a finite CW complex. One can combine this fact with Theorem 9.9
below to obtain an alternative proof of Corollary 3.19 (1) and (2). More pre-
cisely: Theorem 9.9 says that for any compact 4-manifold 𝑀 there is a closed
orientable simply connected 4-manifold𝑁 such that the connected sum𝑀#𝑁
admits a smooth structure. Using the well-known behaviour of the fundamen-
tal group and the homology groups under the connected sumoperation one can
now fairly easily provide an alternative proof of Corollary 3.19 (1) and (2).
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4. The Annulus Theorem and the Stable Homeomorphism
Theorem
The Annulus Theorem and the Stable Homeomorphism Theorems are two

(basically equivalent) fundamental results in the development of the theory
of manifolds. For example, in high dimensions, the Stable Homeomorphism
Theorem is an essential ingredient in the proof of the Product Structure Theo-
rem 4.16 [91, Essay I, Theorem 5.1, p. 31], which itself underpins all the results
of [91]. We state the Product Structure Theorem in Section 4.3. In dimension
four, the Annulus Theorem is one of the many consequences of Quinn’s con-
trolled ℎ-cobordism theorem [50, Chapter 7]. In dimension 4 this theorem is
used in the proofs of smoothing theorems (Chapter 9), existence and unique-
ness of normal vector bundles (Chapter 5), and transversality (Chapter 10). We
discuss these developments in the later chapters indicated. Later in this section
(Section 4.2), we will discuss an application of the Annulus Theorem: showing
that connected sum is a well-defined operation on connected, topological man-
ifolds that are either oriented, or at least one of which is nonorientable. Here
is the Annulus Theorem.
Theorem 4.1. (Annulus Theorem) Let 𝑛 ∈ ℕ0 and let 𝑓, 𝑔∶ 𝐷𝑛 → ℝ𝑛 be
two orientation-preserving locally flat embeddings. If 𝑓(𝐷𝑛) ⊆ Int(𝑔(𝐷𝑛)), then
𝑔(𝐷𝑛) ⧵ Int(𝑓(𝐷𝑛)) is homeomorphic to 𝑆𝑛−1 × [0, 1].
For 𝑛 = 0, 1 the Annulus Theorem is basically trivial. For 𝑛 = 2, 3 the

Annulus Theorem follows from the work of Radó [163] and Moise [134, 135]
(see also [40, p. 247]). The Annulus Theorem was proved for dimensions ≥
5 by Kirby [90], with a little help from Siebenmann, and in dimension 4 by
Quinn [159, p. 506], making use of the main results of [51]; see also [40, p. 247].
The known proofs of the Annulus Theorem 4.1 deduce it from the Stable

Homeomorphism Theorem. In the next chapter we will state the Stable Home-
omorphism Theorem 4.3 and we will explain the argument, provided in [20],
showing that the Annulus Theorem 4.1 can be deduced from the Stable Home-
omorphism Theorem 4.3.

4.1. The Stable Homeomorphism Theorem. We reduce the Annulus The-
orem to the Stable Homeomorphisms Theorem stated in Theorem 4.3. This
follows from work of Brown and Gluck [20], but since it requires some work to
find this deduction in [20], we give the details here.
Definition 4.2. Let 𝑛 ∈ ℕ0. A homeomorphism 𝑓∶ ℝ𝑛 → ℝ𝑛 is said to be sta-
ble if there is a sequence of homeomorphisms 𝑓1,… , 𝑓𝑚 ∶ ℝ𝑛 → ℝ𝑛 such that
𝑓𝑚◦⋯◦𝑓1 = 𝑓 and such that for each 𝑖, the homeomorphism 𝑓𝑖 is somewhere
the identity, which means that there is an open nonempty set𝑈 ⊆ ℝ𝑛 such that
𝑓𝑖|𝑈 is the identity on 𝑈.
The key ingredient to the subsequent discussion is the following theorem.

Theorem 4.3. (Stable homeomorphism Theorem) Let 𝑛 ∈ ℕ0. Every ori-
entation preserving homeomorphism fromℝ𝑛 to itself is stable.
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For 𝑛 ≥ 5 this was proven by Kirby [90, p. 575] using the torus trick. Slightly
more precisely, Kirby [90] showed that the Stable Homeomorphism Theorem
in dimensions at least five is a consequence of the surgery theoretic classi-
fication of PL homotopy tori, which was worked out around the same time
by Wall [202], [203, Section 15A] and independently by Hsiang-Shaneson [81,
p. 688], both proofs building on the work of Browder, Novikov, andWall, which
culminated in Wall’s book [203]. See also [82]. For 𝑛 = 4 the Stable Homeo-
morphism Theorem was proven by Quinn [159], see also [40, p. 247].
Before we discuss consequences of the Stable HomeomorphismTheorem 4.3

we recall the two versions of the Alexander trick.

Lemma 4.4. (Alexander trick) Let 𝑛 ∈ ℕ0.
(1) Every homeomorphism of 𝑆𝑛−1 can be extended radially to a homeomor-

phism of 𝐷𝑛 that sends 0 to 0.
(2) Let 𝑓 and 𝑔 be two homeomorphisms of 𝐷𝑛. If the restrictions of 𝑓 and 𝑔 to

𝑆𝑛−1 are isotopic, then 𝑓 and 𝑔 are isotopic homeomorphisms of 𝐷𝑛.
(3) The topological group Homeo𝜕(𝐷𝑛) of homeomorphisms of 𝐷𝑛 fixing the

boundary pointwise is contractible.

Proof. The extension in the first statement can be obtained by coning: 𝑓(𝑡⋅𝑥) =
𝑡 ⋅ 𝑓(𝑥).
The proof of the second is an amusing exercise; see e.g. [70, Lemma 5.6] for a

proof. The idea is also similar to the proof of the third statement, which we give
now. To show that Homeo𝜕(𝐷𝑛) is contractible it suffices to give a homotopy

𝐹∶ Homeo𝜕(𝐷𝑛) × [0, 1]→ Homeo𝜕(𝐷𝑛)

with 𝐹(𝑓, 0) = Id𝑛𝐷 and 𝐹(𝑓, 1) = 𝑓, for all 𝑓 ∈ Homeo𝜕(𝐷𝑛). To do this, we
define

𝐹(𝑓, 𝑡)(𝑥) = {
𝑡 ⋅ 𝑓

(1
𝑡 ⋅ 𝑥

)
‖𝑥‖ ≤ 𝑡

𝑥 𝑡 ≤ ‖𝑥‖ ≤ 1.
We omit the proof that this is well-defined and continuous. □

Wecannowprove the following almost immediate consequence of the Stable
Homeomorphism Theorem 4.3.

Corollary 4.5. Let 𝑛 ∈ ℕ0. Every orientation preserving self-homeomorphism of
𝑆𝑛 is isotopic to the identity.

Proof. We identify 𝑆𝑛 withℝ𝑛 ∪ {∞}. Let ℎ be a self-homeomorphism of 𝑆𝑛 =
ℝ𝑛∪{∞}. By the StableHomeomorphismTheorem 4.3we know that ℎ is stable.
Thuswe only have to consider the case that ℎ fixes an open subset ofℝ𝑛∪{∞} =
𝑆𝑛, since a composition of homeomorphisms isotopic to the identity is isotopic
to the identity. After an isotopy (using Theorem 2.20) we can assume that ℎ
fixes an open neighbourhood of∞, so in particular there exists 𝐶 > 0 such that
ℎ is the identity on {𝑥 ∈ ℝ𝑛 ∣ ‖𝑥‖ ≥ 𝐶}. It then follows from Lemma 4.4 (2)
that ℎ is isotopic to the identity. □



28 S. FRIEDL, M. NAGEL, P. ORSON ANDM. POWELL

Now we being showing how to deduce the annulus theorem from the stable
homeomorphism theorem.

Definition 4.6. Let 𝑛 ∈ ℕ0. We say that two elements 𝑓0, 𝑓1 ∈ Emb(𝐷𝑛,ℝ𝑛)
are intertwined if there exists an ℎ ∈ Homeo(ℝ𝑛,ℝ𝑛) with ℎ◦𝑓0 = 𝑓1.

We will need the following straightforward technical lemma. See Defini-
tion 2.7 for the definition of a locally flat embedding.

Lemma 4.7. Let 𝑛 ∈ ℕ0. Let𝑀 be an 𝑛-dimensional manifold and let 𝑓∶ 𝐷𝑛 →
𝑀 be a locally flat embedding into Int𝑀 = 𝑀 ⧵ 𝜕𝑀. Then there exists a locally
flat embedding 𝐹∶ ℝ𝑛 → 𝑀 such that the restriction of 𝐹 to 𝐷𝑛 equals 𝑓.

Proof. Let 𝑓∶ 𝐷𝑛 → 𝑀 be a locally flat embedding. By definition 𝑓(𝐷𝑛) is a
submanifold of𝑀. It is straightforward to see that𝑊 ∶= 𝑀 ⧵ 𝑓(Int𝐷𝑛) is also
a submanifold of𝑀. By the Collar Neighbourhood Theorem 2.16 there exists a
collar 𝑓(𝑆𝑛−1) × [0, 1]. The map
𝐹∶ ℝ𝑛 → 𝑀

𝑥 ↦ {
𝑓(𝑥), if 𝑥 ∈ 𝐷𝑛,(
𝑓(𝑦), 2

𝜋
arctan(𝑡 − 1)

)
if 𝑥 = 𝑡 ⋅ 𝑦 with 𝑡 ∈ [1,∞), 𝑦 ∈ 𝑆𝑛−1,

is easily seen to be a locally flat embedding. □

Denote the set of locally flat embeddings of 𝐷𝑛 into ℝ𝑛 by Emb(𝐷𝑛,ℝ𝑛).

Lemma 4.8. Let 𝑛 ∈ ℕ0. Any two elements 𝑓0, 𝑓1 ∈ Emb(𝐷𝑛,ℝ𝑛) are inter-
twined.

Proof. It suffices to show that any 𝑓 ∈ Emb(𝐷𝑛,ℝ𝑛) is intertwined with the
standard embedding 𝐷𝑛 ⊆ ℝ𝑛. So let 𝑓 ∈ Emb(𝐷𝑛,ℝ𝑛). Apply Lemma 4.7 to
extend 𝑓 to a locally flat embedding 𝐹∶ 𝐷𝑛

3
2

→ ℝ𝑛. Note that 𝐹 restricts to a lo-

cally flat embedding of 𝑆𝑛−1×[ 1
2
, 3
2
] into 𝑆𝑛 = ℝ𝑛∪{∞}. Let �̃�𝑛 be another copy

of 𝐷𝑛. By the generalised Schoenflies Theorem [18, Theorem 5] there exists a
homeomorphism 𝑔∶ �̃�𝑛 → 𝑆𝑛 ⧵ 𝑓(Int𝐷𝑛). Using that the homeomorphisms
of �̃�𝑛 act transitively on the interior of �̃�𝑛, arrange that 𝑔(0) = ∞.
Note that 𝑔−1◦𝑓∶ 𝑆𝑛−1 → 𝑆𝑛−1 is a homeomorphism. By Lemma 4.4 (1) this

homeomorphism extends to a homeomorphism 𝜙 of 𝐷𝑛. Replace 𝑔 by 𝑔◦𝜙 if
necessary to obtain that 𝑓 = 𝑔∶ 𝑆𝑛−1 → 𝑓(𝑆𝑛−1). Identify 𝑆𝑛 = ℝ𝑛 ∪ {∞} =
𝐷𝑛 ∪ �̃�𝑛 in such a way that 0 ∈ �̃�𝑛 corresponds precisely to∞. Consider the
map

𝐹∶ 𝑆𝑛 = 𝐷𝑛 ∪ �̃�𝑛 → 𝑆𝑛

𝑥 ↦ {
𝑓(𝑥) 𝑥 ∈ 𝐷𝑛

𝑔(𝑥) 𝑥 ∈ �̃�𝑛.
The maps 𝑓 and 𝑔 agree on the overlap, so the map is well-defined and is a
homeomorphism. Note that 𝐹 restricts to a homeomorphism of ℝ𝑛 which has
the property that the restriction to 𝐷𝑛 equals 𝑓. This shows that 𝐹◦ Id = 𝑓, so
𝑓 and the standard embedding are intertwined. □
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We continue with the following definition from [20, p. 19].

Definition 4.9. Let 𝑛 ∈ ℕ0. Let 𝑓0, 𝑓1 ∈ Emb(𝐷𝑛,ℝ𝑛).
(1) We say 𝑓0 and 𝑓1 are strictly annularly equivalent if 𝑓0(𝐷𝑛) ⊆ Int𝑓1(𝐷𝑛)

and if there exists amap𝐹∶ 𝑆𝑛−1×𝐼 → ℝ𝑛 that is a homeomorphismonto
its image such that 𝐹(𝑥, 0) = 𝑓0(𝑥) and 𝐹(𝑥, 1) = 𝑓1(𝑥) for all 𝑥 ∈ 𝑆𝑛−1.

(2) We say 𝑓0 and 𝑓1 are annularly equivalent if there exists a sequence 𝑓0 =
𝑔0, 𝑔1,… , 𝑔𝑘 = 𝑓1 of elements of Emb(𝐷𝑛,ℝ𝑛) such that any two succes-
sive 𝑔𝑖 are strictly annularly equivalent.

Theorem4.10. Let𝑛 ∈ ℕ0. Let𝑓0, 𝑓1 ∈ Emb(𝐷𝑛,ℝ𝑛)with𝑓0(𝐷𝑛) ⊆ Int𝑓1(𝐷𝑛).
If 𝑓0 and 𝑓1 are orientation preserving, then they are strictly annularly equivalent
if and only if they are intertwined.

Proof. If two such elements are strictly annularly equivalent, then they are
intertwined by [20, Theorem 5.2].
Now suppose that 𝑓0 and 𝑓1 are intertwined, that is there exists an ℎ ∈

Homeo(ℝ𝑛,ℝ𝑛) with ℎ◦𝑓0 = 𝑓1. By the Stable Homeomorphism Theorem 4.3
we know thatℎ is stable. Thuswe know from [20, Theorem5.4] that the embed-
dings are annularly equivalent, i.e. there exist ℎ0,… , ℎ𝑘 ∈ Emb(𝐷𝑛,ℝ𝑛) such
that ℎ0 = 𝑓0, ℎ𝑘 = 𝑓1 and for each 𝑖 the maps ℎ𝑖 and ℎ𝑖+1 are strictly annu-
larly equivalent. Since 𝑓0(𝐷𝑛) ⊆ Int𝑓1(𝐷𝑛), the embeddings of the boundary
spheres 𝑓0(𝜕𝐷𝑛) and 𝑓1(𝜕𝐷𝑛) are disjoint. Therefore it follows from [19, The-
orem 3.5] that 𝑓0 and 𝑓1 are not only annularly equivalent, but are moreover
strictly annularly equivalent. □

Now we can easily prove the Annulus Theorem 4.1.

Proof of the Annulus Theorem 4.1. Let 𝑓0, 𝑓1∶ 𝐷𝑛 → ℝ𝑛 be orientation-
preserving locally flat embeddings with 𝑓0(𝐷𝑛) ⊆ Int(𝑓1(𝐷𝑛)). By Lemma 4.8
and Theorem 4.10 the twomaps 𝑓0 and 𝑓1 are strictly annularly equivalent. But
this implies that 𝑓1(𝐷𝑛) ⧵ Int(𝑓0(𝐷𝑛)) is homeomorphic to 𝑆𝑛−1 × [0, 1]. □

4.2. The connected sum operation.

Definition 4.11. Let𝑀 and 𝑁 be connected nonempty oriented 𝑛-manifolds.
Pick an orientation preserving locally flat embeddingΦ𝑀 ∶ 𝐷𝑛 → 𝑀⧵𝜕𝑀 of an
𝑛-ball into 𝑀 and an orientation reversing locally flat embedding Φ𝑁 ∶ 𝐷𝑛 →
𝑁 ⧵ 𝜕𝑁 of an 𝑛-ball into 𝑁. Define the connected sum𝑀#𝑁 of𝑀 and 𝑁 by

𝑀#𝑁 ∶= (𝑀 ⧵ Φ𝑀(Int(𝐷𝑛))) ∪Φ𝑀(𝑆𝑛−1)=Φ𝑁(𝑆𝑛−1) (𝑁 ⧵ Φ𝑁(Int(𝐷𝑛)))

where we glue the left hand side to the right hand side via the map

Φ𝑁◦Φ−1
𝑀 ∶ Φ𝑀(𝑆𝑛−1)

≅
,→ Φ𝑁(𝑆𝑛−1).

It follows from the Collar Neighbourhood Theorem 2.16 that the topological
space𝑀#𝑁 inherits the structure of an 𝑛-manifold; see [108, Proposition 6.6]
for details. Furthermore𝑀#𝑁 can be oriented in such a way that𝑀 ⧵Φ𝑀(𝐷𝑛)
and 𝑁 ⧵ Φ𝑁(𝐷𝑛) are oriented submanifolds.



30 S. FRIEDL, M. NAGEL, P. ORSON ANDM. POWELL

Theorem 4.12. Let 𝑛 ∈ ℕ0. The connected sum𝑀#𝑁 of two connected oriented
𝑛-manifolds𝑀 and𝑁 is independent of the choice of embeddings of the 𝑛-balls.

Remark 4.13.

(1) In Proposition 8.3wewill see that the 4-manifoldsℂP2#ℂP2 andℂP2#ℂP2

have non-isometric intersection forms, so they are not homeomorphic.
Thus connected sum is notwell-defined onorientable 4-manifolds, rather
it depends on the choice of orientation.

(2) If at least one of the two manifolds involved is nonorientable, then the
connected sum is well-defined. This follows from the fact that one can
show, say using the orientation cover of a nonorientable manifold, that
in a nonorientable connected 𝑛-manifold𝑀 any two locally flat embed-
dings of 𝐷𝑛 → 𝑀 ⧵ 𝜕𝑀 are ambiently isotopic. In the smooth category
this argument is worked out in detail in [52, Chapter 47.4]. Using the
Annulus Theorem 4.1 one can translate the smooth argument to a topo-
logical argument.

(3) As discussed in [12], in contrast to the case of orientable 3-dimensional
manifolds, orientable 4-dimensional topological manifolds do not admit
a unique decomposition as a connected sum of irreducible 4-manifolds.

For example ℂP2#𝑆2 × 𝑆2 and ℂP2#ℂP2#ℂP
2
are diffeomorphic.

The proof of Theorem 4.12 relies on the following two lemmas. The elemen-
tary proof of the first lemma is left to the reader.

Lemma 4.14. Let𝐷𝑛
𝑟 (𝑥) and𝐷𝑛

𝑠 (𝑦) be two Euclidean balls inℝ𝑛. There exists an
orientation-preserving homeomorphism 𝑓∶ ℝ𝑛 → ℝ𝑛 with 𝑓(𝐷𝑛

𝑟 (𝑥)) = 𝐷𝑛
𝑠 (𝑦)

such that 𝑓 is the identity outside of some compact set.

The next lemma is a consequence of the Annulus Theorem 4.1.

Lemma 4.15. Let 𝜑, 𝜓∶ 𝐷𝑛 → ℝ𝑛 be two orientation-preserving locally flat
embeddings. If 𝜑(𝐷𝑛) ⊆ Int(𝜓(𝐷𝑛)), then there exists an orientation-preserving
homeomorphism 𝑓 of ℝ𝑛 with 𝑓(𝜑(𝐷𝑛)) = 𝜓(𝐷𝑛) such that 𝑓 is the identity out-
side of some compact set.

Proof. By the Annulus Theorem 4.1 and the Collar Neighbourhood Theorem
2.16 we can find a locally flat embedding 𝜃∶ 𝑆𝑛−1 × [−1, 2] such that 𝜃(𝑆𝑛−1 ×
[−1, 0]) ⊆ 𝜑(𝐷𝑛) is an (interior) collar for 𝜕𝜑(𝐷𝑛), such that 𝜃(𝑆𝑛−1 × [0, 1]) =
𝜓(𝐷𝑛) ⧵ 𝜑(Int𝐷𝑛) and such that 𝜃(𝑆𝑛−1 × [1, 2]) ⊆ ℝ𝑛 ⧵ 𝜓(Int𝐷𝑛) is an (inter-
nal) collar for 𝜕(ℝ𝑛 ⧵ 𝜓(Int𝐷𝑛)). It is now obvious that we can find a homeo-
morphism 𝑓 with 𝑓(𝜑(𝐷𝑛)) = 𝜓(𝐷𝑛) which is the identity outside of 𝜃(𝑆𝑛−1 ×
[−1, 2]). □

The subsequent proof is partly based on the sketch given in [166, p. 42].

Proof of Theorem 4.12. We have to show that the connected sum is indepen-
dent of the choice of Φ𝑀 ∶ 𝐷𝑛 → 𝑀 and Φ𝑁 ∶ 𝐷𝑛 → 𝑁. In the following we
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show that the oriented homeomorphism type of the connected sum is inde-
pendent of the choice of Φ𝑀 . Basically the same argument then shows that
the oriented homeomorphism type of the connected sum is independent of the
choice of Ψ𝑁 . Putting these two orientation-preserving homeomorphisms to-
gether gives independence of all choices.
After this preamble we now show that the oriented homeomorphism type of

the connected sum is independent of the choice ofΦ𝑀 . So suppose we are given
two orientation-preserving embeddings Φ1∶ 𝐷𝑛 → 𝑀 and Φ2∶ 𝐷𝑛 → 𝑀 and
suppose we are given an orientation-reversing embedding Ψ∶ 𝐷𝑛 → 𝑁. For
𝑖 = 1, 2 we introduce the following notation.

(1) Write 𝐷𝑖 ∶= Φ𝑖(𝐷𝑛).
(2) Let 𝑋𝑖 ∶= 𝑀 ⧵ Φ𝑖(Int𝐷𝑛) and let 𝑌 ∶= 𝑁 ⧵ Ψ(Int𝐷𝑛),
(3) Denote the restriction of Φ𝑖 to 𝑆𝑛−1 by 𝜑𝑖 and denote the restriction of Ψ

to 𝑆𝑛−1 by 𝜓.

Figure 4 hopefully makes it easier for the reader to internalise the notation. We
have to show that there exists a homeomorphism

(𝑋1 ∪ 𝑌)∕𝜑1(𝑥) ∼ 𝜓(𝑥) → (𝑋2 ∪ 𝑌)∕𝜑2(𝑥) ∼ 𝜓(𝑥)

where the gluing on both sides is given by taking 𝑥 ∈ 𝑆𝑛−1.

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

����
����
����

����
����
����

������
������
������
������
������
������

������
������
������
������
������
������

���
���
���

���
���
���

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

𝐷𝑛

𝑁

𝜓

𝑋1

Ψ

𝑀

𝐷𝑛

𝐶

𝑌

Φ2

𝐷1

Φ1 𝜑1

𝐷2

Figure 4. Illustration for the proof of Theorem 4.12.

Claim. There exists an orientation-preserving homeomorphism ℎ of𝑀 so that
ℎ(𝐷1) = 𝐷2.

To prove the claim, first note that it follows from Lemmas 4.7 and 4.14, to-
gether with our hypothesis that𝑀 is path connected, that there exists an orient-
ation preserving homeomorphism 𝜇 of𝑀 such that 𝜇(𝐷1) ⊆ Int𝐷2. Then apply
Lemmas 4.7 and 4.15 to find an orientation-preserving homeomorphism 𝜈 of𝑀
such that 𝜈(𝜇(𝐷1)) = 𝐷2. This concludes the proof of the claim.
After replacing 𝜑1 by ℎ◦𝜑1 we can assume that 𝜑−12 ◦𝜑1 is an orientation-

preserving homeomorphism of 𝑆𝑛−1. By Corollary 4.5we know that there exists
an isotopy𝐻∶ 𝑆𝑛−1 × [0, 1]→ 𝑆𝑛−1 from 𝜑−12 ◦𝜑1 to the identity.
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Wewrite 𝐶 ∶= Ψ(𝑆𝑛−1). By the Collar Neighbourhood Theorem 2.16 we can
pick an (internal) collar 𝐶×[0, 1] ⊆ 𝑌 for 𝜕𝑌. It is straightforward to verify that
(𝑋1 ∪ 𝑌)∕𝜑1(𝑥) ∼ 𝜓(𝑥) → (𝑋2 ∪ 𝑌)∕𝜑2(𝑥) ∼ 𝜓(𝑥)

𝑝 ↦
⎧

⎨
⎩

ℎ(𝑝), if 𝑝 ∈ 𝑋1,
𝜓(𝐻(𝜓−1(𝑞), 𝑡)) if 𝑝 = (𝑞, 𝑡) ∈ 𝐶 × [0, 1]
𝑝, if 𝑝 ∈ 𝑌 ⧵ (𝐶 × [0, 1])

is a well-defined map and is an orientation-preserving homeomorphism. This
shows that the connected sums defined using Φ1 and Φ2 give rise to manifolds
of the same oriented homeomorphism type. □

4.3. The Product Structure Theorem. The Product Structure Theorem [91,
Essay I, Theorem 5.1, p. 31], is a key result for the development of topological
manifold theory in high dimensions. It is a consequence of the Stable Home-
omorphism Theorem 4.3, together with a more sophisticated torus trick. The
Product Structure Theorem is used in [91] to deduce the existence of handle
structures for manifolds of dimension 𝑛 ≥ 6, transversality and smoothing the-
ory for 𝑛 ≥ 5, and the existence of a canonical simple homotopy type for all
𝑛. We will give some examples of the use of the Product Structure Theorem,
for instance in Section 14.1 on the simple homotopy type of topological mani-
folds. Even though the Product Structure Theorem a priori only concerns high
dimensional manifolds, it still appears in the development of the theory of 4-
manifolds.
The Product Structure Theoremwill be stated for upgrading either a smooth

or PL structure on𝑀 ×ℝ to one on𝑀.
A concordance of (smooth, PL) structures Σ,Σ′ on amanifold𝑁 is a (smooth,

PL) structureΩ on𝑁×𝐼 that restricts toΣ on𝑁×{0} and restricts toΣ′ on𝑁×{1}.

Theorem4.16. (Product Structure Theorem) Let𝑀 be amanifold of dimen-
sion 𝑛 ≥ 5. Let Σ be a (smooth, PL) structure on𝑀 ×ℝ𝑠, with 𝑠 ≥ 1. Let𝑈 be an
open subset of𝑀 with a (smooth, PL) structure 𝜌 on𝑈 such that 𝜌×ℝ𝑠 = Σ|𝑈×ℝ𝑠 .
If 𝑛 = 5 then suppose that 𝜕𝑀 ⊆ 𝑈.
Then there is a (smooth, PL) structure 𝜎 on 𝑀 extending 𝜌, together with a

concordance of (smooth, PL) structures from Σ to 𝜎×ℝ𝑠, that is a product concor-
dance in some neighbourhood of𝑈 ×ℝ𝑠 and that is a product near𝑀 ×ℝ𝑠 × {𝑖}
for 𝑖 = 0, 1.

Remark 4.17. The statement of the Product Structure Theorem was modelled
on the Cairns-Hirsch Theorem [91, Essay I, Theorem 5.3, p. 37], which was
proven in the early 1960s, and provided the analogous upgrade from PL struc-
tures to smooth structures. See [79] for a comprehensive treatment of smooth-
ing theory for PL manifolds. The Cairns-Hirsch Theorem tells us that if𝑀 al-
ready has a PL structure𝜛, such that𝜛 ×ℝ𝑠 isWhitehead compatible (see the
discussion below [91, Essay I, Theorem 5.3, p. 37] for details) with a smooth
structure Σ on𝑀 × ℝ𝑠, then the smooth structure 𝜎 on𝑀 produced by Theo-
rem 4.16 is Whitehead compatible with𝜛.
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In Section 14.1 on the simple homotopy type of a manifold we make use of
the following stronger local version [91, Essay I, Theorem 5.2, p. 36].

Theorem 4.18. (Local Product Structure Theorem) Let𝑀 be a manifold of
dimension 𝑛 ≥ 5.
(i) Let𝑊 be an open neighbourhood of𝑀 × {0} in𝑀 ×ℝ𝑠, for some 𝑠 ≥ 1.
(ii) Let Σ be a (smooth, PL) structure on𝑊.
(iii) Let 𝐶 ⊆ 𝑀×{0} be a closed subset such that there is a neighbourhood𝑁(𝐶)

of 𝐶 ⊆ 𝑊 on which the (smooth, PL) structure Σ is a product Σ|𝑁(𝐶) =
𝜎 × ℝ𝑠 for some (smooth, PL) structure 𝜎 on 𝑁(𝐶). If 𝑛 = 5 then suppose
that 𝜕𝑀 ⊆ 𝐶.

(iv) Let 𝐷 ⊆ 𝑀 × {0} be another closed subset.
(v) Let 𝑉 ⊆ 𝑊 be an open neighbourhood of 𝐷 ⧵ 𝐶 in𝑀 ×ℝ𝑠.

Then we have the following.
(1) A (smooth, PL) structureΣ′ on𝑊 that equalsΣ on (𝑊⧵𝑉)∪((𝐶×ℝ𝑠)∩𝑊)

and is a product (smooth, PL) structure 𝜌×ℝ𝑠 on (𝑁(𝐷)×ℝ𝑠)∩𝑊 for some
neighbourhood𝑁(𝐷) of𝐷 and for some (smooth, PL) structure 𝜌 on𝑁(𝐷).

(2) A concordance of (smooth, PL) structures from Σ to Σ′, that is a product
concordance on some neighbourhood of (𝑊 ⧵𝑉)∪ ((𝐶×ℝ𝑠)∩𝑊) and that
is a product near𝑊 × {𝑖} for 𝑖 = 0, 1.

Note that theConcordance implies IsotopyTheorem [91, Essay I, Theorem4.1,
p. 25] means that the concordances in Theorems 4.16 and 4.18 can be upgraded
to isotopies of (smooth, PL) structures under the same hypotheses on dimen-
sions, that is if 𝑛 ≥ 6 or if 𝑛 = 5 and the structures already agree on 𝜕𝑀.
We start with a structure on𝑊 that is a product structure over 𝐶. We obtain

a concordance of structures to a product structure on 𝐷, supported in 𝑉, and
that is a product concordance over 𝐶. We therefore have a product structure in
some neighbourhood of 𝐶 ∪ 𝐷.
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5. Tubular neighbourhoods
Every smooth submanifold of a smooth manifold admits a normal vector

bundle and, by the smooth Tubular Neighbourhood Theorem, also admits a
tubular neighbourhood [76, Sections 5 & 6], [204, Chapter 2.5]. However, in
the topological category submanifolds may not admit normal vector bundles, a
general problem we discuss further below and in Chapter 6 once we have de-
veloped the necessary language. Curiously, in the special case of 4-manifolds
these general problems do not exist, and familiar smooth results hold true using
an appropriate notion of normal vector bundles (Definition 5.12).

5.1. Tubular neighbourhoods: existence and uniqueness. In the litera-
ture one can find many different definitions of tubular neighbourhoods for
smooth submanifolds. We will give a definition for manifolds that is modelled
on the definition provided byWall [204] for smoothmanifolds. To do sowe first
need one extra definition.

Definition 5.1. Let𝑀 be an 𝑛-dimensional manifold. We say a subset𝑊 ⊆ 𝑀
is a 𝑘-dimensional submanifold with corners if given any 𝑝 ∈ 𝑊 there exists a
chart of the type (1), (2) or (3) as in Definition 2.5 above, or if
(4) there exists a chart Φ∶ 𝑈 → 𝑉 of type (ii) for𝑀 such that
Φ(𝑈 ∩𝑊) ⊆ {(0,… , 0, 𝑥1,… , 𝑥𝑘) ∣ 𝑥𝑖 ∈ ℝ with 𝑥𝑘−1 ≥ 0 and 𝑥𝑘 ≥ 0}
and with Φ(𝑝) ∈ {(0,… , 0, 𝑥1,… , 𝑥𝑘−2, 0, 0) ∣ 𝑥1,… , 𝑥𝑘−2 ∈ ℝ}.

If𝑊 is an 𝑛-dimensional submanifold with corners we write
𝜕0𝑊 ∶= 𝑊 ∩𝑀 ⧵𝑊, 𝜕1𝑊 ∶= 𝑊 ∩ 𝜕𝑀,

and we note that
Int𝑊 = 𝑊 ⧵ 𝜕0𝑊.
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Figure 5. Definition of 𝜕0 and 𝜕1𝑊 of a submanifold.

Remark 5.2. The complement of the interior of a codimension 0 submanifold
with corners is a submanifold with corners, with the obvious corners.

Definition 5.3. Let 𝑀 be an 𝑛-manifold and let 𝑋 be a compact, proper, 𝑘-
dimensional submanifold. A tubular neighbourhood for𝑋 is a pair (𝑁, 𝑝∶ 𝑁 →
𝑋) with the following properties:
(1) 𝑁 is a neighbourhood of 𝑋;
(2) 𝑁 is a codimension zero submanifold with corners of𝑀;
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(3) the map 𝑝∶ 𝑁 → 𝑋 is a linear 𝐷𝑛−𝑘-bundle such that 𝑝(𝑥) = 𝑥 for all
𝑥 ∈ 𝑋;

(4) 𝜕1𝑁 = 𝑝−1(𝜕𝑋).

Here linear means that there exists an atlas of local trivialisations such that
the transition maps take values in O(𝑛 − 𝑘) instead of Homeo(𝐷𝑛−𝑘).

Remark 5.4. In the topological category, tubular neighbourhoods do not always
exist. Indeed it is shown in [77, Theorem 4] that there exists a 4-dimensional
submanifold of 𝑆7 that does not admit a tubular neighbourhood.

Fortunately, for submanifolds of 4-manifolds, tubular neighbourhoods exist
and they are unique in the appropriate sense.

Theorem 5.5. (Tubular Neighbourhood Theorem) Every compact proper
submanifold 𝑋 of a 4-manifold𝑀 admits a tubular neighbourhood.

Theorem5.6. (Uniqueness of tubularneighbourhoods)Let𝑀 be a 4-mani-
fold and let 𝑋 be a compact proper 𝑘-dimensional submanifold. Furthermore let
𝑝𝑖 ∶ 𝑁𝑖 → 𝑋, 𝑖 = 1, 2 be two tubular neighbourhoods of 𝑋, with inclusion maps
𝜄𝑖 ∶ 𝑁𝑖 → 𝑀. Then there exists an isomorphism Ψ∶ 𝑁1 → 𝑁2 of linear disc bun-
dles such that 𝜄2◦Ψ∶ 𝑁1 → 𝑀 and 𝜄1∶ 𝑁2 → 𝑀 are ambiently isotopic rel. 𝑋.

The proofs of the above two theorems rely on the existence and uniqueness
results for normal vector bundles in [50, Section 9], which we discuss further
in Section 5.2. Thus we postpone the proofs of the Theorems 5.5 and 5.6 to Sec-
tion 5.3. Right now, let us first observe some nice consequences of the existence
and uniqueness of tubular neighbourhoods.

Remark 5.7. Let 𝑋 be a compact proper submanifold of a 4-manifold 𝑀. By
Theorem 5.5 we can pick a tubular neighbourhood 𝑝∶ 𝑁 → 𝑋. We refer to
𝐸𝑋 ∶= 𝑀 ⧵ Int𝑁 as the exterior of 𝑋. Note 𝐸𝑋 ⊆ 𝑀 is a submanifold with cor-
ners; cf. Remark 5.2. By Theorem 5.6 the homeomorphism type of the exterior
is well-defined.

Lemma 5.8. Let 𝑋 be a compact proper submanifold of a 4-manifold 𝑀. The
exterior 𝐸𝑋 of 𝑋 is a deformation retract of the complement𝑀 ⧵ 𝑋.

Proof. Let 𝑝∶ 𝑁 → 𝑋 be a tubular neighbourhood for 𝑋. Using the fact that
𝑝 is a linear bundle, introduce compatible radial coordinates in the fibres and
isotope𝑁 ⧵𝑋 radially outwards. This implies that 𝜕0𝑁 is a deformation retract
of 𝑁 ⧵ 𝑋. But this also implies that the exterior 𝐸𝑋 = 𝑀 ⧵ 𝑁 is a deformation
retract of𝑀 ⧵ 𝑋. □

Corollary 5.9. Let 𝑋 be a proper submanifold of a compact 4-manifold𝑀. If 𝑋
is compact, then the fundamental group of each component of 𝑀 ⧵ 𝑋 is finitely
generated, and𝐻∗(𝑀 ⧵ 𝑋) is finitely generated.

Proof. It follows from Lemma 5.8 that 𝑀 ⧵ 𝑋 is homotopy equivalent to the
exterior 𝐸𝑋 of 𝑋. Each connected component of 𝐸𝑋 is a compact 4-manifold
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since we assume that 𝑀 is compact. The corollary is now a consequence of
Corollary 3.19. □

Proposition 5.10. Let 𝑋 ⊆ 𝑀 be a compact, proper 2-dimensional orientable
submanifold of a compact, orientable 4-manifold 𝑀, such that each connected
component of 𝑋 has nonempty boundary. Then the tubular neighbourhood of
Theorem 5.5 is homeomorphic to 𝑋 × 𝐷2.

Proof. Connected surfaces with nonempty boundary are homotopy equivalent
to wedges of circles. Every orientable linear 𝐷𝑛-bundle over a space 𝑋 is classi-
fied up to isomorphism by a homotopy class of maps 𝑋 → BSO(𝑛). As SO(𝑛) is
connected, so BSO(𝑛) is simply connected, and any orientable linear disc bun-
dle over 𝑋 is trivial. In particular, this is true when 𝑛 = 2. □

5.2. Normal vector bundles. The reader will be familiar with the definition
of a normal vector bundle when working in the smooth category: if 𝑋 ⊆ 𝑀 is
a smooth submanifold of a smooth manifold, then the normal vector bundle is
defined as the quotient of the vector bundle 𝑇𝑀|𝑋 by the subbundle 𝑇𝑋. This
definition uses the smooth structure to ensure the existence of tangent vector
bundles, and vector bundles are a strong enough bundle technology to ensure
the existence of quotient bundles. While some (weaker) canonical tangential
structures do exist in the topological category (see Chapter 6), the idea of a ‘quo-
tient bundle’ no longer makes sense for them.
In the topological category, following [50, Section 9], we will use a definition

of normal vector bundle that is much closer to the geometry of tubular neigh-
bourhoods. We begin with a definition that is almost what we need but suffers
from a slight technical problem, which we then remedy.

Definition 5.11. Let𝑀 be an 𝑛-manifold and let 𝑋 be a proper 𝑘-dimensional
submanifold. An internal linear bundle over𝑋 is a pair (𝐸, 𝑝∶ 𝐸 → 𝑋)with the
following properties.
(1) 𝐸 is a neighbourhood of 𝑋;
(2) 𝐸 is a codimension zero submanifold of𝑀;
(3) the map 𝑝∶ 𝐸 → 𝑋 is an (𝑛 − 𝑘)-dimensional vector bundle such that

𝑝(𝑥) = 𝑥 for all 𝑥 ∈ 𝑋;
(4) 𝜕𝐸 = 𝑝−1(𝜕𝑋).

An internal linear bundle (𝐸, 𝑝∶ 𝐸 → 𝑋) is intended to mirror the notion,
from the smooth category, of an open tubular neighbourhood of 𝑋. As such,
the definition as stands suffers from the potential technical problem that the
closure of 𝐸 in 𝑀, which should be a closed tubular neighbourhood, may no
longer be a submanifold; see Figure 6. As in [50, p. 137], we use the following
additional idea to rule out this problem.

Definition 5.12. Let𝑀 be an 𝑛-manifold, let𝑋 be a proper 𝑘-dimensional sub-
manifold, and let (𝐸, 𝑝∶ 𝐸 → 𝑋) be an internal linear bundle over 𝑋. Suppose
that given any (𝑛 − 𝑘)-dimensional vector bundle (𝐹, 𝑞∶ 𝐹 → 𝑋), any radial
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homeomorphism from an open convex disc bundle of 𝐹 to 𝐸 can be extended
to a homeomorphism from the whole of 𝐹 to a neighbourhood of 𝐸. Then we
say (𝐸, 𝑝∶ 𝐸 → 𝑋) is extendable.
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Figure 6. Non-extendable internal linear bundle.

Now we can define the notion of a normal vector bundle.

Definition 5.13. Let𝑀 be a 𝑛-manifold and let 𝑋 be a proper 𝑘-dimensional
submanifold. A normal vector bundle for 𝑋 is an internal linear bundle that
is extendable. (Note that the same concept is called a normal bundle on [50,
p. 137], we prefer the name normal vector bundle.)

Theorem5.14. (Existence ofnormal vector bundles)Every proper subman-
ifold of a compact 4-manifold admits a normal vector bundle.

Remark 5.15. Generally, in high dimensions, the existence of normal vector
bundles is peculiar to when the submanifold has low dimension or low codi-
mension. We refer the reader to [50, Section 9.4] for a discussion of the other
known situations where these objects always exist. Here is a summary of the
known cases. A submanifold of dimension at most 3 in a closed manifold of
dimension at least 5 has a normal vector bundle [50, p. 150]. Codimension one
submanifolds have normal vector bundles [17, Theorem 3]. That every codi-
mension two submanifold of a manifold of dimension not equal to four has a
normal vector bundles was shown in [92], and this was extended to include
dimension four in [50, Section 9.3]. It is striking that, while among smooth
manifolds dimension 4 exhibits worse than usual behaviour, in the topologi-
cal category the existence of normal vector bundles seems to show that in this
respect it is among the better behaved of the dimensions.

For the proof of Theorem 5.14 we will essentially appeal to results of [50].
We reproduce these results here for the benefit of the reader.

Theorem 5.16. Let𝑁 be a proper submanifold of a 4-manifold𝑀, with a closed
subset 𝜕𝑁 ⊆ 𝐾 ⊆ 𝑁 and a normal vector bundle over some neighbourhood 𝑈 of
𝐾 in 𝑁. Then there is a normal vector bundle over 𝑁 that agrees with the given
one over some neighbourhood 𝑉 ⊆ 𝑈 of 𝐾. Moreover this extension is unique up
to ambient isotopy relative to some neighbourhood𝑊 ⊆ 𝑉 of 𝐾.
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Proof of Theorem 5.16. The existence statement of the theorem follows im-
mediately from [50, Theorem 9.3A] and the uniqueness statement of the theo-
rem follows immediately from [50, Theorem 9.3D]. □

Proof of Theorem 5.14. Let 𝑋 be a proper submanifold of a compact 4-mani-
fold 𝑀. The case that 𝑋 has no boundary follows immediately from the exis-
tence statement of Theorem 5.16 with 𝐾 = ∅. The case that 𝑋 has nonempty
boundary follows also from Theorem 5.16 if we apply more care. We sketch the
argument.
First it is well-known that given any pair (𝑋,Σ)where 𝑋 is a 3-manifold and

Σ is a proper submanifold, then there exists a smooth structure on𝑋 such thatΣ
is a smooth submanifold. Even though this fact is well-known and often used,
it is hard to give complete references. The existence of a smooth structure on
𝑋 follows from [135, p. 252 and 253] and [141, Theorems 6.2 and 6.3]. The
extra complication of having a proper submanifold is partly taken care of by
[9, Theorem XVIII.4.B]. Thus we can view the submanifold 𝜕𝑋 ⊆ 𝜕𝑀 as a
smooth submanifold. Hence it has a smooth normal vector bundle, see e.g. [95,
Chapter III.2] or [102, Section IV.5].
Next use the Collar Neighbourhood Theorem 2.21 to obtain a collar 𝜕𝑀 ×

[0, 1] ⊆ 𝑀 that restricts to a collar 𝜕𝑋×[0, 1] for the boundary of𝑋. Extend the
smooth tubular neighbourhood of 𝜕𝑋 ⊆ 𝜕𝑀 into the collar by taking a product
with [0, 1].
Finally, consider the 4-manifold without boundary𝑀′ ∶= 𝑀 ⧵ (𝜕𝑀×[0, 1

2
]).

What remains of𝑋 is a submanifold𝑁 ∶= 𝑋⧵(𝜕𝑋×[0, 1
2
]). The submanifold𝑁

already has a preferred normal vector bundle on the closed subset 𝐾 ∶= 𝜕𝑋 ×
(1∕2, 1]. Now apply Theorem 5.16 to the triple (𝑀′, 𝑁, 𝐾) to obtain a normal
vector bundle 𝐸 → 𝑁 agreeing with the given one on 𝐾. The normal vector
bundles over 𝑁 and 𝜕𝑋 × [0, 1] agree on the overlap 𝐾. Thus they define a
normal vector bundle on all of 𝑋. □
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Figure 7. Illustration of the proof of Theorem 5.14.

Next we turn to the uniqueness of normal vector bundles.

Theorem5.17. (Uniqueness of normal vector bundles)Let𝑀 be a compact
4-manifold and let 𝑋 be a proper submanifold of 𝑀. Suppose we are given two
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normal vector bundles 𝑝𝑖 ∶ 𝐸𝑖 → 𝑋, 𝑖 = 1, 2 over 𝑋. For 𝑖 = 1, 2 let 𝜄𝑖 ∶ 𝐸𝑖 → 𝑀
be the inclusion map. Then there exists a bundle isomorphism 𝑓∶ 𝐸1

≅
,→ 𝐸2 such

that 𝜄2◦𝑓 and 𝜄1 are ambiently isotopic rel. 𝑋.

Proof. If 𝑋 has no boundary, then the theorem is an immediate consequence
of Theorem 5.16. Now suppose that 𝑋 has nonempty boundary.
First we claim that any normal vector bundle of 𝑋 is obtained by the con-

struction outlined in the proof of Theorem 5.14. To see this, let 𝑝∶ 𝐸 → 𝑋 be a
normal vector bundle. Pick a collar neighbourhood 𝜕𝑋 × [0, 2] ⊆ 𝑋. Since 𝑝 is
extendable, we can view𝑝 as the interior of a disc bundle 𝑞∶ 𝐹 → 𝑋 in𝑀. Write
𝐶 ∶= 𝑞−1(𝜕𝑋) ⊆ 𝜕𝑀. The disc bundle 𝑞∶ 𝑞−1(𝜕𝑋×[0, 2])→ 𝜕𝑋×[0, 2] defines
a collar neighbourhood 𝐶×[0, 2] for the compact submanifold 𝐶 of 𝜕𝑀. By the
Collar Neighbourhood Theorem 2.16 we can extend the collar neighbourhood
𝐶 × [0, 1] of 𝐶 to a collar neighbourhood 𝜕𝑀 × [0, 1]. With this choice of col-
lar neighbourhood of 𝜕𝑀, the construction in the proof of Theorem 5.14, with
further appropriate choices, gives rise to the normal vector bundle 𝑝∶ 𝐸 → 𝑋.
This completes the proof of the claim.
After this long preamble it suffices to prove the theorem for any two normal

vector bundles obtained as in the proof of Theorem 5.14. Uniqueness follows
by arguing that each step in the proof of existence of normal vector bundles was
essentially unique. The proofs of uniqueness in the three steps make use of the
following ingredients.
First, apply the uniqueness statement for normal vector bundles of subman-

ifolds of smooth manifolds to 𝜕𝑋 ⊆ 𝜕𝑀 e.g. [95, Chapter III.2] or [102, Sec-
tion IV.5].
Next use the uniqueness of collar neighbourhoods as formulated in Theo-

rem 2.18, applied to the two collar neighbourhoods of 𝜕𝑀 subordinate to the
given normal vector bundles of 𝑋.
Finally apply the full relative version of Theorem 5.16 to extend the normal

vector bundle uniquely over the rest of 𝑋. □

5.3. Tubular neighbourhoods: proofs. Nowwewill use the results from the
previous section to prove Theorems 5.5 and 5.6, i.e. we will prove the existence
and uniqueness of tubular neighbourhoods. First we show how one can obtain
tubular neighbourhoods from normal vector bundles.

Definition 5.18.
(1) A form over a real vector space𝑉 is anℝ-bilinear symmetric map 𝑔∶ 𝑉×

𝑉 → ℝ. It is called positive definite if for every 𝑣 ∈ 𝑉 ⧵ {0} we have
𝑔(𝑣, 𝑣) > 0.

(2) Let 𝑝∶ 𝐸 → 𝑋 be a vector bundle over a topological space 𝑋. Given 𝑥 ∈
𝑋, write 𝐸𝑥 ∶= 𝑝−1(𝑥). A positive definite form 𝑔 = {𝑔𝑥}𝑥∈𝑋 consists of a
positive definite form 𝑔𝑥 over every𝐸𝑥 such that 𝑔𝑥 changes continuously
with 𝑥.
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Lemma5.19. Let𝑋 be a compactmanifold and let𝑝∶ 𝐸 → 𝑋 be an𝑛-dimensional
vector bundle. Then the space of positive definite forms on𝐸 is nonempty and con-
vex. Furthermore, let 𝑔 = {𝑔𝑥}𝑥∈𝑋 be a positive definite form on 𝐸 and consider
the map

𝑝∶ 𝐸(𝑔) ∶=
⋃

𝑥∈𝑋
{𝑣 ∈ 𝐸𝑥 ∣ 𝑔𝑥(𝑣, 𝑣) ≤ 1} → 𝑋.

This map has the following properties.
(1) The map 𝑝|𝐸(𝑔)∶ 𝐸(𝑔)→ 𝑋 is a linear 𝐷𝑛-bundle.
(2) Given two different positive definite forms 𝑔 and ℎ on 𝐸 there exists a con-

tinuous map𝐻∶ 𝐸 × [0, 1]→ 𝐸 with the following properties.
(a) We have𝐻0 = Id.
(b) The map 𝐻1 restricts to an isomorphism 𝐻1∶ 𝐸(𝑔) → 𝐸(ℎ) of linear

𝐷𝑛-bundles.

Proof.
(1) This statement can be proved easily using the observation that the set of

positive definition ℝ-bilinear symmetric forms on a real vector space is
nonempty and convex.

(2) The proof of this statement follows from the same argument as [204,
Lemmas 2.5.2 and 2.5.4]. □

Let 𝑋 be a compact manifold and let 𝑝∶ 𝐸 → 𝑋 be a vector bundle. Given a
positive definite form 𝑔 on 𝐸 we refer to

𝑝∶ 𝐸(𝑔) ∶=
⋃

𝑥∈𝑋
{𝑣 ∈ 𝐸𝑥 ∣ 𝑔𝑥(𝑣, 𝑣) ≤ 1} → 𝑋

as a corresponding disc bundle. It follows from Lemma 5.19 that for most pur-
poses the precise choice of 𝑔 is irrelevant.
We can now prove the existence of tubular neighbourhoods.

Proof of the Tubular Neighbourhood Theorem 5.5. Let 𝑋 be a compact
proper submanifold of a 4-manifold𝑀. By Theorem 5.14 there exists a normal
vector bundle 𝑝∶ 𝑁 → 𝑋 for 𝑋. By Lemma 5.19 (1) there exists a correspond-
ing disc bundle. Using the uniqueness statement of Lemma 5.19 (2) locally
one can show that this disc bundle is a submanifold with corner and a tubular
neighbourhood. □

The uniqueness proof for tubular neighbourhoods also requires us to asso-
ciate a normal vector bundle to a tubular neighbourhood.

Lemma 5.20. Let 𝑀 be a compact 4-manifold and let 𝑋 be a compact proper
𝑘-dimensional submanifold. Let 𝑝∶ 𝑁 → 𝑋 be a tubular neighbourhood for 𝑋.
There exists a normal vector bundle 𝑞∶ 𝐸 → 𝑋 and a positive definite form 𝑔 such
that𝑁 = 𝐸(𝑔) and 𝑝∶ 𝑁 → 𝑋 equals 𝑞∶ 𝐸(𝑔)→ 𝑋.

We call 𝑞∶ 𝐸 → 𝑋 a corresponding normal vector bundle.
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Proof. Let 𝑝∶ 𝑁 → 𝑋 be a tubular neighbourhood for 𝑋. Recall that we have
Int𝑁 = 𝑁⧵𝜕0𝑁. Consider𝑊 ∶= 𝑀⧵Int𝑁. This is a compact 4-manifold. Pick
a collar neighbourhood 𝜕𝑊×[0, 1] and set 𝐸 ∶= 𝑁∪(𝜕0𝑁×[0, 1

2
)). We have an

obvious projectionmap 𝑞∶ 𝐸 → 𝑋 turning 𝑞 into a bundle map where the fibre
is given by the open (4 − 𝑘)-ball of radius 3

2
. We leave it to the reader to turn

𝑞∶ 𝑁 → 𝑋 into an internal linear bundle, to show that it is in fact extendable
(at this point one has to use that in the definition of 𝐸 we only used “half” of
the collar neighbourhood 𝜕0𝑁 × [0, 1]), and to equip 𝑁 with a positive definite
form 𝑔 such that 𝑁 = 𝐸(𝑔). □

We conclude the chapter with the proof of the uniqueness theorem for tubu-
lar neighbourhoods.

Proof of Theorem 5.6. Let𝑀 be a 4-manifold and let 𝑋 be a compact proper
𝑘-dimensional submanifold. Furthermore let 𝑝𝑖 ∶ 𝑁𝑖 → 𝑋, 𝑖 = 1, 2 be two
tubular neighbourhoods of 𝑋. For 𝑖 = 1, 2, let 𝑞𝑖 ∶ 𝐸𝑖 → 𝑋 be two correspond-
ing normal vector bundles and let 𝑔𝑖 be the positive definite forms provided
by Lemma 5.20. It follows from Theorem 5.17 that there exists a bundle iso-

morphism 𝑓∶ 𝐸1
≅
,→ 𝐸2 such that 𝜄2◦𝑓 and 𝜄1 are ambiently isotopic rel. 𝑋. It

follows from the definitions that𝑁2 is equivalent to the disc bundle defined by
𝑓∗𝑔2 on𝐸1. It follows from the Lemma 5.19 (2) together with the Isotopy Exten-
sion Theorem 2.20 that 𝑓∗𝑔2 and 𝑔1 define equivalent tubular neighbourhoods.
(Strictly speaking we did not formulate the Isotopy Extension Theorem 2.20 for
submanifolds with corner, but it is not difficult to prove a generalization.) □
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6. Background on bundle structures
In this chapter we recall the bundle technologies we will need to use in later

chapters. The three standard manifold categories smooth (Dif f ), piecewise lin-
ear (PL) and topological (TOP) each have corresponding bundle types, with
fibre ℝ𝑛. We first discuss the topological groups TOP(𝑛) and O(𝑛) which are
structure groups for fibre bundles with fibreℝ𝑛, corresponding to the TOP and
Dif f categories. There are natural topologies on TOP(𝑛) and O(𝑛), so that it
is relatively straightforward to discuss the classification of these bundle types.
We next discuss theℝ𝑛-bundles that correspond to the PL category. In contrast
to TOP(𝑛) and O(𝑛) there is no obvious appropriate topology on the group of
piecewise-linear homeomoprhisms of ℝ𝑛 that fix the origin. For this reason,
in the PL category it appears there is no choice but to delve into a more so-
phisticated approach to classify the bundles of interest, and we approach this
via simplicial groups. We finish the section with a discussion of topological
microbundles.

6.1. Topological, smooth, andpiecewise linearℝ𝒏-bundles. Beforewe turn
to the different flavours ofℝ𝑛-bundles let us first recall some general facts about
bundles.

Definition 6.1. Let𝐺 be a topological group𝐺. A universal principal𝐺-bundle
is a principal 𝐺-bundle 𝑝∶ E𝐺 → B𝐺 such that the following two conditions
are satisfied.
(1) The space B𝐺 is a CW complex.
(2) Given any principal 𝐺-bundle 𝑞∶ 𝐹 → 𝐶, where 𝐶 is a topological space

that is homotopy equivalent to a CWcomplex, there exists amap𝑓∶ 𝐶 →
B𝐺, unique up to homotopy, such that 𝑞 is isomorphic to the pullback
bundle 𝑓∗E𝐺.

The base space B𝐺 is called a classifying space for 𝐺.

Proposition 6.2. Given a topological group 𝐺, there exists a universal principal
𝐺-bundle 𝑝∶ E𝐺 → B𝐺. This principal bundle is unique up to fibre homotopy
equivalence.

Proof. The Milnor join construction [130], [84] or [180], or alternatively the
geometric bar construction [123], gives an explicit principal 𝐺-bundle 𝑝∶ 𝐸 →
𝐵whichhas the universal property for all numerable principal𝐺-bundles. Since
principal𝐺-bundles over CW complexes are numerable, theMilnor bundle has
the universal property for principal 𝐺-bundles over CW complexes.
The topological space 𝐵 is not necessarily a CW complex. Thus we apply

the CW approximation theorem to get a CW complex 𝐵 and a weak homotopy
equivalence 𝜑∶ 𝐵 → 𝐵. The pullback bundle 𝜑∗𝐸 over 𝐵 has the desired prop-
erties.
The uniqueness of universal principal𝐺-bundles over CWcomplexes follows

from a standard argument about universal objects. □
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Definition 6.3. Given 𝑛 ∈ ℕ0 letTOP(𝑛) be the subgroup of homeomorphisms
ofℝ𝑛 that fix the origin, topologised using the compact open topology. A princi-
pal TOP(𝑛)-bundle has an associated fibre bundle with fibreℝ𝑛 and a preferred
0-section. Call such a bundle a topological ℝ𝑛-bundle. Let TOP be the colimit
𝑐𝑜𝑙𝑖𝑚
⟶

TOP(𝑛), in the category of topological groups, under the inclusions

TOP(𝑛) → TOP(𝑛 + 1)
(𝑓∶ ℝ𝑛 → ℝ𝑛) ↦ (𝑓 × Idℝ∶ ℝ𝑛 ×ℝ→ ℝ𝑛 ×ℝ).

We obtain the corresponding classifying spaces BTOP(𝑛) and BTOP.

Definition 6.4. Given 𝑛 ∈ ℕ0 letO(𝑛) be the orthogonal homeomorphisms of
ℝ𝑛 that fix the origin, topologised in the standard way as a subspace of a vector
space O(𝑛) ⊆ M(𝑛 × 𝑛,ℝ) ≅ ℝ𝑛2 . A principal O(𝑛)-bundle has an associated
fibre bundlewith fibreℝ𝑛 and a preferred 0-section, and such a bundle is in par-
ticular a vector bundle. DefineO, BO(𝑛) and BO analogously to Definition 6.3.

We also introduce the following structure group, for comparison, and use in
Chapter 7.

Definition 6.5. Given 𝑛 ∈ ℕ0 let Dif f (𝑛) be the subgroup of diffeomorphisms
ofℝ𝑛 that fix the origin, topologised using theweak𝐶∞ topology [76, § 2.1] (also
called the (weak)Whitney topology). A principalDif f (𝑛)-bundle has an associ-
ated fibre bundle with fibre ℝ𝑛 and a preferred 0-section. Call such a bundle a
Dif f ℝ𝑛-bundle. DefineDif f , BDif f (𝑛) andBDif f analogously toDefinition 6.3.

Remark 6.6.
(1) The pullback topology on Dif f (𝑛) under the inclusion map Dif f (𝑛) →

TOP(𝑛) is by definition the coarsest topology such thatDif f (𝑛)→ TOP(𝑛)
is continuous. It equals the compact open topology on the set Dif f (𝑛)
(equivalent to the weak𝐶0 topology), not the weak𝐶∞ topology. In other
words, one does not topologise Dif f (𝑛) as a subspace of TOP(𝑛).

(2) It is nevertheless the case that Dif f (𝑛) → TOP(𝑛) is a continuous map
with respect to the weak 𝐶∞ topology on Dif f (𝑛) and the compact open
topology on TOP(𝑛). There are induced maps BDif f (𝑛) → BTOP(𝑛) for
each 𝑛, and BDif f → BTOP.

(3) On the other hand, we now argue that both inclusion maps GL(𝑛,ℝ) →
TOP(𝑛) and GL(𝑛,ℝ) → Dif f (𝑛) induce the standard topology on the
group GL(𝑛,ℝ) via pullback (which is a little surprising at first glance).
In the former case, simply note that the standard topology on GL(𝑛,ℝ)
as a vector subspace of ℝ𝑛2 is equivalent to the compact open topology,
or equivalently the weak 𝐶0 topology. In the latter case, note that as the
maps inGL(𝑛,ℝ) are linear, and theweak𝐶𝑟 topologies for 0 ≤ 𝑟 <∞ are
defined in terms of partial derivatives [76, § 2.1], they are all equivalent
topologies on GL(𝑛,ℝ). As the weak 𝐶∞ topology is the limit of the 𝐶𝑟
topologies, this proves the statement.
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(4) The map
Dif f (𝑛) × [0, 1] → Dif f (𝑛)

(𝑓, 𝑡) ↦
⎛
⎜
⎜
⎝

ℝ𝑛 → ℝ𝑛

𝑥 ↦ {
1
𝑡
⋅ 𝑓(𝑡𝑥), if 𝑡 ≠ 0,

D𝑓0 ⋅ 𝑥

⎞
⎟
⎟
⎠

is a deformation retraction from Dif f (𝑛) to GL(𝑛,ℝ). Finally note that
the Gram-Schmidt process can be used to determine a homotopy equiv-
alence GL(𝑛,ℝ) ≃ O(𝑛). Thus ℝ𝑛-bundles with structure group Dif f (𝑛)
always admit a (unique) structure group reduction to ordinary vector
bundles whose transition functions lie in O(𝑛).

The following proposition shows that BTOP and BDif f classify CAT ℝ𝑛-
bundles when CAT is TOP or Dif f .

Proposition 6.7. For CAT = TOP or Dif f , and for each 𝑛 ≥ 0, the space
BCAT(𝑛) is homotopy equivalent to a CW complex, and there exists a CAT ℝ𝑛-
bundle 𝛾CAT𝑛 overBCAT(𝑛), such that for everyCATℝ𝑛-bundle 𝜉 over a CW com-
plex, there is a CAT ℝ𝑛-bundle map 𝐹∶ 𝜉 → 𝛾CAT𝑛 , unique up to homotopy of
CATℝ𝑛-bundle maps. In particular 𝐹∗(𝛾CAT𝑛 ) ≅ 𝜉.

Proof. Let 𝑋 be a space homotopy equivalent to a CW complex. There is a
1:1 correspondence between isomorphism classes of CAT(𝑛) ℝ𝑛-bundles and
isomorphism classes of principalCAT(𝑛)-bundles over𝑋. For more details, see
e.g. [188, Proposition 11.22].
Applying this to the universal principal CAT(𝑛)-bundle of Proposition 6.2,

we obtain a CAT ℝ𝑛-bundle 𝛾CAT𝑛 over BCAT(𝑛). The desired universal prop-
erty for 𝛾CAT𝑛 is inherited from the universal property of the universal principal
CAT(𝑛)-bundle over BCAT(𝑛) □

We finally move on to the piecewise linear category. For background on
piecewise linear topology see [168].

Definition 6.8. A continuous map 𝑓∶ 𝐾 → 𝐿 between two simplicial com-
plexes 𝐾 and 𝐿 is piecewise linear (PL) if there are subdivisions 𝐾′ of 𝐾 and 𝐿′
of 𝐿 such that 𝑓∶ 𝐾′ → 𝐿′ is a simplicial map.

Definition 6.9. A PL ℝ𝑛-bundle is a topological ℝ𝑛-bundle 𝑝∶ 𝐸 → 𝐵, where
both 𝐸 and 𝐵 are simplicial complexes, where 𝑝∶ 𝐸 → 𝐵 and the 0-section are
both PL maps, and where for every simplex ∆ ⊆ 𝐵 there exists a PL homeo-

morphism 𝜑 such that the composition 𝑝−1(∆)
𝜑
,→ ∆×ℝ𝑛

pr1,,,→ ∆ is equal to the
projection 𝑝.

The definition of the classifying space for PL ℝ𝑛-bundles is a little more in-
volved than the constructions for O(𝑛) and TOP(𝑛), using the technology of
semi-simplicial groups. For a gentle introduction to simplicial sets, see [53].
The canonical reference for classifying spaces constructed using simplicial
groups is [123].
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Remark 6.10. When navigating the various references we use below, the reader
should be aware that the terminology for simplicial groups and simplicial sets
has changed over the years and there are some clashes between current us-
age and previous usage. What we are calling a simplicial set is, for example,
what is defined in [53, Definition 3.2]. In particular, note that this has both face
and degeneracymaps. This object has historically been called a complete semi-
simplicial set (c.s.s.), which has unfortunately in the past been abbreviated to
just “semi-simplicial set”. The modern terminology reserves semi-simplicial set
for a simplicial set without degeneracy maps as part of the data. To add to the
confusion, a simplicial set, but without degeneracies, has also historically been
called a ∆-set, although in modern terminology this is usually reserved for the
semi-simplical version of a simplicial complex.

Let∆𝑘 be the standard 𝑘-simplex. Recall a simplicial group is a simplicial ob-
ject in the category of groups, that is a contravariant functor from the simplicial
category to the category of groups ∆→ Group.

Definition 6.11. Given 𝑛 ∈ ℕ0 let PL(𝑛)∙ be the simplicial group defined as
follows.
(i) The group PL(𝑛)𝑘 assigned to the 𝑘-simplex is the group of PLℝ𝑛-bundle

isomorphisms of the trivial bundle 𝑓∶ ℝ𝑛 × ∆𝑘 → ℝ𝑛 × ∆𝑘. That is, 𝑓 is
a PL homeomorphism preserving the 0-section and commuting with the
projection to ∆𝑘.

(ii) A morphism 𝜆∶ ∆𝓁 → ∆𝑘 is sent to the morphism 𝜆# which assigns to
𝑓∶ ℝ𝑛 ×∆𝑘 → ℝ𝑛 ×∆𝑘 the map such that the diagram below commutes

ℝ𝑛 × ∆𝓁 ℝ𝑛 × ∆𝓁

ℝ𝑛 × ∆𝑘 ℝ𝑛 × ∆𝑘.

𝜆#(𝑓)

𝜆×1 𝜆×1

𝑓

Define PL(𝑛) as the topological group [129, Theorem 3] realising the simpli-
cial group PL(𝑛)∙. Then define BPL(𝑛) using Proposition 6.2. Define PL and
BPL as colimits, analogously to Definition 6.3.

Equivalently, one can define BPL(𝑛) by first using the geometric bar con-
struction level-wise on PL(𝑛)∙ to obtain a simplicial space BPL(𝑛)∙, and then
geometrically realising to obtain a spaceBPL(𝑛); see e.g. [39, §1.2] for the equiv-
alence to the previous definition.

Remark 6.12. Consider the subgroup of TOP(𝑛) consisting of PL homeomor-
phisms (note this is not the definition of what we called PL(𝑛) above. In partic-
ular PL(𝑛) is a much larger set). Onemight think that this group, together with
the subspace topology from TOP(𝑛), is a realistic way to circumvent the con-
struction above with simplicial groups. This would certainly produce a topo-
logical group that classifies some category of ℝ𝑛 bundles, but we do not know
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whether it classifies the PLℝ𝑛-bundles defined above (it seems unlikely, cf. Re-
mark 6.6 (1)).

The following proposition can now be viewed as an analogue of Proposi-
tion 6.2.

Proposition 6.13. For each 𝑛 ≥ 0, the space BPL(𝑛) is homotopy equivalent to a
CW complex, and there exists a PLℝ𝑛-bundle 𝛾PL𝑛 overBPL(𝑛), such that for every
PL ℝ𝑛-bundle 𝜉 over a CW complex, there is a PL ℝ𝑛-bundle map 𝐹∶ 𝜉 → 𝛾PL𝑛 ,
unique up to homotopy of PLℝ𝑛-bundle maps. In particular 𝐹∗(𝛾PL𝑛 ) ≅ 𝜉.

Proof. In [126, p. 24], Milnor constructed a simplicial group (PL𝑛)∙. It is de-
fined similarly toPL(𝑛)∙, but differs fromwhatwehave done inDefinition 6.11(i)
by specifying that the maps 𝑓 are rather PLmicrobundle isomorphisms of the
trivial PL microbundle over the simplex (in particular are germs of the types
of maps 𝑓 we are using). The simplicial space (BPL𝑛)∙ that results from the
level-wise geometric bar construction is a classifying space for simplicial prin-
cipal (PL𝑛)∙-bundles. In [126, §5],Milnor showed that the geometric realisation
BPL𝑛 ∶= |(BPL𝑛)∙| is homotopy equivalent to a locally finite simplicial com-
plex (so in particular a CW complex), and that there is a universal rank 𝑛 PL
microbundle over BPL𝑛.
Kuiper-Lashof [99, Theorem 1] proved that each rank 𝑛 PL microbundle is

the underlying microbundle of a unique PL ℝ𝑛-bundle. Apply this to the uni-
versal rank 𝑛 PL microbundle over BPL𝑛, to obtain a universal PL ℝ𝑛-bundle
over BPL𝑛. The map 𝑔∶ PL(𝑛)∙ → (PL𝑛)∙, given by simplex-wise taking the
germs of maps 𝑓 as in Definition 6.11(i), is a homotopy equivalence of simpli-
cial sets [99, Lemma 1.6(f)]. This induces a homotopy equivalence BPL(𝑛)

≃
,→

BPL𝑛. Use this latter homotopy equivalence to pull back the universal rank 𝑛
PLmicrobundle over BPL𝑛 to the desired base space BPL(𝑛). □

Remark 6.14.
(1) The simplicial method used above for PL ℝ𝑛-bundles can be used in the

smooth and topological categories as well, giving a uniform treatment.
The resulting classifying spaces for the smooth and topological categories
are homotopy equivalent to the spaces BO(𝑛) and BTOP(𝑛), defined ear-
lier, by the universal property.

(2) An alternative uniform proof of Propositions 6.7 and 6.13, for all three
categories TOP, PL and Dif f simultaneously, was given by Kirby and
Siebenmann in [91, Essay IV, Proposition 8.1, p. 181]. Instead of a sim-
plicial approach, they use E. H. Brown’s theory of representability to ob-
tain universal CATmicrobundles (cf. Section 6.2) over classifying spaces
which are locally finite simplicial complexes. The theorems of Kister
(Theorem 6.17) and Kuiper-Lashof [99, Theorem 1], together with the
analogue for smoothmicrobundles,means that theKirby-Siebenmanuni-
versal CAT microbundles can then be upgraded to universal CAT ℝ𝑛-
bundles with the same base space, similarly to how we worked at the
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end of the proof of Proposition 6.13. The Kirby-Siebenmann proof also
includes a statement relative to a closed subspace of the base.

6.2. Microbundles. All smooth manifolds have tangent vector bundles and
all smooth submanifolds have normal vector bundles. This is one reason that
vector bundles, corresponding to the structure groupO(𝑛) are the de facto bun-
dle technology in the smooth category. A general difficulty we will face when
talking about manifold transversality in Chapter 10 is that we will need to use
some well-defined notion of normal structure for a submanifold and, outside
of the smooth category, submanifolds do not necessarily admit normal vector
bundles. However, various weaker bundle technologies have been developed,
which replace this crucial concept in the topological category.
This subsection is devoted to a discussion of microbundles, which were in-

troduced byMilnor in [131]. The existence and uniqueness of tangent and (sta-
ble) normalmicrobundles leads to the existence and uniqueness of tangent and
(stable) normal TOPℝ𝑛-bundles, via Kister’s Theorem (Theorem 6.17). Source
material on microbundles is not hard to find in the literature, but has been in-
cluded here for the convenience of the reader, in order for this monograph to
be more self-contained.
The interaction between the weaker structure groups PL(𝑛) and TOP(𝑛) for

tangent and (stable) normalℝ𝑛-bundles, and the topological/PL/smooth struc-
tures on the manifold itself are the topic of smoothing theory, to which we turn
in Chapter 9.

Definition 6.15. An 𝑛-dimensional microbundle 𝜉 consists of a base space 𝐵
and a total space 𝐸 sitting in a diagram

𝐵
𝑖
,→ 𝐸

𝑝
,→ 𝐵,

such that 𝑝◦𝑖 = Id𝐵, and that is locally trivial in the following sense: for every
point 𝑏 ∈ 𝐵, there exists an open neighbourhood 𝑈 of 𝐵, an open neighbour-
hood 𝑉 of 𝑖(𝑏) and a homeomorphism 𝜙𝑏 ∶ 𝑉 → 𝑈 ×ℝ𝑛 such that

𝑉
𝑝

&&
𝜙𝑏

��

𝑈

𝑖
88

𝑢↦(𝑢,0) %%

𝑈

𝑈 ×ℝ𝑛
(𝑢,𝑣)↦𝑢

99

commutes. We refer to 𝑖 as the inclusion map of the microbundle and we refer
to 𝑝 as the projection.

Note that we only require neighbourhoods of the points 𝑖(𝑏) to be trivial, and
not all of the fibre 𝑝−1(𝑏). In fact, we only care about neighbourhoods 𝑖(𝐵) ⊆ 𝐸,

and declare two microbundles 𝐵
𝑖
,→ 𝐸

𝑝
,→ 𝐵 and 𝐵

𝑖′
,→ 𝐸′

𝑝′
,,→ 𝐵 to be equivalent,
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if 𝑖(𝐵) and 𝑖′(𝐵) have homeomorphic neighbourhoods such that the homeo-
morphism commutes with both the inclusion map and the restriction of the
projection map.

Definition 6.16. Let 𝐵
𝑖
,→ 𝐸

𝑝
,→ 𝐵 be a microbundle 𝜉 and let 𝑓∶ 𝐴 → 𝐵 be a

map. The pullback of 𝜉 under 𝑓 is the microbundle 𝑓∗𝜉 with total space

𝑓∗𝐸 =
{
(𝑎, 𝑒) ∈ 𝐴 × 𝐸 ∣ 𝑓(𝑎) = 𝑝(𝑒)

}
,

projection (𝑓∗𝑝)(𝑎, 𝑒) = 𝑎, and injection (𝑓∗𝑖)(𝑎) =
(
𝑎, 𝑖(𝑓(𝑎))

)
. In the case

that 𝑓 is an inclusion, also consider themicrobundle 𝜉|𝐴, which has total space
𝑝−1(𝐴) ⊆ 𝐸, and projection 𝑝|𝑝−1(𝐴)∶ 𝑝−1(𝐴) → 𝐴 and injection 𝑖𝐴 ∶ 𝐴 →
𝑝−1(𝐴) are both the restrictions of 𝑝, 𝑖. In this case, the map of total spaces
(𝑎, 𝑒)↦ 𝑒 gives a preferred isomorphism 𝑓∗𝜉 to 𝜉|𝐴.

A topological ℝ𝑛-bundle clearly has an underlying microbundle. Kister
proved the surprising result that every microbundle over a manifold is equiv-
alent to such an underlying microbundle [94, Theorem 2 and Corollary 1].

Theorem 6.17. (Kister’s Theorem) Let 𝐵 be a manifold and 𝐵
𝑖
,→ 𝐸

𝑝
,→ 𝐵 be

an 𝑛-dimensional microbundle 𝜉. Then there exists an open set 𝐹 ⊆ 𝐸 containing
𝑖(𝐵) such that 𝑝|𝐹 ∶ 𝐹 → 𝐵 is the projection map of a topological ℝ𝑛-bundle,
whose 0-section is 𝑖 andwhose underlyingmicrobundle is 𝜉. Moreover, if𝐹1 and𝐹2
are any two topologicalℝ𝑛-bundles over 𝐵 such that the underlyingmicrobundles
are equivalent, then 𝐹1 and 𝐹2 are isomorphic as topologicalℝ𝑛-bundles.

Every manifold admits a tangent microbundle.

Definition 6.18. The tangent microbundle of an 𝑛-dimensional manifold 𝑀

is the microbundle 𝑀
∆
,→ 𝑀 × 𝑀

(𝑥,𝑦)↦𝑥
,,,,,,,→ 𝑀 where ∆ is the diagonal map.

Kister’s theorem implies this corresponds to a unique topological tangent bun-
dle 𝜏𝑀 ∶ 𝑀 → BTOP(𝑛), with corresponding stable topological tangent bundle
𝜏𝑀 ∶ 𝑀 → BTOP.

More subtle is the concept of a normal microbundle.

Definition 6.19. A normal microbundle of a submanifold 𝑆 of a manifold𝑀 is
a microbundle 𝑆 → 𝐸 → 𝑆 such that 𝐸 is a neighbourhood of 𝑆 in𝑀 and such
that 𝑆 → 𝐸 is the inclusion.

It is immediate from the definition of normal microbundle that the local
flatness in the definition of a submanifold 𝑆 is a necessary condition for the
existence of a normal microbundle. For example wild knots and the Alexan-
der horned sphere do not admit normal microbundles. Indeed, it is generally
far from straightforward to prove the existence of normal microbundles at all.
Here is an existence and uniqueness result due to Stern [182, Theorem 4.5]. See
also [78], [77, p. 65], and [91, Essay IV, Appendix A, p. 203].
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Theorem 6.20. Let 𝑀𝑛+𝑞 be a manifold, and let 𝑁𝑛 ⊆ 𝑀𝑛+𝑞 be a proper sub-
manifold of codimension 𝑞. Suppose that 𝑛 ≤ 𝑞 + 1 + 𝑗 and 𝑞 ≥ 5 + 𝑗 for
some 𝑗 = 0, 1, 2. Then 𝑁 admits a normal microbundle restricting to a normal
microbundle of 𝜕𝑁 ⊆ 𝜕𝑀.
If in addition 𝑛 ≤ 𝑞+ 𝑗, then this normal microbundle is unique up to isotopy.

Remark 6.21 (Unique up to isotopy). For a submanifold 𝑁 ⊆ 𝑀 we say a nor-

mal microbundle 𝑁
𝑖
,→ 𝜈(𝑁)

𝑝
,→ 𝑁 is unique up to isotopy if whenever there is

another normal microbundle 𝑁
𝑖′
,→ 𝜈′(𝑁)

𝑝′
,,→ 𝑁, there exists a microbundle

equivalence 𝑓 between 𝜈(𝑁) and 𝜈′(𝑁) such that 𝑝′◦𝑓 is isotopic to 𝑝 relative
to 𝑁.

We exploit these theorems to define a stable topological normal structure
on any closed manifold, that will play an important role in Chapter 9. Every
closed smooth 𝑛-manifold 𝑀 can be embedded in ℝ𝑘, for some 𝑘. The stable
class of a normal vector bundle gives rise to stable normal vector bundle of𝑀,
denoted 𝜇𝑀 ∶ 𝑀 → BO. For 𝑘 large enough, the embedding of 𝑀 in ℝ𝑘 is
unique up to isotopy, and using this one can show that the stable normal bundle
is uniquely determined up to isomorphism. We seek to adapt this construction
to the topological category.
Consider that any closed 𝑛-manifold𝑀 can be embedded as a submanifold

𝑀 ⊆ ℝ𝑚 for large𝑚 (this follows e.g. from [72, Corollary A.9] together with [?,
Theorem 5]). For large enough 𝑚, any two such embeddings are isotopic. For
large enough𝑚, Theorem 6.20 implies there is a normal microbundle 𝜉. After
possibly increasing 𝑚 further, the last sentence of Theorem 6.20 implies this
normal microbundle 𝜉 is unique. By Kister’s Theorem this defines a unique
topological ℝ𝑚−𝑛-bundle. We remove the dependence on 𝑚 by passing to the
stable bundle TOP(𝑚 − 𝑛) ⊆ TOP. Thus the process described gives a well-
defined classifying map 𝜈𝑀 ∶ 𝑀 → BTOP. Summarising, we have the follow-
ing.

Definition 6.22. Given any closed 𝑛-manifold, the topological ℝ∞-bundle
𝜈𝑀 ∶ 𝑀 → BTOP, described above, is called the stable topological normal bun-
dle. It is well-defined and unique.

The next example shows that outside the hypotheses of Theorem 6.20, we
should expect that normal microbundles can be very badly behaved.

Example 6.23. Normal microbundles do not necessarily exist. For example,
Rourke and Sanderson [169, Example 2] construct 𝑆19 as a submanifold of a
certain 28-dimensional PL manifold 𝑀 in such a way that it does not admit a
topological normal microbundle. The embedding is even piecewise linear.
Hirsch’s example of a 4-submanifold of 𝑆7 from [77, Theorem 4] mentioned

in Remark 5.4 also does not admit a normal microbundle. Such a normal mi-
crobundle would contain a TOP(3) bundle, and every TOP(3) bundle can be
improved to an O(3) bundle, which in turn contains a tubular neighbourhood.
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So it follows that there can be no normal microbundle in Hirsch’s example.
Note that historically this deduction was not possible until Hatcher [71] proved
that BO(3)→ BTOP(3) is a homotopy equivalence.
Even when topological normal microbundles do exist, they are not always

unique: Rourke and Sanderson consider the smooth standard embedding 𝑆18 ⊆
𝑆27 [167, Theorem 3.12] and construct a certain normal microbundle 𝜉 of 𝑆18 ⊆
𝑆27. The construction of 𝜉 is such that if 𝜉 were concordant to the trivial normal
microbundle, this concordance would induce a normal microbundle structure
back on the embedding 𝑆19 ⊆ 𝑀28 of the previous paragraph. As this is not
possible, 𝜉 is nontrivial. Note that the normal vector bundle 𝜈𝑆18 of the stan-
dard embedding is trivial, so 𝑆18 ⊆ 𝑆27 admits at least two different normal
microbundles.

The following theorem ensures the issues of the previous example are not
seen in dimension 4.

Theorem 6.24. Let 𝑋 be a proper submanifold of a 4-manifold𝑀. Then 𝑋 ad-
mits a normal microbundle. Moreover, if 𝜉 is a normal microbundle of 𝑋, it is the
underlying microbundle to a normal vector bundle.

Proof. The existence of normalmicrobundles in ambient dimension 4 is an im-
mediate consequence of the existence of normal vector bundles (Theorem5.14),
and this is the only proof of which we are aware for this fact. (It would be in-
teresting to know of a more elementary proof.)
We denote by 𝑛 the codimension of 𝑋 in𝑀. Given a normal microbundle 𝜉,

we apply Kister’s theorem 6.17 to obtain an embeddedℝ𝑛-bundlewith underly-
ing microbundle 𝜉. For 𝑛 ≤ 3, the homotopy fibre TOP(𝑛)∕O(𝑛) for the forget-
ful map BO(𝑛) → BTOP(𝑛) is contractible; see Proposition 7.5 for the relevant
citations. Using these facts, and checking the obstructions in each of the cases
𝑛 = 0, 1, 2, 3, 4, we see in each case the embedded topologicalℝ𝑛-bundle can be
upgraded to an embedded vector bundle. Choose such a vector bundle refine-
ment. By restricting to an open disc bundle and rescaling we can ensure this
internal linear bundle is extendable and thus is a normal vector bundle in the
sense of Definition 5.12. □

We will make use of our discussion of normal microbundles in Chapter 10
on topological transversality.
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7. Stiefel-Whitney classes
Thewell-known treatment of Stiefel-Whitney classes inMilnor-Stasheff [133]

is for vector bundles, that is bundles over a space 𝐵 with linear transition func-
tions. In this chapter we discuss the analogous characteristic classes for TOP
and PL ℝ𝑛-bundles. These arise, in particular, for tangent bundles of PL and
topological manifolds respectively. Throughout this chapter we will use the
terminology CATℝ𝑛-bundle, where

CAT ∈ {Dif f ,PL,TOP}.
When CAT = TOP, this will mean anℝ𝑛-bundle with structure group TOP(𝑛).
When CAT = PL, this will mean PL ℝ𝑛-bundles in the sense of Definition 6.9.
When CAT = Dif f , we will mean an ℝ𝑛-bundle with structure group O(𝑛),
taking advantage of the structure group reduction described in Remark 6.6.
Generalising work of Thom [193] in the case of orthogonal structure group,

Fadell [42, Definition 6.1] (see also Stern [182]) defined Stiefel-Whitney classes
of CAT ℝ𝑛-bundles, where CAT ∈ {Dif f ,PL,TOP}. As we shall see, the defi-
nitions of Stiefel-Whitney classes in the PL and TOP cases are analogous to the
classical definition for vector bundles.

Remark 7.1. Even more generally, one can also develop Stiefel-Whitney classes
for spherical fibrations, using an analogous definition. Passing to the under-
lying 𝑆𝑛−1-bundle of a CAT ℝ𝑛-bundle, the spherical fibration definition will
recover all definitions we give below. However, we have chosen not work in
this level of generality.

Let 𝜉 = (𝑝∶ 𝐸 → 𝐵) be aCATℝ𝑛-bundle over some topological space 𝐵. Let
𝐸0 denote the complement in the total space 𝐸 of the zero section. Recall that
the Thom isomorphism [193] is an isomorphism

Φ∶ 𝐻𝑖(𝐵;ℤ∕2)
≅
,→ 𝐻𝑛+𝑖(𝐸, 𝐸0;ℤ∕2).

Fadell [42, Theorem 5.2] checked that the Thom isomorphism holds in the
present context, with PL(𝑛) or TOP(𝑛) structure group. The Steenrod squares
are homomorphisms

Sq𝑖 ∶ 𝐻𝑛(𝐸, 𝐸0;ℤ∕2)→ 𝐻𝑛+𝑖(𝐸, 𝐸0;ℤ∕2).
Here, let us recall that given a pair of spaces (𝑋,𝐴), for each 𝑖 ≥ 0 and for
each 𝑛 ≥ 0 the Steenrod square Sq𝑖 is a homomorphism Sq𝑖 ∶ 𝐻𝑛(𝑋,𝐴;ℤ∕2)→
𝐻𝑛+𝑖(𝑋,𝐴;ℤ∕2). The Steenrod squares have the following properties, which
we will use; see e.g. [181].
(1) The Sq𝑖 are natural with respect to maps of pairs 𝑓∶ (𝑋,𝐴)→ (𝑌, 𝐵), for

all 𝑖 ≥ 0.
(2) Sq0 = Id;
(3) Sq𝑖(𝑥) = 0 for 𝑥 ∈ 𝐻𝑛(𝑋,𝐴;ℤ∕2) with 𝑛 < 𝑖;
(4) Sq𝑖(𝑥) = 𝑥 ∪ 𝑥 for 𝑥 ∈ 𝐻𝑖(𝑋,𝐴;ℤ∕2).
Let 1 ∈ 𝐻0(𝐵;ℤ∕2) denote the unit of the cohomology ring𝐻∗(𝐵;ℤ∕2).



52 S. FRIEDL, M. NAGEL, P. ORSON ANDM. POWELL

Definition 7.2 (Stiefel-Whitney classes [42, Definition 6.1], [182, p. 262]). The
𝑖th Stiefel-Whitney class of 𝜉 is

𝑤𝑖(𝜉) ∶= Φ−1◦ Sq𝑖 ◦Φ(1) ∈ 𝐻𝑖(𝐵;ℤ∕2).

The definition uses the sequence of maps

𝐻0(𝐵;ℤ∕2)
Φ,≅
,,,→ 𝐻𝑛(𝐸, 𝐸0;ℤ∕2)

Sq𝑖
,,,→ 𝐻𝑛+𝑖(𝐸, 𝐸0;ℤ∕2)

Φ−1,≅
,,,,,→ 𝐻𝑖(𝐵;ℤ∕2).

Since Sq𝑗 ∶ 𝐻𝑛(𝐸, 𝐸0;ℤ∕2) → 𝐻𝑛+𝑗(𝐸, 𝐸0;ℤ∕2) is the zero map for 𝑗 > 𝑛, by
the third property of Steenrod squares, it follows that 𝑤𝑗(𝜉) = 0 for 𝑗 > 𝑛.
We now restrict ourselves to bundles over spaces that are homotopy equiv-

alent to CW complexes. In this context it was shown by [42] and Stern [182,
Theorem 2.0] that the Stiefel-Whitney classes 𝑤𝑖(𝜉) for 0 ≤ 𝑖 ≤ 𝑛 satisfy the
following properties:

Proposition 7.3. Let 𝐵 be a space homotopy equivalent to a CW complex and let
𝜉 = (𝑝∶ 𝐸 → 𝐵) be a CAT ℝ𝑛-bundle over 𝐵. Define the total Stiefel-Whitney
class

𝑤(𝜉) ∶=
𝑛∑

𝑖=0
𝑤𝑖(𝜉) ∈ 𝐻∗(𝐵;ℤ∕2).

(1) For a CATℝ𝑛-bundle map 𝑓 = (𝑓𝐸 , 𝑓𝐵)∶ 𝜉 → 𝜂, which consists of maps

𝐸(𝜉) 𝐸(𝜂)

𝐵(𝜉) 𝐵(𝜂),

𝑝(𝜉)

𝑓𝐸

𝑝(𝜂)
𝑓𝐵

we have that 𝑓∗𝐵(𝑤(𝜂)) = 𝑤(𝜉).
(2) If 𝜉 = 𝜂𝑞 ⊕ 𝜀𝑛−𝑞, where 𝜂 is a CAT ℝ𝑞-bundle over 𝐵 and 𝜀𝑛−𝑞 is a trivial

CATℝ𝑛−𝑞-bundle over 𝐵, then 𝑤(𝜉) = 𝑤(𝜂).
(3) For each 𝑛 there is a CATℝ𝑛-bundle such that 𝑤𝑛(𝜉) ≠ 0.

Under the assumption that either CAT ∈ {PL,Dif f } or CAT = TOP and
𝑞 ≠ 4, 5, Stern also proved that the properties in Proposition 7.3 characterise the
Stiefel-Whitney classes. We are not sure whether the assumption that 𝑞 ≠ 4, 5
can now be removed in the TOP case using Quinn’s work.
Recall the universal CAT ℝ𝑛-bundle 𝛾CAT𝑛 over BCAT(𝑛) from Propositions

6.7 and 6.13. Here we are abusing notation, and using the deformation retract
Dif f (𝑛) ≃ O(𝑛) (Remark 6.6) to conflate these structure groups. We denote the
universal Stiefel-Whitney classes by

𝑤CAT
𝑘 ∶= 𝑤𝑘(𝛾CAT𝑛 ) ∈ 𝐻𝑘(BCAT(𝑛);ℤ∕2),

for some 𝑛 ≥ 𝑘. We also write 𝑤CAT
𝑘 ∶ BCAT(𝑛) → 𝐾(ℤ∕2, 𝑘) for the corre-

sponding map to the Eilenberg-Maclane space. For 𝐹∶ 𝐵 → BCAT(𝑛), classi-
fying a CAT ℝ𝑛-bundle 𝜉, we have by Proposition 7.3 that

𝑤𝑘(𝜉) = 𝐹∗(𝑤CAT
𝑘 ) ∈ 𝐻𝑘(𝐵;ℤ∕2).
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The definitions for each value of CAT are compatible in the following sense.

Proposition 7.4. Let 𝜉 be a CATℝ𝑛-bundle over 𝐵, for some CAT ∈ {Dif f ,PL}.
Let 𝜉TOP be the underlying TOP ℝ𝑛-bundle. Then 𝑤𝑘(𝜉) = 𝑤𝑘(𝜉TOP) for every
𝑘 ≥ 0. In fact, the diagram

𝐵 BCAT

BTOP 𝐾(ℤ∕2, 𝑘).

𝜉

𝜉TOP 𝑤CAT
𝑘

𝑤TOP
𝑘

commutes up to homotopy.

Proof. This is a consequence of the fact that the definitions in all three cases
are directly analogous; cf. [193, Théorème III.8] and [42, Theorem 6.10], which
consider the case of tangent bundles. □

From now on we will often take the previous proposition to heart, and omit
the CAT superscript, writing 𝑤𝑘 instead of 𝑤

CAT
𝑘 . For the rest of this chapter

this will in any case only be used with CAT = TOP.
Recall that TOP(𝑛)∕O(𝑛) is by definition the homotopy fibre of BO(𝑛) →

BTOP(𝑛).

Proposition 7.5. TOP(𝑛)∕O(𝑛) is contractible for 𝑛 ≤ 3, while for 𝑛 ≥ 4 there
is a 5-connected map TOP(𝑛)∕O(𝑛)→ 𝐾(ℤ∕2, 3).

Proof. According to [91, Essay V, Section 5.0, p. 246], the homotopy fibre
TOP(2)∕O(2) is contractible, 𝜋𝑖(TOP(3)∕O(3)) = 0 for 𝑖 ≥ 4, and

𝜋𝑖(TOP(3)∕O(3)) ≅ 𝜋𝑖(Dif f (𝐷3, 𝜕𝐷3))

for 𝑖 ≥ 4. The latter group is trivial for all 𝑖, by Hatcher’s theorem [71]. Thus all
the homotopy groups of TOP(3)∕O(3) vanish, and therefore BO(3)→ BTOP(3)
induces an isomorphism on homotopy groups𝜋𝑖(BO(3))→ 𝜋𝑖(BTOP(3)) for all
𝑖. Since BO(3) → BTOP(3) is a map between spaces homotopy equivalent to
a CW complex, we deduce that this map is a homotopy equivalence by White-
head’s theorem. ThusTOP(3)∕O(3) is the homotopy fibre of a homotopy equiv-
alence and so is contractible.
The reference [91, Essay V, Section 5.0, p. 246] also includes the statement

that for 𝑛 ≥ 5 and 𝑖 ≤ 7 we have 𝜋𝑖(TOP∕O,TOP(𝑛)∕O(𝑛)) = 0. In addition
𝜋𝑖(TOP∕O) ≅ 𝜋𝑖(𝐾(ℤ∕2, 3)) for 𝑖 ≤ 6, with the isomorphism induced by the
map TOP∕O→ TOP∕PL ≃ 𝐾(ℤ∕2, 3), which is therefore a 5-connected map.
The homotopy equivalenceTOP∕PL ≃ 𝐾(ℤ∕2, 3) is from [91, Essay IV, Section
10.12, p. 200]. Since the composition of two 5-connected maps is 5-connected,
it follows that there is a 5-connectedmapTOP(𝑛)∕O(𝑛)→ 𝐾(ℤ∕2, 3) for 𝑛 ≥ 5,
as claimed.
It remains to consider𝑛 = 4. For thiswe appeal to [50, Theorem8.7A],which

states that TOP(4)∕O(4) → TOP∕O is 5-connected. Combined with the fact
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already discussed that there is a 5-connected map TOP∕O → 𝐾(ℤ∕2, 3), we
obtain the sought-for 5-connected map TOP(4)∕O(4)→ 𝐾(ℤ∕2, 3). □

Proposition 7.6.
(1) For 𝑛 ≥ 2, 𝜋1(BTOP(𝑛)) = ℤ∕2.
(2) The corresponding unique homotopically nontrivial map

BTOP(𝑛)→ 𝐾(ℤ∕2, 1)
is the universal first Stiefel-Whitney class 𝑤1.

(3) We have that 𝜋2(BTOP(2)) ≅ ℤ.
(4) For 𝑛 ≥ 3, 𝜋2(BTOP(𝑛)) ≅ ℤ∕2.
(5) The corresponding unique homotopically nontrivial map

BTOP(𝑛)→ 𝐾(ℤ∕2, 2)
is the universal second Stiefel-Whitney class 𝑤2.

Proof. For 𝑛 ≤ 3 we have TOP(𝑛) ≃ O(𝑛) by Proposition 7.5, and so the ho-
motopy groups of TOP(𝑛) are isomorphic to those of O(𝑛). For 𝑛 ≥ 4 we have
the long exact sequence in homotopy groups:

𝜋2(TOP(𝑛)∕O(𝑛))→ 𝜋2(BO(𝑛))→ 𝜋2(BTOP(𝑛))→
𝜋1(TOP(𝑛)∕O(𝑛))→ 𝜋1(BO(𝑛))→ 𝜋1(BTOP(𝑛))→ {∗}.

Since 𝜋𝑖(TOP(𝑛)∕O(𝑛)) = 0 for 𝑖 = 1, 2 by Proposition 7.5, we deduce that
𝜋𝑖(BO(𝑛)) ≅ 𝜋𝑖(BTOP(𝑛)) for 𝑖 = 1, 2, with the map induced by the canonical
forgetful map. Since 𝜋𝑖(BO(𝑛)) ≅ 𝜋𝑖−1(O(𝑛)) ≅ ℤ∕2 for 𝑖 = 1, 2, the result
follows from this and Proposition 7.4. □

We see that TOP(𝑛) has two connected components, which are homotopy
equivalent because TOP(𝑛) is a topological group, and 𝜋1(TOP(𝑛), Id) ≅ ℤ∕2
for 𝑛 ≥ 3.

Definition 7.7. We define STOP(𝑛) to be the subgroup of TOP(𝑛) consisting
of orientation preserving homeomorphisms. We define TOPSpin(𝑛) to be the
universal cover of STOP(𝑛). Define STOP and TOPSpin as corresponding col-
imits.

This definition is analogous to the definition of SO(𝑛) as the subgroup ofO(𝑛)
of orientation preserving orthogonal matrices, and of Spin(𝑛) as the connected
double cover of SO(𝑛); this is the universal cover for 𝑛 ≥ 3.

Theorem 7.8. The topological group STOP(𝑛) is the connected component of
TOP(𝑛) containing the identity.

Proof. Wesawabove thatTOP(𝑛)has two connected components. For a home-
omorphism 𝑓∶ ℝ𝑛 → ℝ𝑛, and another such homeomorphism 𝑔, if 𝑓 and 𝑔 are
isotopic, then 𝑓 and 𝑔 are either both orientation preserving (o.p.) or both ori-
entation reversing (o.r.). The map 𝜋0(TOP(𝑛)) → {o.p., o.r.} is a surjective map
from a set with two elements to another set with two elements, hence is a bi-
jection.
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(Alternatively, the theoremcan be seen as a consequence of the StableHome-
omorphism Theorem 4.3, which says that every orientation-preserving home-
omorphism ofℝ𝑛 is stable. Using that every homeomorphism ofℝ𝑛 that is the
identity on some subset is isotopic to the identity, via the (inverted) Alexander
trick, as in Corollary 4.5, we deduce the result. The computations of the homo-
topy type of TOP(𝑛)∕O(𝑛) also used the Stable Homeomorphism Theorem, so
this alternative proof is not independent of the first.) □

We have the following commutative diagram of classifying spaces, together
with the universal Stiefel-Whitney classes.

BSpin(𝑛) BTOPSpin(𝑛)

BSO(𝑛) BSTOP(𝑛) 𝐾(ℤ∕2, 2)

BO(𝑛) BTOP(𝑛) 𝐾(ℤ∕2, 1)

𝑤2

𝑤1

The horizontal maps in the bottom row induce isomorphisms on 𝜋1, while the
horizontal maps in the middle row induce isomorphisms on 𝜋2. Thus up to
homotopy equivalence, BSTOP(𝑛) is the 1-connected cover of BTOP(𝑛), and
BTOPSpin(𝑛) is the 2-connected cover. In other words, BSTOP(𝑛) is the homo-
topy fibre of 𝑤1 and BTOPSpin(𝑛) is the homotopy fibre of 𝑤2.
The analogous statements hold in the case of O(𝑛).

Definition 7.9. Let𝑀 be a space homotopy equivalent to a CW complex and
let 𝜉 be a TOP ℝ𝑛-bundle over 𝑀 classified by a map which we also denote
𝜉 ∶ 𝑀 → BTOP(𝑛). An orientation on 𝜉 is a lift 𝑀 → BSTOP(𝑛) of 𝜉, and
two orientations are equivalent if the lifts are homotopic over BSTOP(𝑛) →
BTOP(𝑛). If an orientation exists then we say 𝜉 is orientable.

Proposition 7.10. An orientation for an 𝑛-manifold𝑀 is equivalent to an ori-
entation on the topological tangent bundle 𝜏𝑀 ∶ 𝑀 → BTOP(𝑛). In particular𝑀
is orientable if and only if 𝜏𝑀 is orientable.

Proof. An orientation for𝑀 is equivalent to a homology orientation for𝑀, i.e.
a coherent choice of generators of 𝐻𝑛(𝑀,𝑀 ⧵ {𝑥};ℤ), for 𝑥 ∈ 𝑀. In turn, a
homology orientation for𝑀 is equivalent to a coherent system of orientations

of the fibre of the tangentmicrobundle𝑀
∆
,→ 𝑀×𝑀

pr1,,,→ 𝑀, rel. the zero section
∆(𝑀). This is because both are, by definition, a coherent system of generators
of𝐻𝑛(𝑀,𝑀 ⧵ {𝑥};ℤ), for each 𝑥 ∈ 𝑀. See [133, Lemma 11.6] for details.
Next, the latter notion is equivalent, via Kister’s theorem [94] and excision,

to a coherent choice of generators of 𝐻𝑛(𝐹𝑥, 𝐹𝑥 ⧵ {0};ℤ) ≅ ℤ. Here, 𝐹𝑥 is the
fibre over 𝑥 in the topological tangentℝ𝑛-bundle of𝑀; see [133, Lemma 11.7],
but replace the exponential map with the embedding from Kister’s theorem.
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To see that a coherent choice of isomorphisms 𝐻𝑛(𝐹𝑥, 𝐹𝑥 ⧵ {0};ℤ) ≅ ℤ is
equivalent to a choice of lift 𝑀 → BSTOP(𝑛), recall that the two connected
components of TOP(𝑛) correspond to whether a homeomorphism preserves or
changes a fixed generator of𝐻𝑛(ℝ𝑛,ℝ𝑛 ⧵ {0};ℤ), so the structure group reduces
to STOP(𝑛) if and only if there is a coherent choice of generators for the homol-
ogy groups𝐻𝑛(𝐹𝑥, 𝐹𝑥 ⧵ {0};ℤ), for 𝑥 ∈ 𝑀. □

Definition 7.11. For an 𝑛-manifold 𝑀, with topological tangent bundle 𝜏𝑀 ,
we define 𝑤𝑖(𝑀) ∶= 𝑤𝑖(𝜏𝑀).
Proposition 7.12. Let𝑀 be a space homotopy equivalent to a CW complex and
let 𝜉 be aTOPℝ𝑛-bundle over𝑀. The bundle 𝜉 is orientable if and only if𝑤1(𝜉) =
0. In particular, by Proposition 7.10, a manifold 𝑀 is orientable if and only if
𝑤1(𝑀) = 0.

Proof. Since BSTOP(𝑛)→ BTOP(𝑛)
𝑤1,,→ 𝐾(ℤ∕2, 1) is a fibration sequence, we

have an exact sequence of pointed sets
[𝑀,BSTOP(𝑛)]→ [𝑀,BTOP(𝑛)]→ [𝑀,𝐾(ℤ∕2, 1)] ≅ 𝐻1(𝑀;ℤ∕2).

The bundle 𝜉 is orientable if and only if the classifying map 𝜉 ∈ [𝑀,BTOP(𝑛)]
is homotopic to amap in the image of [𝑀,BSTOP(𝑛)]. The latter is equivalent to
𝑤1◦𝜉 ∈ [𝑀,𝐾(ℤ∕2, 1)] being null-homotopic, using the sequence. Translating
to cohomology groups this is equivalent to 𝑤1(𝜉) = 𝜉∗(𝑤1) = 0. Here we used
that𝑤1(𝜉) is equal to the pullback of the universal bundle along the classifying
map for 𝜉. □

Definition 7.13. Let𝑀 be a space homotopy equivalent to a CW complex and
let 𝜉 be a TOP ℝ𝑛-bundle over 𝑀 classified by a map which we also denote
𝜉 ∶ 𝑀 → BTOP(𝑛). Suppose that𝑤1(𝑀) = 0, so 𝜉 is orientable. A spin structure
on 𝜉 is a lift𝑀 → BTOPSpin(𝑛) of 𝜉, and two spin structures are equivalent if
the lifts are homotopy equivalent. If a spin structure exists thenwe say 𝜉 is spin.
Now suppose that 𝑀 is a topological 𝑛-manifold with topological tangent

bundle classified by 𝜏𝑀 ∶ 𝑀 → BTOP(𝑛). Suppose that 𝑤1(𝑀) = 0, so 𝑀 is
orientable. A spin structure on𝑀 is a spin structure on 𝜏𝑀 . If a spin structure
on 𝜏𝑀 exists then we say𝑀 is spin.

Proposition 7.14. Let𝑀 be a space homotopy equivalent to a CW complex and
let 𝜉 be a TOP ℝ𝑛-bundle over𝑀. Suppose that 𝜉 is orientable. Then 𝜉 is spin if
and only if𝑤2(𝜉) = 0. In particular, an orientable manifold𝑀 is spin if and only
if 𝑤2(𝑀) = 0.

Proof. This holds because BTOPSpin(𝑛) → BSTOP(𝑛)
𝑤2,,→ 𝐾(ℤ∕2, 2) is a fi-

bration sequence. Thus a lift of 𝜉 ∶ 𝑀 → BSTOP(𝑛) to BTOPSpin(𝑛) exists if
and only if 𝑤2◦𝜏𝑀 is null-homotopic, i.e. if and only if 𝑤2(𝜉) = 0. Here we are
again using that a fibration sequence gives rise to an exact sequence of sets

[𝑀,BTOPSpin(𝑛)]→ [𝑀,BSTOP(𝑛)] ,→ [𝑀,𝐾(ℤ∕2, 2)] ≅ 𝐻2(𝑀;ℤ∕2),
and hence a lift to BTOPSpin(𝑛) exists if and only if 𝑤2(𝜉) = 𝜉∗(𝑤2) = 0. □
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We now recall the Wu classes and the Wu formulae for the Stiefel-Whitney
classes of compact manifolds. The key point here is that while the treatment
in [133, Chapter 11] is presented for smooth manifolds, in fact it uses only
Poincaré duality and algebraic topology, so works just as well for topological
manifolds. This has been observed by Thom [193] and Fadell [42]. We proceed
to summarise the treatment in Milnor-Stasheff.
Let 𝑀 be a compact 𝑛-manifold with ℤ∕2-fundamental class [𝑀, 𝜕𝑀] ∈

𝐻𝑛(𝑀, 𝜕𝑀;ℤ∕2). Consider the homomorphism

𝜃∶ 𝐻𝑛−𝑘(𝑀, 𝜕𝑀;ℤ∕2)→ ℤ∕2

𝑥 ↦ ⟨Sq𝑘(𝑥), [𝑀, 𝜕𝑀]⟩.

By Poincaré duality, there is a unique class 𝑣𝑘(𝑀) ∈ 𝐻𝑘(𝑀;ℤ∕2) with

⟨𝑣𝑘(𝑀) ∪ 𝑥, [𝑀, 𝜕𝑀]⟩ = 𝜃(𝑥)

for all 𝑥 ∈ 𝐻𝑛−𝑘(𝑀, 𝜕𝑀;ℤ∕2). In fact 𝑣𝑘(𝑀) ∪ 𝑥 = Sq𝑘(𝑥) ∈ 𝐻𝑛(𝑀, 𝜕𝑀;ℤ∕2)
for every 𝑥 ∈ 𝐻𝑛−𝑘(𝑀, 𝜕𝑀;ℤ∕2).

Definition 7.15. The class 𝑣𝑘(𝑀) is the 𝑘th Wu class of𝑀.

Proposition 7.16. Let𝑀 be a compact 𝑛-manifold. Then the Wu formulae

𝑤𝑘(𝑀) =
∑

𝑖+𝑗=𝑘
Sq𝑖(𝑣𝑗)

hold for 𝑘 = 0,… , 𝑛.

Proof. The proof in [133, Theorem 11.11, Lemma 11.13, and Theorem 11.14],
which relies on [133, Theorem 11.11 and Lemma 11.13 ], uses only Poincaré du-
ality and products fromalgebraic topology, and so proceeds exactly as inMilnor-
Stasheff. □

Here is a sample, and often used, application for the second Stiefel-Whitney
class.

Definition 7.17. Let 𝑀 be a compact, oriented 𝑛-manifold and Σ𝑛−2 ⊆ 𝑀
a proper submanifold. We say Σ is characteristic if PD(𝑤2(𝑀)) = 𝑗∗([Σ]) ∈
𝐻𝑛−2(𝑀, 𝜕𝑀;ℤ∕2), where 𝑗∗∶ 𝐻𝑛−2(Σ, 𝜕Σ;ℤ∕2) → 𝐻𝑛−2(𝑀, 𝜕𝑀;ℤ∕2) is the
inclusion-induced map.

Proposition 7.18. Let 𝑀 be a compact 𝑛-manifold and Σ ⊆ 𝑀 a proper sub-
manifold. Then 𝑤2(𝑀 ⧵ Σ) = 0 if and only if Σ is characteristic.

Proof. Throughout the proof, ℤ∕2-coefficients are understood. By the Collar
Neighbourhood Theorem (2.16), we may take a boundary collar on𝑀 that re-
stricts on Σ to a boundary collar on Σ. Set 𝐾 ∶= 𝑀 ⧵ (𝜕𝑀 × [0, 1)), the comple-
ment of the open collar on 𝜕𝑀; note 𝐾 is compact. Write 𝜈Σ for a open tubular
neighbourhood of Σ. Tubular neighbourhoods were proved to exist in codi-
mension 2 when 𝑛 ≠ 4 by Kirby-Siebenmann [92] and for 𝑛 = 4 by Freedman-
Quinn (Theorem 5.16). Next we draw a diagram, then define the maps and
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justify that it has exact rows, is commutative, and that the variously claimed
isomorphisms indeed are so.

𝐻2(𝑀,𝑀 ⧵ 𝜈Σ) 𝐻2(𝑀) 𝐻2(𝑀 ⧵ 𝜈Σ)

𝐻2(𝐾,𝐾 ⧵ 𝜈Σ) 𝐻2(𝐾) 𝐻2(𝐾 ⧵ 𝜈Σ)

𝐻𝑛−2(𝜕𝑀 ∪ 𝜈Σ, 𝜕𝑀) 𝐻𝑛−2(𝑀, 𝜕𝑀)

𝐻𝑛−2(𝜈Σ, 𝜕𝑀 ∩ 𝜈Σ) 𝐻𝑛−2(Σ, 𝜕Σ)

≅

𝛽 𝛼

≅ ≅

𝛽′

−∩𝒪≅

𝛼′

−∩𝒪≅

incl

≅ incl 𝑗∗

incl
≅

The top row is a section of the long exact sequence of the pair (𝑀,𝑀 ⧵ 𝜈Σ), and
the central row is a section of the long exact sequence of the pair (𝐾,𝐾⧵𝜈Σ), thus
both are exact. The downwards maps from the top row to the middle row are
by definition themaps induced by inclusion, which is a homotopy equivalence,
justifying these isomorphisms and the fact that the subdiagramconsisting of the
top two rows commutes.
The class𝒪 is theℤ∕2-orientation class; see [15, §VI.8]. Replacing𝑀 by𝑀 ⧵

𝜕𝑀, we obtain a (non-compact) 4-manifold𝑀′ with empty boundary. By [15,
§VI Theorem 8.3], capping with 𝒪 induces isomorphisms

𝐻2(𝐾, 𝐿)
≅
,→ 𝐻𝑛−2(𝑀′ ⧵ 𝐿,𝑀′ ⧵ 𝐾),

both for 𝐿 ∶= 𝐾 ⧵ 𝜈Σ and for 𝐿 ∶= ∅. Thus, we obtain isomorphisms

𝐻2(𝐾,𝐾 ⧵ 𝜈Σ))
≅
,→ 𝐻𝑛−2(𝜕𝑀 × (0, 1) ∪ 𝜈Σ, 𝜕𝑀 × (0, 1)) ≅ 𝐻𝑛−2(𝜕𝑀 ∪ 𝜈Σ, 𝜕𝑀)

and

𝐻2(𝐾)
≅
,→ 𝐻𝑛−2(𝑀′, 𝜕𝑀 × (0, 1)) ≅ 𝐻𝑛−2(𝑀, 𝜕𝑀).

These define the middle vertical maps labelled − ∩ 𝒪. By naturality of the cap
product, the left middle square commutes. The commutativity of the bottom
left square is clear, as is the isomorphism of the left-bottom arrow. We also note
that the composite of the top two central downwards arrows is the Poincaré-

Lefschetz duality isomorphism 𝑃𝐷∶ 𝐻2(𝑀)
≅
,→ 𝐻𝑛−2(𝑀, 𝜕𝑀). Having estab-

lished the relevant properties of the diagram, we now prove the lemma.
First note that bynaturality of Stiefel-Whitney classes, wehave that𝛼(𝑤2(𝑀))

= 𝑤2(𝑀 ⧵𝜈Σ). Note as well that𝐻𝑛−2(𝜕𝑀 ∪𝜈Σ, 𝜕𝑀;ℤ∕2) is isomorphic toℤ∕2
and generated by the image of [Σ].
For one direction of the lemma, assume that 𝑤2(𝑀 ⧵ Σ) = 0. By exactness of

the top row, this implies𝑤2(𝑀) lies in the image of 𝛽. But as𝐻2(𝑀,𝑀 ⧵ 𝜈Σ)) ≅
ℤ∕2 and 𝑤2(𝑀) ≠ 0, this implies the generator of ℤ∕2 is sent to 𝑤2(𝑀) by 𝛽.
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By commutativity of the diagram, we get
PD(𝑤2(𝑀)) ≡ 𝑗∗([Σ]) ∈ 𝐻𝑛−2(𝑀, 𝜕𝑀;ℤ∕2).

Conversely, assume that PD(𝑤2(𝑀)) ≡ 𝑗∗([Σ]) ∈ 𝐻𝑛−2(𝑀, 𝜕𝑀;ℤ∕2). By
commutativity of the diagram, this implies 𝑤2(𝑀) is in the image of 𝛽. Thus
𝑤2(𝑀 ⧵ 𝜈Σ) = 𝛼(𝑤2(𝑀)) = 0 by exactness of the top row. □

Remark 7.19. We note that the previous proposition is valid when none of the
manifolds involved is orientable and alsoΣ is closed. We also note that the proof
given above is fairly robust and could be easily adapted to other Stiefel-Whitney
classes, provided the tubular neighbourhood conditions are met. For example,
the same idea shows that the complement of a codimension 1 submanifold is
orientable if and only if that submanifold is Poincaré dual to the first Stiefel-
Whitney class.
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8. Intersection forms and smooth 4-manifolds
In this chapter we introduce and study one of themost interesting invariants

of 4-manifolds, namely the intersection form. Later, in Theorem 12.2 we will
see that any unimodular symmetric form overℤ occurs as the intersection form
of a closed oriented 4-manifold. In contrast we will see in this chapter that not
all unimodular symmetric form overℤ can be realised as the intersection forms
of closed oriented smooth 4-manifolds.

8.1. Intersection forms. We start out with the definition of the intersection
form.

Definition 8.1.
(1) Given a finitely generated abelian group 𝐻 we write F𝐻 ∶= 𝐻∕𝑇𝐻,

where 𝑇𝐻 is the torsion subgroup.
(2) Given a compact oriented 𝑛-manifold𝑀 we denote its fundamental class

by [𝑀] ∈ 𝐻𝑛(𝑀, 𝜕𝑀;ℤ). Given a decomposition 𝜕𝑀 = 𝐴 ∪ 𝐵 where 𝐴
and 𝐵 are compact codimension-zero submanifolds of 𝜕𝑀 with 𝐴 ∩ 𝐵 =
𝜕𝐴 = 𝜕𝐵 we denote the Poincaré duality isomorphism by

PD∶ 𝐻𝑙(𝑀,𝐴;ℤ) → 𝐻𝑛−𝑙(𝑀,𝐵;ℤ)
𝜙 ↦ 𝜑 X [𝑀].

(3) Given a compact oriented 4-manifold𝑀 we refer to the map

𝑄𝑀 ∶ F𝐻2(𝑀;ℤ) × F𝐻2(𝑀;ℤ) → ℤ
(𝑎, 𝑏) ↦ 𝑄𝑀(𝑎, 𝑏) ∶= ⟨PD−1

𝑀 (𝑎) Y PD−1
𝑀 (𝑏), [𝑀]⟩

as the intersection form. (Here ⟨−,−⟩ denotes the Kronecker pairing.)
Using Poincaré Duality one can easily show that if𝑀 is closed, then 𝑄𝑀
is nonsingular.

Let 𝐸8 denote the even 8×8Cartanmatrix of the eponymous exceptional Lie
algebra; that is,

𝐸8 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 1 0 0 0 0 0 0
1 2 1 0 0 0 0 0
0 1 2 1 0 0 0 0
0 0 1 2 1 0 0 0
0 0 0 1 2 1 0 1
0 0 0 0 1 2 1 0
0 0 0 0 0 1 2 0
0 0 0 0 1 0 0 2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Note that this is a symmetric integral matrix with determinant one.

Example 8.2. Here are some important closed, smooth 4-manifolds.
(1) The 4-sphere 𝑆4. This is simply connected and has𝐻2(𝑆4;ℤ) = {0}.
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(2) The complex projective plane ℂP2, which comes with a canonical orien-
tation. The same underlying manifold with the opposite orientation is

ℂP2. They are simply-connected manifolds with 𝐻2(ℂP
2;ℤ) ≅ ℤ. The

intersection form of ℂP2 is represented by the 1 × 1-matrix (1) and the
intersection form of ℂP2 is represented by the 1 × 1-matrix (−1).

(3) The manifold 𝑆2 × 𝑆2 is simply-connected and 𝐻2(𝑆2 × 𝑆2;ℤ) ≅ ℤ⊕ ℤ.
The intersection form of 𝑆2×𝑆2 is represented by the standard hyperbolic

form𝐻 ∶= (0 1
1 0).

(4) The 𝐾3 surface or Kummer surface

𝐾3 ∶=
{
[𝑧1 ∶ 𝑧2 ∶ 𝑧3 ∶ 𝑧4] ∈ ℂP3 |||| 𝑧

4
1 + 𝑧42 + 𝑧43 + 𝑧44 = 0

}

This is a simply connected, smooth, spin, and closed 4-manifold with
𝐻2(𝐾3;ℤ) ≅ ℤ22. As is shown in [58, Theorem 1.3.8] or alternatively
[125, p. 176], the intersection form of K3 is isometric to 𝐸8 ⊕ 𝐸8 ⊕𝐻 ⊕
𝐻 ⊕𝐻.

The next proposition shows that the intersection form is well behaved under
the connected sum operation.

Proposition 8.3. Let𝑀 and𝑁 be two oriented compact 4-manifolds. Then there
is an isomorphism 𝐻2(𝑀) ⊕ 𝐻2(𝑁) → 𝐻2(𝑀#𝑁) that induces an isometry of
𝑄𝑀 ⊕𝑄𝑁 and 𝑄𝑀#𝑁 .

Proof. The usual tools of algebraic topology, namely a Mayer-Vietoris argu-
ment and the excision theorem, show that there exists an isomorphism

Θ∶ 𝐻2(𝑀)⊕𝐻2(𝑁)→ 𝐻2(𝑀#𝑁).

The statement that this isomorphism Θ induces an isometry between 𝑄𝑀 ⊕
𝑄𝑁 and 𝑄𝑀#𝑁 can be deduced from the functoriality of the cup and cap prod-
ucts [15, TheoremVI.5.2.(4)] formaps between pairs of topological spaces. Full
details are provided in [52, Proposition 153.12].
In the smooth case the statement that the isomorphism Θ induces an isom-

etry of forms follows immediately from the fact that any class in second ho-
mology can be represented by an embedded oriented submanifold [58, Propo-
sition 1.2.3] and the fact that one can calculate the intersection form in terms
of algebraic intersection numbers of embedded oriented surfaces [15, Theorem
VI.11.9]. To apply this approach to general manifolds, one needs to use topo-
logical transversality, which holds, as discussed in Chapter 10. □

8.2. Intersection forms of spin manifolds. Using the results from the pre-
vious chapter we can prove the following proposition.

Proposition 8.4. Let 𝑀 be a compact, connected, oriented 4-manifold. If 𝑀 is
spin then the intersection form of𝑀 is even.
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Proof. In this proof we use the properties of the Steenrod squares introduced
just before Definition 7.2.
By definition the 𝑘th Wu class 𝑣𝑘 ∈ 𝐻𝑘(𝑀;ℤ∕2) satisfies Sq𝑘(𝑎) = 𝑣𝑘 ∪ 𝑎,

for every class 𝑎 ∈ 𝐻4−𝑘(𝑀, 𝜕𝑀;ℤ∕2). Hence if 𝑎 ∈ 𝐻2(𝑀, 𝜕𝑀;ℤ∕2) then
𝑣2 ∪ 𝑎 = Sq2(𝑎) = 𝑎 ∪ 𝑎. By Proposition 7.16, the 𝑛th Stiefel-Whitney class of
𝑀 is given by 𝑤𝑛 =

∑
𝑖 Sq

𝑖(𝑣𝑛−𝑖). Since𝑀 is oriented, we have

0 = 𝑤1 = Sq0(𝑣1) + Sq1(𝑣0) = 𝑣1.

Since𝑀 is spin, we have that

0 = 𝑤2 = Sq0(𝑣2) + Sq1(𝑣1) + Sq2(𝑣0) = 𝑣2.

So for any𝑎 ∈ 𝐻2(𝑀, 𝜕𝑀;ℤ∕2), we have𝑎∪𝑎 = 0∪𝑎 = 0 ∈ 𝐻4(𝑀, 𝜕𝑀;ℤ∕2) =
ℤ∕2. But this implies that for any 𝑥 ∈ 𝐹𝐻2(𝑀;ℤ) we have that 𝑄𝑀(𝑥, 𝑥) =
⟨PD−1(𝑥) ∪ PD−1(𝑥), [𝑀, 𝜕𝑀]⟩ ≡ 0 (mod 2). In other words 𝑄𝑀 is an even
form. □

Proposition 8.5. Let𝑀 be a closed, oriented, connected, spin 4-manifold. Then
the signature sign(𝑀) is divisible by 8.

Proof. In Proposition 8.4 we just proved that the intersection form𝑄𝑀 is even.
Since𝑀 is closed we know that that𝑄𝑀 is nonsingular. Finally note that it is an
algebraic fact, shown for example in [132, Theorem 5.1], that for any symmetric
nonsingular, bilinear, even form 𝑄, the signature of 𝑄 is divisible by 8. □

8.3. Twisted intersection forms and twisted signatures. In this section
we introduce twisted intersection forms for topological manifolds and discuss
some properties of the corresponding twisted signatures.
Let 𝑀 be a compact, orientable, connected 4𝑚-dimensional manifold. We

write 𝜋 ∶= 𝜋1(𝑀). Let 𝛼∶ 𝜋 → 𝑈(𝑘) be a unitary representation. We view
the elements of ℂ𝑘 as row vectors. Given 𝑔 ∈ 𝜋 and 𝑣 ∈ ℂ𝑘, define 𝑣 ⋅ 𝑔 ∶=
𝑣 ⋅ 𝛼(𝑔). Thus we can view ℂ𝑘 as a right ℤ[𝜋]-module. Denote this module by
ℂ𝑘
𝛼. Define the twisted intersection form of (𝑀,𝛼) to be the pairing

𝑄𝑀 ∶ 𝐻2𝑚(𝑀;ℂ𝑘
𝛼) ×𝐻2𝑚(𝑀;ℂ𝑘

𝛼)→ ℂ
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given by the composition

𝐻2𝑚(𝑀;ℂ𝑘
𝛼) ×𝐻2𝑚(𝑀;ℂ𝑘

𝛼)

𝐻2𝑚(𝑀, 𝜕𝑀;ℂ𝑘
𝛼) ×𝐻2𝑚(𝑀, 𝜕𝑀;ℂ𝑘

𝛼)

𝐻4𝑚(𝑀, 𝜕𝑀;ℂ𝑘
𝛼 ⊗ ℂ𝑘

𝛼)

𝐻4𝑚(𝑀, 𝜕𝑀;ℂ)

𝐻0(𝑀;ℂ) = ℂ.

PD−1 ×PD−1

Y

⟨ , ⟩

PD

Here the first and the lastmap are given by the isomorphisms from the Poincaré
Duality Theorem A.15 and the second map is given by Lemma A.11. Note that
in the bottom we viewℂ as a trivialℤ[𝜋]-module. The third map is induced by
the following homomorphism of right ℤ[𝜋]-modules:

ℂ𝑘
𝛼 ⊗ ℂ𝑘

𝛼 → ℂ
(𝑣, 𝑤) ↦ ⟨𝑣, 𝑤⟩ = 𝑣𝑤𝑇.

It follows easily from the definitions that𝑄𝑀 is sesquilinear, namelyℂ-conjugate
linear in the first entry and ℂ-linear in the second entry. The usual proof for
the (anti-) symmetry of the cup product e.g. [72, Theorem 3.14], can be modi-
fied to show that 𝑄𝑀 is hermitian, that is for every 𝑣, 𝑤 ∈ 𝐻2𝑚(𝑀;ℂ𝑘

𝛼)we have
𝑄𝑀(𝑣, 𝑤) = 𝑄𝑀(𝑤, 𝑣). Since 𝑄𝑀 is hermitian, its signature is defined as the
difference in the number of positive and negative eigenvalues. We refer to the
signature of 𝑄𝑀 as the twisted signature 𝜎(𝑀,𝛼).
For a group homomorphism 𝛾∶ 𝜋1(𝑀) → Γ, denote the corresponding 𝐿2-

signature by 𝜎(2)(𝑀, 𝛾), as defined in say [5, 116] and [29, Chapter 5].

Theorem 8.6. Let𝑀 be a closed, oriented, connected 4-manifold.
(1) For every finite cover 𝑝∶ �̃� → 𝑀 we have 𝜎(�̃�) = [�̃� ∶ 𝑀] ⋅ 𝜎(𝑀).
(2) For every unitary representation 𝛼∶ 𝜋1(𝑀) → 𝑈(𝑘) we have 𝜎(𝑀,𝛼) =

𝑘 ⋅ 𝜎(𝑀).
(3) For every group homomorphism 𝛾∶ 𝜋1(𝑀) → Γ we have 𝜎(2)(𝑀, 𝛾) =

𝜎(𝑀).

Remark 8.7.
(1) The same statement does not hold for 4-dimensional Poincaré complexes

in general. More precisely, Wall [201, Corollary 5.4.1] gave examples of
4-dimensional Poincaré complexes for which the signature is not multi-
plicative under finite covers.
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(2) Alternative proofs for the first and the third statement are provided by
Schafer [175, Theorem 8] and Lück-Schick [115, Theorem 0.2]. The ap-
proach taken in Lück-Schick [115] and Teleman [192] should also pro-
vide a proof of the second statement. In fact these papers are also valid
for manifolds of any dimension 4𝑚.

Proof. First we give references for these three statements for smooth mani-
folds.
(1) This statement is a consequence of the Hirzebruch Signature Theorem

(see e.g. [133]).
(2) This statement was proven in [6] (in fact the second statement contains

the first statement as a special case).
(3) This statement was proven in [5, p. 44].

We now turn to manifolds that are not necessarily smooth. We will prove the
second statement of the theorem. The other statements can be proved in a sim-
ilar fashion. We refer to [29, Lemma 5.9] for a proof of (3).
So let 𝑀 be a closed oriented connected 4-manifold and let 𝛼∶ 𝜋1(𝑀) →

𝑈(𝑘) be a unitary representation. By Theorem 9.9, there exists a closed ori-
entable simply-connected 4-manifold 𝑁 such that 𝑀#𝑁 is smooth. We have
𝜋1(𝑀#𝑁) = 𝜋1(𝑀) ∗ 𝜋1(𝑁) ≅ 𝜋1(𝑀) since 𝜋1(𝑁) = {1}. Let 𝛽∶ 𝜋1(𝑁) →
𝑈(𝑘) be the trivial representation. We also write 𝛼 ∗ 𝛽∶ 𝜋1(𝑀#𝑁) = 𝜋1(𝑀)→
𝑈(𝑘) for the representation uniquely determined by 𝛼 on 𝜋1(𝑀).
By Proposition 8.3, we have 𝜎(𝑀#𝑁) = 𝜎(𝑀) + 𝜎(𝑁). Furthermore a slight

generalisation of Proposition 8.3 shows that 𝜎(𝑀#𝑁, 𝛼 ∗ 𝛽) = 𝜎(𝑀,𝛼) +
𝜎(𝑁, 𝛽). Finally, we have 𝜎(𝑁, 𝛽) = 𝑘 ⋅ 𝜎(𝑁). The desired statement follows
from these equalities and from the formula for twisted signatures of the closed
smooth manifold𝑀#𝑁. □

8.4. Intersection forms of smooth 4-manifolds. In Theorem 12.2 we will
see that any unimodular symmetric form occurs as the intersection form of a
closed oriented 4-manifold. In the following we survey results on intersection
forms of closed oriented smooth 4-manifolds. As we will see, the results in the
smooth setting differ dramatically from the results in the topological setting.
In Proposition 8.5 we saw that the signature of any closed, oriented, con-

nected, spin 4-manifolds is divisible by 8. The Rochlin Theorem [165] gives an
extra restriction on the signatures of intersection forms of spin 4-manifolds that
admit a smooth structure.

Theorem8.8. (RochlinTheorem)Let𝑀 be a closed, oriented, connected, spin,
smooth 4-manifold. Then the signature sign(𝑀) is divisible by 16.

Remark 8.9. Let 𝑀 be a closed oriented 4-manifold with an even intersection
form and such that 𝐻1(𝑀;ℤ) has no 2-torsion. This implies 𝐻2(𝑀;ℤ∕2) ≅
Hom(𝐻2(𝑀;ℤ),ℤ∕2) and that the mod 2 reduction of 𝑄𝑀 is isomorphic to the
pairing (𝑎, 𝑏) = ⟨𝑎 ∪ 𝑏, [𝑀]⟩ on 𝐻2(𝑀;ℤ∕2). As 𝑄𝑀 is even, this implies that
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(𝑎, 𝑎) = 0 ∈ ℤ∕2 for any 𝑎 ∈ 𝐻2(𝑀;ℤ∕2). But we saw in the proof of Propo-
sition 8.5 that 𝑎 ∪ 𝑎 = 𝑣2 ∪ 𝑎, so we must have that 𝑣2 = 0 as this pairing is
nondegenerate. We also saw in the proof of Proposition 8.5 that 𝑣2 = 𝑤2 when
𝑀 is oriented, so in fact 𝑤2 = 0 and𝑀 admits a spin structure.
It is not true that simply having an even intersection form implies𝑀 is spin.

Indeed, it is possible to construct a closed oriented 4-manifold𝑀 that has𝑄𝑀 =
0 (which is in particular an even form), but has nonvanishing 𝑤2 [58, Exer-
cise 5.7.7(a)]. In a similar spirit, by [60, 45] there exists a closed oriented 4-
dimensional smooth manifold 𝑀 with an even intersection form 𝑄𝑀 that sat-
isfies sign(𝑀) = 8. Hence this must also fail to be spin, now by the Rochlin
Theorem 8.8.

Theorem 8.10 (Freedman [51]). There exists a closed orientable connected 4-
manifold that does not admit a smooth structure.

Proof. By Theorem 12.2 there exists a simply connected closed oriented 4-
manifold 𝑀 with 𝑄𝑀 ≅ 𝐸8. By the Rochlin Theorem 8.8 this manifold does
not admit a smooth structure. □

In a remarkable twist, shortly after Freedman proved Theorem 12.2, Don-
aldson [37, Theorem A] [38, Theorem 1], proved the following result regarding
intersection forms of smooth 4-manifolds.

Theorem 8.11. (Donaldson’s Theorem) Let𝑀 be a closed oriented connected
smooth 4-manifold. If 𝑄𝑀 is positive-definite, then 𝑄𝑀 can be represented by the
identity matrix.

To understand the significance of Donaldson’s Theorem it is helpful to con-
sider the following table from [132, p. 28], which basically says that there are
lots of isometry types of nonsingular positive definite forms.

Dimension: 8 16 24 32 40
Number of isometry types of
nonsingular positive definite

even symmetric forms:
1 2 24 ≥ 107 ≥ 1051

Remark 8.12. Note that if𝑀 be a closed oriented smooth 4-manifold such that
𝑄𝑀 is negative-definite, then𝑄−𝑀 = −𝑄𝑀 is positive-definite. Thuswe see that
Donaldson’s Theorem implies that 𝑄𝑀 is represented by − Id.

It follows from [132, Theorem II.5.3] that every nonsingular indefinite odd
symmetric form is isometric to 𝑘 ⋅ (1) ⊕ 𝓁 ⋅ (−1). These are realised by 𝑘 ⋅

ℂP2#𝓁⋅ℂP
2
. Therefore we only need to discuss the realisability of nonsingular

indefinite even symmetric forms. Again by [132, Theorem II.5.3], every non-
singular even indefinite symmetric form is isometric to 𝑛 ⋅ 𝐸8⊕𝑚 ⋅𝐻 for some
(𝑚, 𝑛) ∈ ℕ0 ×ℤ ⧵ {(0, 0)}. The following theorem, proven by Furuta [54], gives
some restrictions on the possible values of𝑚 and 𝑛.
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Theorem 8.13. (Furuta’s 10/8 Theorem) If𝑀 is a closed oriented connected
smooth 4-manifold with indefinite even intersection form, then

𝑏2(𝑀) ≥ 10

8
⋅ | sign(𝑀)| + 2.

In particular𝑄𝑀 ≅ 𝑛 ⋅𝐸8⊕𝑚 ⋅𝐻 for some 𝑛 ∈ 2ℤ and𝑚 ∈ ℕwith𝑚 ≥ |𝑛|+1.

Furuta’s 10/8 Theorem does not quite close the gap between the forms we
can realise by smoothmanifolds and the forms we can exclude. More precisely,
it follows from the calculation of the intersection form of the K3 surface and
of 𝑆2 × 𝑆2 that for any 𝑛 = 2𝑝 ∈ ℤ and every 𝑚 ≥ 3|𝑝| there exists a closed
oriented simply connected 4-dimensional smooth manifold with intersection
form isometric to 𝑛 ⋅ 𝐸8 ⊕𝑚 ⋅𝐻. In other words, we have

intersection form of 𝑝 ⋅ K3# (𝑚 − 3|𝑝|) ⋅ (𝑆2 × 𝑆2) ≅ 2𝑝 ⋅ 𝐸8 ⊕𝑚 ⋅𝐻.
The following conjecture predicts that this result is optimal.

Conjecture 8.14. (11/8-Conjecture) If𝑀 is a closed oriented connected smooth
4-manifold with indefinite even intersection form, then

𝑏2(𝑀) ≥ 11

8
⋅ | sign(𝑀)|.

Equivalently, if 𝑄𝑀 ≅ 2𝑝 ⋅ 𝐸8 ⊕𝑚 ⋅𝐻 with 𝑝 ≠ 0, then𝑚 ≥ 3|𝑝|.

Remark 8.15.
(1) Aproof of the 11/8-Conjecturewould imply, byFreedman’s Theorem12.2,

that any closed oriented simply connected smooth 4-manifold is homeo-

morphic to either a connected sum of the form 𝑘 ⋅ ℂP2#𝓁 ⋅ ℂP
2
or to a

connected sum of the form 𝑛 ⋅ K3#𝑚 ⋅ (𝑆2 × 𝑆2).
(2) Currently the best known result in the direction of the 11/8-Conjecture

is [80, Corollary 1.13], which says that if 𝑀 is a closed oriented simply-
connected 4-manifold that is not homeomorphic to 𝑆4, 𝑆2 × 𝑆2 or the K3
surface andwhose intersection form is indefinite and even, then 𝑏2(𝑀) ≥
10
8
⋅ | sign(𝑀)| + 4.
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9. Smoothing 4-manifolds
In this chapter we present three theorems which associate a smooth mani-

fold to a given 4-manifold. Often these theorems can be used to reduce proofs
about 4-manifolds to the case of smooth 4-manifolds, where the standard tools
of differential topology are available.

9.1. Smoothing noncompact 4-manifolds. The first of our smoothing the-
orems [159, Corollary 2.2.3], [50, p. 116], which is due to Freedman and Quinn,
says that noncompact connected 4-manifolds admit a smooth structure.

Theorem 9.1. Every connected, noncompact 4-manifold is smoothable. Thus
every 4-manifold 𝑀 has a smooth structure in the complement of any closed set
that has at least one point in each compact component of𝑀.

There are some related statements in the literature on smoothing 4-manifolds
in the complement of a point, that appeared prior to Freedman’s work [51] and
prior to [159]. We discuss them briefly here. For the case of PL structures
on noncompact 4-manifolds, given a lift of the (unstable) tangent microbundle
classifying map𝑀 → BTOP(4) to𝑀 → BPL(4) (see Chapter 6), the result can
be found in [105, p. 54] and [91, Essay V, Addendum 1.4.1, p. 222]. The analo-
gous result for smooth bundle structures and smooth structures onnoncompact
manifolds was stated in [104, p. 156]. Alternatively, [79], [50, Theorem 8.3B]
apply to improve a PL structure to a smooth structure, unique up to isotopy,
for any manifold of dimension at most six. Again, in [104] Lashof assumes a
lift of the (unstable) tangent microbundle classifying map𝑀 → BTOP(4) to a
map 𝑀 → BO(4). For noncompact connected 4-manifolds, such a lift always
exists, as was later shown by Quinn [159, 157], [50, p. 116] using the full disc
embedding theorem [51], and giving rise to Theorem 9.1.
Due to the seminal nature of Freedman’s Fields medal winning paper [51],

it is well worth clarifying the details of some citations therein. In the proof of
Corollary 1.2, in the proof of Theorem 1.5 on page 369, in the proof of The-
orem 1.6, and at the start of Section 10, Freedman uses that smoothing the-
ory is available for noncompact 4-manifolds. In particular, smoothing for non-
compact contractible 4-manifolds plays a vital rôle in Freedman’s proof of the
topological 4-dimensional Poincaré conjecture [51, Theorem 1.6]. Freedman
cites [91] for this fact, however [91, Essay V, Remarks 1.6 (A), p. 230] specif-
ically excludes smooth structures (but for a stronger result). Nevertheless, as
mentioned above, Lashof [104, p. 156] proved the smooth version of [91, Es-
say V, Addendum 1.4.1, p. 222], or one can use PL smoothing theory [79], [50,
Theorem 8.3B] to improve a PL structure from [91, Essay V, Addendum 1.4.1,
p. 222] to a smooth structure, essentially uniquely.
Freedman only applies smoothing theory in cases, such as for contractible𝑀,

that he can ensure the existence of a lift of 𝜏𝑀 ∶ 𝑀 → BTOP(4) to BO(4). Later,
Quinn [159, Corollary 2.2.3] showed that such a lift always exists for connected
noncompact 4-manifolds. In fact, he showed that the map TOP(4)∕O(4) →
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TOP∕O is 5-connected [50, Theorem 8.7A], where only 3-connected is needed
for Theorem 9.1. In other words, it was shown prior to Freedman’s work that
homotopy 4-spheres admit a smooth structure in the complement of a point, so
the results that Freedman required were indeed known. However, smoothing
in the complement of a point was not known for general connected, compact
4-manifolds until after the work of Quinn in 1982. Further discussion can also
be found in Quinn [157] and Lashof-Taylor [107].
Below we will give applications of Theorem 9.1; see e.g. the proof of Theo-

rem 10.17.

9.2. The Kirby-Siebenmann invariant and stable smoothing of 4-mani-
folds. The formulation of the other two statements on smoothing 4-manifolds
that we will give (Theorems 9.1 and 9.9) make use of the Kirby-Siebenmann
invariant. The Kirby-Siebenmann invariant ks(𝑀) ∈ ℤ∕2 of a compact 4-
manifold is defined in [50, Section 10.2B], or alternatively by [91, p. 318] or
[172, Definition 3.4.2], and we describe the construction now.
The homotopy fibre TOP∕PL of the forgetful map BPL → BTOP has the

homotopy type of a 𝐾(ℤ∕2, 3) [91, Essay IV, §10, p. 194] and has the structure
of a loop space, permitting the construction of the delooping B(TOP∕PL) [10,
Theorem C], [11], which is an Eilenberg-Maclane space of type 𝐾(ℤ∕2, 4). A
connected topological 4-manifold has a unique smooth structure on its bound-
ary. Using the homotopy fibre sequence

TOP∕PL→ BPL→ BTOP→ B(TOP∕PL),

the unique obstruction to a lift of the classifying map 𝜏𝑀 ∶ 𝑀 → BTOP of the
stable topological tangent bundle to BPL is therefore a homotopy class in

[(𝑀, 𝜕𝑀), (B(TOP∕PL)
⏟⎴⎴⏟⎴⎴⏟

=𝐾(ℤ∕2,4)

, ∗)] ≅ 𝐻4(𝑀, 𝜕𝑀;ℤ∕2) = ℤ∕2.

Here, we used again that 4-manifolds have the homotopy type of a CW complex
(Theorem 3.16). We refer to the corresponding element of ℤ∕2 as the Kirby-
Siebenmann invariant, ks(𝑀), of the compact, connected manifold𝑀. For dis-
connected compact 4-manifolds,𝑀 =

⨆𝑛
𝑖=1𝑀𝑖, define

ks(𝑀) ∶=
𝑛∑

𝑖=1
ks(𝑀𝑖) ∈ ℤ∕2.

For comparision, we note that in every dimension, a compact 𝑛-manifold
with a PL structure on its boundary has a Kirby-Siebenmann invariant, which
is a homotopy class of maps in [(𝑀, 𝜕𝑀), (B(TOP∕PL), ∗)] determined by its
topological tangent bundle. In the following theorem we summarise some key
properties of the Kirby-Siebenmann invariant.

Theorem 9.2. Let𝑀 and𝑁 be compact 4-manifolds.
(1) If𝑀 × ℝ admits a smooth structure (e.g. if𝑀 admits a smooth structure),

then ks(𝑀) = 0.
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(2) The Kirby-Siebenmann invariant gives rise to a surjective homomorphism
ΩTOP
4 → ℤ∕2. In particular for𝑀 a closed 4-manifold that bounds a com-

pact 5-manifold, ks(𝑀) = 0.
(3) The Kirby-Siebenmann invariant is additive under the connected sum op-

eration.
(4) There is a short exact sequence

0→ ΩSpin
4 → ΩTOPSpin

4
𝜎∕8
,,,→ ℤ∕2→ 0,

with the first map the forgetful map and last map given by the signature
divided by 8, modulo 2. This sequence does not split, so ΩTOPSpin

4 ≅ ℤ.
Moreover, for a closed spin manifold, the signature divided by 8, modulo 2,
is equal to the Kirby-Siebenmann invariant, i.e. the map which takes 𝜎∕8

modulo 2 equals the compositionΩTOPSpin
4 → ΩSTOP

4
ks
,,→ ℤ∕2.

(5) If 𝑆 ⊆ 𝜕𝑀 and 𝑇 ⊆ 𝜕𝑁 are compact codimension zero submanifolds with
a homeomorphism 𝑆 ≅ 𝑇, then

ks(𝑀 ∪𝑆≅𝑇 𝑁) = ks(𝑀) + ks(𝑁).

(6) If there exists a compact 5-manifold with 𝜕𝑊 = 𝑀 ∪𝜕𝑀≅𝜕𝑁 𝑁, for some
homeomorphism 𝜕𝑀 ≅ 𝜕𝑁, then ks(𝑀) = ks(𝑁).

While they are certainly well-known to the experts, and frequently used, we
could not find explicit proofs of these facts in the literature, so we give some
details.

Proof of Theorem 9.2. Let us prove (1). The topological tangent bundle of
𝑀 × ℝ is isomorphic to 𝜏𝑀 ⊕ 𝜀, where 𝜏𝑀 is the tangent microbundle of 𝑀
and 𝜀 denotes a rank one trivial bundle over 𝑀. If 𝑀 × ℝ admits a smooth
structure, then there is a lift 𝜏Dif f𝑀×ℝ∶ 𝑀×ℝ→ BO(5), the smooth tangent bundle
to 𝑀 × ℝ. Let 𝑝∶ BO(5) → BTOP(5) be the canonical map. Then 𝜏𝑀 ⊕ 𝜀 =
𝑝◦𝜏Dif f𝑀×ℝ. Passing to the stable classifying spaces, we obtain a lift 𝑀 → BO
whose composition with the canonical map BO → BTOP agrees with 𝜏𝑀 ⊕
𝜀∞, the stable tangent microbundle of𝑀. Since the map BO → BTOP factors
through BPL → BTOP, we have a stable lift of 𝜏𝑀 and so ks(𝑀) = 0. This
completes the proof of (1).
Now to prove (2), suppose that a closed 4-manifold 𝑀 =

⨆𝑘
𝑖=1𝑀𝑖 bounds

a compact 5-manifold 𝑊′. Perform 0 and 1-surgeries on 𝑊′ to obtain a path
connected, simply connected, compact 5-manifold𝑊 with 𝜕𝑊 = 𝑀. We prove
that

ks(𝑀) ∶=
𝑘∑

𝑖=1
ks(𝑀𝑖) = 0.
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Consider the diagram

𝑀𝑖 //

ks(𝑀𝑖)

''

𝑀 //

ks(𝑀)

##

𝑊
𝜏𝑊 //

ks(𝑊)

��

BTOP

��
B(TOP∕PL) ≃ // 𝐾(ℤ∕2, 4).

The restriction𝑀𝑖 →𝑊 → BTOP equals the stable tangent microbundle of𝑀,
since𝑀 has a collar𝑀 × [0, 1] ⊆ 𝑊 by Theorem 2.16. Therefore the diagram
commutes. It follows that the top left horizontal map in the next diagram sends
ks(𝑊) to (ks(𝑀1),… , ks(𝑀𝑘)), so the map 𝐻4(𝑊;ℤ∕2) → ℤ∕2 sends ks(𝑊) to
∑𝑘

𝑖=1 ks(𝑀𝑖) = ks(𝑀).

𝐻4(𝑊;ℤ∕2) //

≅PD

��

𝐻4(𝑀;ℤ∕2) ≅ //

≅PD

��

𝑘⨁

𝑖=1
𝐻4(𝑀𝑖;ℤ∕2)

≅

##

≅PD

��

𝑘⨁

𝑖=1
ℤ∕2

(1,…,1)// ℤ∕2

𝐻1(𝑊,𝑀;ℤ∕2) // 𝐻0(𝑀;ℤ∕2) ≅ //
𝑘⨁

𝑖=1
𝐻0(𝑀𝑖;ℤ∕2)

=
;;

The left square of this diagram commutes by Poincaré-Lefschetz duality. The
middle square and the triangle commute trivially. But since 𝑊 is connected
and simply connected, every element of 𝐻1(𝑊,𝑀;ℤ∕2) can be represented by
a (possibly empty) union of arcs with boundary on𝑀. Thus the image of ks(𝑊)
in
⨁𝑘

𝑖=1𝐻0(𝑀𝑖;ℤ∕2) is nonzero in evenly many summands, and therefore its
image inℤ∕2 on the far right is zero. By commutativity of the diagram it follows
that ks(𝑀) = 0, as desired.
Now (2) follows. First note that the addition on ΩTOP

4 is by disjoint union,
so ks is additive by definition. We have just shown that the map ks∶ ΩTOP

4 →
ℤ∕2 is well-defined, since for 𝑀 a closed 4-manifold that bounds a compact
5-manifold, ks(𝑀) = 0. Therefore ks∶ ΩTOP

4 → ℤ∕2 is a homomorphism as
desired.
Freedman [51, Theorem 1.7] showed that there exists a closed 4-manifold

with intersection pairing that is isometric to 𝐸8. This manifold is called the 𝐸8
manifold. Since the 𝐸8 form has signature 8, 𝜎(𝐸8) = 8, so 𝜎(𝐸8)∕8 = 1. Since
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the 𝐸8 form is even, and 𝐻1(𝐸8;ℤ) = 0, 𝐸8 is spin. The construction of the 𝐸8
manifold was a key step in the proof of the Classification Theorem 12.2. Wewill
now show that ks(𝐸8) = 1. To see this note that 𝐸8 cannot be smoothed, even
after adding copies of 𝑆2×𝑆2, by the Rochlin Theorem 8.8 that every closed spin
smooth 4-manifold has signature divisible by 16. Whereas if ks(𝐸8) = 0, then
𝐸8 would be stably smoothable by Theorem 9.9. Therefore ks∶ ΩTOP

4 → ℤ∕2 is
surjective.
Nowwe can prove (3) easily. Observe that a disjoint union𝑀⊔𝑁 is cobordant

to𝑀#𝑁 via the cobordism

(𝑀 × 𝐼 ⊔ 𝑁 × 𝐼) ∪𝑆0×𝐷4 (𝐷1 × 𝐷4),

with {−1}×𝐷4 embedded in the interior of𝑀×{1}, and {1}×𝐷4 embedded in the
interior of𝑁×{1}. Then we have just shown that the Kirby-Siebenmann invari-
ant vanishes on𝑀#𝑁⊔𝑀⊔𝑁 and therefore ks(𝑀#𝑁) = ks(𝑀)+ks(𝑁) ∈ ℤ∕2.

To prove (4), we consider the following diagram. Themaps between bordism
groups are structure forgetting maps, so the diagram commutes.

0 // ΩSpin
4

//

⋅16
��

ΩTOPSpin
4

ks //

��

ℤ∕2 //

=
��

0

0 // ΩSO
4

// ΩSTOP
4

ks // ℤ∕2 // 0

Recall that ΩSO
4 ≅ ℤ given by the signature and generated by ℂℙ2. The signa-

ture provides a splitting homomorphism, soΩSTOP
4 ≅ ℤ⊕ℤ∕2. AlsoΩSpin

4 ≅ ℤ
given by the signature divided by 16 and generated by the𝐾3 surface, so the for-
getful map ΩSpin

4 → ΩSO
4 becomes, on identifying domain and codomain with

ℤ, multiplication by 16.
Both sequences are exact: a smooth manifold has vanishing ks invariant,

and vanishing ks(𝑀) implies smoothable after adding copies of 𝑆2 ×𝑆2 by The-
orem 9.9 below. Since 𝑀#(𝑆2 × 𝑆2) is (spin) bordant to 𝑀, the sequences are
exact at their middle terms. The maps labelled ks are surjective because the 𝐸8
manifold is spin and has ks(𝐸8) = 1, as discussed in the proof of (2). Finally,
after surgery to make it 1-connected, a topological null bordism of a compact
smooth 4-manifold can be smoothed by high dimensional smoothing theory, so
the left hand maps are injective.
We claim that the sequence in the upper row does not split. Consider the

𝐾3 surface generating ΩSpin
4 ≅ ℤ. By the down-then-left route, [𝐾3] maps to

(16, 0) ∈ ℤ⊕ ℤ∕2 ≅ ΩSTOP
4 . On the other hand the 𝐸8 manifold represents a

class in ΩTOPSpin
4 and maps to (8, 1) ∈ ℤ⊕ℤ∕2 ≅ ΩSTOP

4 .
Since ks is a homomorphismby (2), we see that 2⋅[𝐸8], which equals [𝐸8#𝐸8]

by (3), maps to 0 ∈ ℤ∕2 and so has trivial ks invariant. By exactness of the top
row it lies in the image of ΩSpin

4 . Let 𝑁 be a closed spin smooth 4-manifold
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TOPSpin-bordant to 𝐸8#𝐸8. Since 𝜎(𝐸8#𝐸8) = 16 = 𝜎(𝐾3), we have [𝑁] =
[𝐾3] ∈ ΩSpin

4 . It follows that 𝐾3, the generator of ΩSpin
4 ≅ ℤ, maps to 2 ⋅ [𝐸8] ∈

ΩTOPSpin
4 . Thus we have a diagram with exact rows:

0 // ℤ ⋅2 //

=

��

ℤ //

1↦[𝐸8]

��

ℤ∕2 //

=

��

0

0 // ℤ
1↦2⋅[𝐸8] // ΩTOPSpin

4
ks // ℤ∕2 // 0.

Since ks(𝐸8) = 1, the diagram commutes. Then by the five lemma, we have an
isomorphism ΩTOPSpin

4 ≅ ℤ, generated by 𝐸8, and the sequence does not split,
as claimed. For a topological spin, compact 4-manifold, 𝜎∕8 is an integer, by
Proposition 8.4. By Proposition 8.3 we know that the signature is additive. It
follows from this observation and the fact that ΩTOPSpin

4 is generated by 𝐸8 that
𝑀 ↦ 𝜎(𝑀)∕8 gives rise to the isomorphism ΩTOPSpin

4 ≅ ℤ.
The diagram

ΩTOPSpin
4

≅
𝜎∕8

//

��

ℤ

1↦(8,1)
�� '' ''

ΩSTOP
4

≅ // ℤ⊕ℤ∕2
pr2 // ℤ∕2,

which commutes by computing on the generator 𝐸8 of Ω
TOPSpin
4 ≅ ℤ, shows

that ks(𝑀) = 𝜎(𝑀)∕8 ∈ ℤ∕2 for TOPSpin manifolds 𝑀. This completes the
proof of (4).
To prove (5), it was suggested by Jim Davis to consider the exact sequence

ΩO
4 → ΩTOP

4 → Ω{O→TOP}
4 → ΩO

3 = 0.

Here elements ofΩ{O→TOP}
4 are represented by compact topological 4-manifolds

with smooth boundary, considered up to 5-dimensional cobordism relative to
a smooth cobordism on the boundary. That is, 4-manifolds with boundary
(𝑀, 𝜕𝑀) and (𝑁, 𝜕𝑁) are equivalent if there is a compact 5-manifold 𝑊 with
boundary

𝜕𝑊 = 𝑀 ∪𝜕𝑀 𝜕vert𝑊 ∪𝜕𝑁 𝑁,
for some smooth 4-dimensional cobordism 𝜕vert𝑊 with boundary 𝜕𝑀 ⊔ 𝜕𝑁.
By the exact sequence, Ω{O→TOP}

4 is isomorphic to the cokernel of the map
ΩO
4 → ΩTOP

4 . We claim that this cokernel is isomorphic to ℤ∕2 via the Kirby-
Siebenmann invariant. To see this, by (2) there is a surjective homomorphism
ks∶ ΩTOP

4 → ℤ∕2. If ks(𝑀) = 0 then𝑀 is stably smoothable by Theorem 9.9,
so𝑀 is bordant to a smooth manifold and therefore lies in the image of ΩO

4 . If

𝑀 is smooth, then ks(𝑀) is zero, so the sequence ΩO
4 → ΩTOP

4
ks
,,→ ℤ∕2 → 0 is

exact, and we may identify this sequence with the given sequence.
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To prove (5), we therefore need that the disjoint union𝑀 ⊔ 𝑁 is bordant to
𝑀∪𝑆≅𝑇𝑁, where 𝑆 ⊆ 𝜕𝑀 and 𝑇 ⊆ 𝜕𝑁 are compact codimension zero subman-
ifolds with a choice of homeomorphism 𝑆 ≅ 𝑇. Here is a construction of such
a bordism. For 𝐼 = [0, 1], take

(𝑀 × 𝐼) ⊔ (𝑆 × 𝐼 × [1∕2, 1]) ⊔ (𝑁 × 𝐼),

identify
𝑆 × {0} × [1∕2, 1] ∼ 𝑆 × [1∕2, 1] ⊆ (𝑀 × [1∕2, 1]),

and, using the identification 𝑆 ≅ 𝑇, identify

𝑆 × {1} × [1∕2, 1] ∼ 𝑇 × [1∕2, 1] ⊆ 𝑁 × [1∕2, 1].

Let𝑊 be the result of this gluing and some rounding of corners. The boundary
of𝑊 is

(𝑀 ⊔𝑁) ∪𝜕𝑀 ⊔𝜕𝑁 𝜕vert𝑊 ∪𝜕(𝑀∪𝑆≅𝑇𝑁) 𝑀 ∪𝑆≅𝑇 𝑁,
where

𝜕vert𝑊 = (𝜕𝑀 × [0, 1∕2]) ∪ (𝜕𝑀 ⧵ 𝑆 × [1∕2, 1])
∪(𝑆 × 𝐼 × {1∕2}) ∪ (𝜕𝑆 × 𝐼 × [1∕2, 1])

(𝜕𝑁 × [0, 1∕2]) ∪ (𝜕𝑁 ⧵ 𝑇 × [1∕2, 1]).

This shows that𝑀⊔𝑁 and𝑀∪𝑆≅𝑇𝑁 are equal inΩ{O→TOP}
4 , and therefore have

the same Kirby-Siebenmann invariants. Since ks(𝑀⊔𝑁) = ks(𝑀)+ks(𝑁), this
completes the proof of (5).
Finally we prove (6). If𝑀 ∪𝜕𝑀=𝜕𝑁 𝑁 bounds a compact 5-manifold, then by

(2) we have that ks(𝑀 ∪𝜕 𝑁) = 0. By (5), ks(𝑀) + ks(𝑁) = ks(𝑀 ∪𝜕 𝑁) ∈ ℤ∕2.
Therefore ks(𝑀) = ks(𝑁) as required. This proves (6) and therefore completes
the proof of Theorem 9.2. □

The following theorem says that the converse to Theorem 9.2 (1) holds for𝑀
connected.

Theorem 9.3. If 𝑀 is a compact, connected 4-manifold with vanishing Kirby-
Siebenmann invariant, then𝑀 ×ℝ admits a smooth structure.

Proof. The vanishing of the Kirby-Siebenmann invariant implies that there is
a lift of 𝜏𝑀 ∶ 𝑀 → BTOP to a map𝑀 → BPL. Since PL ∕O is 6-connected [50,
Theorem 8.3B], [79, Proof of 4.13], there is in fact a lift �̃�𝑀 ∶ 𝑀 → BO. This cor-
responds to a lift �̃�𝑀⊕𝜀𝑛 ∶ 𝑀 → BO(4+𝑛), for some 𝑛. This in turn corresponds
to a lift

�̃�𝑀×ℝ𝑛 ∶ 𝑀 ×ℝ𝑛 → BO(4 + 𝑛)
of the tangent microbundle 𝜏𝑀×ℝ𝑛 ∶ 𝑀 × ℝ𝑛 → BTOP. By [91, Essay V, Theo-
rem 1.4 p. 222], there exists a corresponding smooth structure on𝑀×ℝ𝑛. Then
apply the Product Structure Theorem 4.16 [91, Essay I, Theorem 5.1, p. 31], to
deduce the existence of a smooth structure on𝑀×ℝ, using that the dimension
of𝑀 ×ℝ is at least five. □
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Example 9.4. Here is an application of Theorem 9.3. By the classification of
simply connected, closed 4-manifolds [50, Section 10.1] (see also our Theo-
rem 12.2), there is a simply connected, closed 4-manifold 𝑁 with intersection
form 𝐸8 ⊕𝐸8. As the form is even, the manifold is spin; see Remark 8.9. Since
this form is not diagonalisable over ℤ, by Donaldson’s Theorem [37] (Theo-
rem 8.11) this 4-manifold does not admit a smooth structure. However the
Kirby-Siebenmann invariant of𝑁 vanishes, since for a closed simply connected
4-manifold 𝑀 with even intersection form, the Kirby-Siebenmann invariant
ks(𝑀) coincides with 𝜎(𝑀)∕8 mod 2 (Theorem 9.2(4)), and 𝐸8 ⊕ 𝐸8 is rank
16 and positive definite, with signature 16. Therefore 𝑁 × ℝ admits a smooth
structure by Theorem 9.3, even though 𝑁 does not.

We give a straightforward consequence of Theorem 9.2 in the following. We
first recall a definition. Let 𝑁 be an integral homology 3-sphere. As the 3-
dimensional spin bordism group is trivial ΩSpin

3 = 0 [58, Theorem 5.7.14], we
may pick a smooth, compact, orientable, spin 4-manifold𝑀 with boundary 𝑁.
The Rochlin invariant 𝜇(𝑁) ∈ ℤ∕2 is defined as the quantity 𝜎(𝑀)∕8 mod 2.
This is well-defined, as a consequence of Novikov Additivity [89, Theorem 5.3]
and Theorem 8.8.

Theorem 9.5. Let𝑀 be a compact, oriented, spin manifold with boundary𝑁 an
integral homology 3-sphere. Then ks(𝑀) = 𝜎(𝑀)∕8 + 𝜇(𝑁) ∈ ℤ∕2.

Proof. AsΩSpin
3 = 0 [58, Theorem 5.7.14], wemay pick a smooth, compact, ori-

entable, spin 4-manifold𝑋 with boundary𝑁. Form the closed, spin 4-manifold
𝑍 = −𝑋 ∪𝑁 𝑀. By Theorem 9.2 (5), and using that 𝑋 is smooth, we have
ks(𝑍) = ks(𝑋) + ks(𝑀) = ks(𝑀) ∈ ℤ∕2. By Theorem 9.2 (4), we have ks(𝑍) =
𝜎(𝑍)∕8 ∈ ℤ∕2. Using Novikov additivity and the facts so far, we have

ks(𝑀) = ks(𝑍) = 𝜎(𝑍)∕8 = 𝜎(𝑋)∕8 + 𝜎(𝑀)∕8 = 𝜇(𝑁) + 𝜎(𝑀)∕8 ∈ ℤ∕2. □

Lemma 9.6. There exists a unique closed 4-manifold that is homotopy equiv-
alent to ℂP2 and with nontrivial Kirby-Siebenmann invariant, and so which in
particular is not homeomorphic to ℂP2.

Proof. Let 𝐾 ⊆ 𝜕𝐷4 be any knot with Arf(𝐾) = 1 ∈ ℤ∕2 (for example, the tre-
foil). Attach a 2-handle𝐷2×𝐷2 to𝐷4 by identifying 𝑆1×𝐷2with a tubular neigh-
bourhood of 𝐾, via the +1 framing of 𝐾, to obtain the 4-manifold with bound-
ary 𝑋(𝐾). The boundary 𝜕𝑋(𝐾) is an integral homology sphere. Freedman
proved that every integral homology sphere bounds a compact, contractible 4-
manifold [51, Theorem 1.4′], [50, Corollary 9.3C]. Write 𝑌 for this contractible
4-manifold with 𝜕𝑌 ≅ 𝜕𝑋(𝐾) and form the closed 4-manifold 𝑍 = −𝑌 ∪ 𝑋(𝐾).
The manifold 𝑍 is homotopy equivalent to ℂP2. Indeed, 𝐻2(𝑍;ℤ) ≅ ℤ so

we obtain a map 𝑍 → ℂP∞ = 𝐾(ℤ, 2) representing a generator. This map can
now be homotoped to have domain ℂP2 ⊆ ℂP∞. This map will be a homology
equivalence (this is clear on 𝐻1, 𝐻2, and 𝐻3, and can be deduced on 𝐻4 by
considering that the cohomology ring of 𝑍 agrees with that of ℂP2 by Poincaré
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duality). As 𝑍 is simply connected, Whitehead’s theorem now implies we have
a homotopy equivalence.
We show that ks(𝑍) = 1 ∈ ℤ∕2. The Rochlin invariant of +1 surgery on a

knot in 𝑆3 is equal to its Arf invariant (see e.g. [174, Example 2.5]), and thus
𝜇(𝜕𝑋(𝐾)) = 1 ∈ ℤ∕2. Applying Theorem 9.5 to the contractible manifold 𝑌,
we obtain ks(𝑌) = 𝜇(𝜕𝑋(𝐾)) = 1 ∈ ℤ∕2. On the other hand, ks(𝑋(𝐾)) = 0 be-
cause thismanifold is smooth. By Theorem 9.2 (5), ks(𝑍) = ks(𝑌)+ks(𝑋(𝐾)) =
1 + 0 = 1.
By Freedman’s classification (Theorem12.2),𝑍 is the unique closedmanifold

that is homotopy equivalent to ℂP2 with ks(𝑍) = 1. □

Definition 9.7. The unique closed 4-manifold that is homotopy equivalent to
ℂP2 but not homeomorphic toℂP2 (constructed above) is called theChernman-
ifold and denoted ∗ ℂP2.

Remark 9.8. The Chern manifold was first constructed in [51, p. 370]. It is not
smoothable because ks(∗ ℂP2) = 1. For further discussion of star partners, see
[50, Section 10.4], [183], and [191].

The following theorem says in particular that given any compact 4-manifold
𝑀 there exists a closed, orientable, simply-connected 4-manifold𝑁 such𝑀#𝑁
is smoothable.

Theorem 9.9. Let 𝑀 be compact, connected 4-manifold. There exists a closed,
orientable, simply connected 4-manifold𝑁 such𝑀#𝑁 admits a smooth structure.
If moreover the Kirby-Siebenmann invariant of𝑀 is zero, then there exists a 𝑘 ∈
ℕ0 such that𝑀#𝑘𝑆2 × 𝑆2 admits a smooth structure.

Proof. Let𝑀 be compact 4-manifold. Perform the connected sum with an ap-
propriate number of copies of ∗ ℂP2, in order to obtain a manifold with ev-
ery connected component having zero Kirby-Siebenmann invariant. It follows
from the discussion on [50, p. 164] and the Sum-Stable Smoothing Theorem [50,
p. 125], that performing the connected sum with enough copies of 𝑆2 × 𝑆2 pro-
duces a manifold that admits a smooth structure. □

Remark 9.10. Given a lift of the classifying map of the (unstable) tangent mi-
crobundle of 𝑀 to BO(4), Lashof-Shaneson [106] showed that there exists a
𝑘 ∈ ℕ0 such that𝑀#𝑘𝑆2 × 𝑆2 admits a smooth structure. The result quoted in
the previous proof extended this to require only a lift of the corresponding sta-
blemaps to deduce the same result. The existence of a stable lift is significantly
easier to verify.
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10. Topological transversality
We turn to the subject of transversality in the topological category. Some

discussion of this concept is in order. There are two important contexts for
transversality: submanifold transversality and map transversality. In this sec-
tion, map transversality will be deduced from submanifold transversality. Sub-
manifold transversality when none of the manifolds involved has dimension 4
is due to Marin [119]; cf. [91, Essay III, Section 1, p. 83]. Transversality in the
remaining cases is due to Quinn [159, 160]; see also [50, Section 9.5].
A naive definition of submanifold transversality in the topological category

is that manifolds are locally transverse if around any intersection point there
is a chart in which the submanifolds appear as perpendicular planes. On the
other hand, there are examples (in the relative setting, in high dimensions) of
submanifolds which cannot bemade locally transverse via ambient isotopy; see
Remark 10.4. Thus one cannot generally use this definition.
In light of this, in order to make general statements, one passes to some

notion of global transversality. Global transversality means that transversal-
ity statements are made with respect to a given choice of normal structure on
one of the submanifolds involved. Of course, this forces one to engage with the
question of existence and uniqueness of whatever normal structure is used, and
the ‘correct’ choice of normal structure is still not fully settled in the topological
category. We refer the reader to [50, Sections 9.4, 9.6C] for a brief discussion of
the competitors.
Themost general statement of transversality [160, Theorem] usesmicrobun-

dles to describe normal structure, and this is the technology wewill use. As dis-
cussed in Chapter 6, for general manifolds, tangent microbundles always exist
but normal microbundles do not (see Example 6.23).
The case of dimension 4 is special, since here the normal vector bundles of

Section 5.2, which are a stronger notion than normal microbundles, always ex-
ist. In fact, the results obtained for these normal vector bundles in dimension 4
are strong enough to ensure that submanifold transversality holds in ambient
dimension 4with the naive, local transversality definition discussed above. The
readermay thereforewonderwhywe even introduce normalmicrobundles into
a discussion primarily focused on 4-manifold transversality. The answer is that
the ‘submanifold transversality impliesmap transversality’ argument of Section
10.2 requires a bundle technology that works in all dimensions, and microbun-
dles appear to be the most convenient.

10.1. Transversality for submanifolds.

Definition 10.1. Consider proper submanifolds 𝑋,𝑌 of an ambient manifold
and a normal microbundle 𝜈𝑋 for 𝑋, with projection 𝑟𝑋 ∶ 𝐸(𝜈𝑋) → 𝑋. The
proper submanifold 𝑌 is transverse to 𝜈𝑋 if there exists a neighbourhood 𝑈 ⊆
𝐸(𝜈𝑋) of 𝑋 such that 𝑌 ∩𝑈 = 𝑟−1𝑋 (𝑋 ∩ 𝑌) ∩𝑈.
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Figure 8. Sketch of a transverse intersection of 𝑌 to 𝜈𝑋.

Lemma 10.2. Let 𝑋,𝑌 be submanifolds of a manifold𝑀. Let 𝑌 be transverse to
a normal microbundle 𝜈𝑋 of 𝑋. Then 𝑋 ∩ 𝑌 is a submanifold of 𝑌 with normal
microbundle (𝜈𝑋)|𝑋∩𝑌 .

Proof. Let 𝑋
𝑖
,→ 𝜈𝑋

𝑝
,→ 𝑋 be a normal microbundle of 𝑋. Once we have estab-

lished that (𝜈𝑋)|𝑋∩𝑌 is a normal microbundle of𝑋∩𝑌 in𝑌, the subspace𝑋∩𝑌
will automatically be a submanifold since the trivialisation of the microbun-
dle (𝜈𝑋)|𝑋∩𝑌 gives the required charts for 𝑋 ∩ 𝑌.
At least after shrinking the total space of𝐸(𝜈𝑋), each fibre𝑝−1(𝑥) for 𝑥 ∈ 𝑋∩

𝑌 will be contained in𝑌 by the definition of transversality. That is 𝐸((𝜈𝑋)|𝑋∩𝑌)
is a subset of 𝑌 and neighbourhood of 𝑋 ∩ 𝑌. This shows that (𝜈𝑋)|𝑋∩𝑌 is a
normal microbundle of 𝑋 ∩ 𝑌 ⊆ 𝑌. □

Transversality in high dimensions is due to Marin [119], cf. [91, Essay III,
Section 1, p. 83]. The formulation below is from Quinn [160]. Recall Defini-
tion 2.5 of a proper submanifold. Note that in the next theorem there is no
restriction on dimensions. The manifold 𝑀 is allowed to be noncompact and
have nonempty boundary.

Theorem10.3. (TransversalityTheoremfor submanifolds)Let𝑋 and𝑌 be
proper submanifolds of a compact manifold𝑀. Let 𝜈𝑌 be a normal microbundle
for 𝑌. Let 𝐶 ⊆ 𝑀 be a closed subset such that 𝑋 is transverse to 𝜈𝑌 in a neigh-
bourhood of 𝐶. Let𝑈 be a neighbourhood of the set

(
𝑀 ⧵ 𝐶

)
∩𝑋 ∩𝑌. Then there

exists an isotopy of 𝑋 supported in 𝑈 to a proper submanifold 𝑋′ such that 𝑋′ is
transverse to 𝜈𝑌.

Proof. See Quinn [160] for all cases but dim𝑀 = 4, dim𝑋 = 2 and dim𝑌 = 2.
For the remaining case, first establish local transversality using [50, Section
9.5]. Note that 𝑋 ∩ 𝑌 is a discrete collection of points. Therefore, the coordi-
nate chart, witnessing local transversality, defines a normal neighbourhood of
𝑌 near 𝑋 ∩ 𝑌. This normal vector bundle can be extended to a normal vector
bundle 𝜈𝑌′ on all of𝑌 by [50, Theorem 9.3A]. The submanifold𝑋 is now trans-
verse to 𝜈𝑌′, but (possibly) not to 𝜈𝑌. By Theorem 6.24, our microbundle 𝜈𝑌
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comes from a normal vector bundle. By uniqueness of normal vector bundles
(Theorem 5.17), there is an isotopy from 𝜈𝑌′ to 𝜈𝑌. Apply this isotopy to 𝑋.
Now 𝑋 is transverse to 𝜈𝑌. □

Remark 10.4. The analogous statement toTheorem10.3 is false for local transver-
sality. Examples of this failure even exist in the PL category: Hudson [83] con-
structs, for certain large 𝑛, closed PL submanifolds 𝑋,𝑌 ⊆ ℝ𝑛, that are topo-
logically unknotted Euclidean spaces of codimension ≥ 3, in such a way that 𝑋
and 𝑌 are PL locally transverse near a closed neighbourhood 𝐾 of infinity but
also so that it is impossible to move 𝑋 and 𝑌 by isotopy relative to 𝐾 to make
them locally transverse everywhere.

Although transversality for submanifolds (Theorem 10.3) is only stated for a
pair of submanifolds, it can be used to make collections of submanifolds trans-
verse.

Lemma10.5. Let𝑀 be an 2𝑚-dimensionalmanifold for𝑚 ≥ 1, and let𝑋1,… , 𝑋𝑛
be 𝑚-dimensional compact submanifolds with normal microbundles 𝜈𝑋𝑖 . Then
the submanifolds 𝑋𝑖 can be isotoped such that there are no triple intersection
points and the submanifolds intersect (pairwise) transversely.

Proof. We give a proof by induction. When 𝑛 = 1, there is nothing to show,
since every submanifold is embedded. For the inductive step, denote 𝑋𝑛 by
𝑌. The inductive hypothesis states that we can isotope any 𝑛 − 1 submani-
folds 𝑋1,… , 𝑋𝑛−1 so there are no triple points and that they intersect pairwise
transversely. We will prove that the submanifolds 𝑋1,… , 𝑋𝑛−1 can be further
isotoped so that they are transverse to 𝜈𝑌 and 𝑌 is free of triple points. Note
that having no triple points on 𝑌 implies that there exists an open set 𝑈𝑌 such
that: 𝑋𝑖 ∩ 𝑋𝑗 ⊆ 𝑈𝑌 for 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 − 1, and 𝑀 ⧵ 𝑈𝑌 is a neighbourhood
of 𝑌. To obtain the lemma apply the inductive hypothesis, picking all further
isotopies to be supported in 𝑈𝑌 .
We proceed by showing the inductive step: we can isotope every 𝑋𝑖 to be

transverse to 𝜈𝑌 such that no triple points lie on 𝑌. For each 𝑖 = 1,… , 𝑛 − 1,
apply Theorem 10.3 to arrange that 𝑌 and 𝑋𝑖 intersect transversely. By com-
pactness of the submanifolds, the subset

𝑇𝑌 = 𝑌 ∩ (𝑋1 ∪⋯ ∪ 𝑋𝑛−1)
is compact. Pick disjoint open neighbourhoods 𝑉𝑦 ⊆ 𝑌 around each point 𝑦 ∈
𝑇𝑌 . Pick a chart 𝜙 of 𝑌 around 𝜙(0) = 𝑦 contained in 𝑉𝑦, and a microbundle
chart around 𝑦 ∈ 𝑌. In the local model, 𝑌 corresponds to ℝ𝑚 × {0} and the 𝑋𝑖
that intersect 𝑌 in 𝑦 will be mapped to 0 × ℝ𝑚. For those 𝑋𝑖, pick disjoint
points 𝑢𝑖 ∈ ℝ𝑚 (here we use𝑚 > 0), and pick a continuous function 𝜂∶ ℝ≥0 →
[0, 1] with 𝜂(𝑡) = 1 for 0 ≤ 𝑡 ≤ 1 and 𝜂(𝑡) = 0 for 𝑡 ≥ 2. Replace 𝑋𝑖 in the chart
with the image of

ℝ𝑚 → ℝ𝑚 ×ℝ𝑚

𝑣 ↦
(
𝜂
(
‖𝑣‖

)
𝑢𝑖, 𝑣

)
.
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Figure 9. Displacing a triple point 𝑦 in a microbundle chart.

Call this new submanifold𝑋′
𝑖 . It agrees with𝑋𝑖 outside the ball of radius 2, and

is isotopic to 𝑋𝑖. In 𝑉𝑦, the submanifold 𝑋′
𝑖 intersects 𝑌 only in 𝜙(𝑢𝑖) and there

it intersects 𝑌 transversely with respect to 𝜈𝑌. The collection {𝑋′
𝑖 } has no triple

intersection points in the set 𝑉𝑦 anymore. □

Here is another result on submanifold transversality. It might often happen
that one can find a continuous map of, for example, a disc𝐷2 into a 4-manifold
𝑀, perhaps if fundamental group computations yield a null homotopy of a cir-
cle. Then this disc can be isotoped to a generic immersion. If𝑀 were smooth,
this would be a consequence of standard differential topology, an observation
that we leverage.

Theorem 10.6. Let Σ be a connected, compact 1 or 2 dimensional manifold and
let𝑓∶ (Σ, 𝜕Σ)→ (𝑀, 𝜕𝑀) be a continuousmapofΣ into a connected 4-manifold𝑀,
such that 𝑓 is a smooth embedding near 𝜕Σ. Then there is an homotopy of 𝑓 rel.
a (possibly smaller) neighbourhood of 𝜕Σ to a generic immersion 𝑓′∶ (Σ, 𝜕Σ) →
(𝑀, 𝜕𝑀).

Proof. We start out with the following claim.

Claim. The map 𝑓∶ Σ→ 𝑀 is homotopic to a map that misses a point 𝑃 ∈ 𝑀.

We pick 𝑃 ∈ 𝑀 ⧵ 𝜕𝑀. Since dim(Σ) ≤ 2 we can equip Σ with a smooth
structure. Using a chart we can equip an open neighbourhood 𝑉 of 𝑃 with a
smooth structure. We pick another open neighbourhood 𝑈 of 𝑃 with 𝑈 ⊆ 𝑉.
Since 𝑓−1(𝑉 ⧵ 𝑈) is an open subset of Σ we can find a compact submanifold
𝐹 ⊆ Σ with 𝑓−1(𝑈) ⊆ Int(𝐹) ⊆ 𝐹 ⊆ 𝑓−1(𝑉). The map 𝑓∶ 𝐹 → 𝑉 is now a
map between smooth manifolds. Thus, using Whitney approximation, we can
find a homotopy rel. 𝜕𝐹 from 𝑓 to a smooth map 𝑔∶ 𝐹 → 𝑉. Since dim(𝐹) <
dim(𝑈) we see that this map misses a point in 𝑈. Since 𝑓|𝜕𝐹 = 𝑔|𝜕𝐹 , and 𝜕𝐹
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is fixed throughout the homotopy, we can extend, by a constant homotopy, the
homotopy from 𝑓∶ 𝐹 → 𝑉 to 𝑔∶ 𝐹 → 𝑉 to a homotopy from 𝑓∶ Σ → 𝑀 to a
map 𝑔∶ Σ → 𝑀 such that 𝑓 and 𝑔 agree outside of 𝐹. Thus 𝑔 also misses the
point 𝑃. This concludes the proof of the claim.
Using Theorem 9.1 we smooth𝑀 in the complement of that point 𝑃. Now by

[76, Theorem2.2.6 andTheorem2.2.12]we can isotope𝑓 rel. 𝜕Σ to a smooth im-
mersion, which we can then isotope rel. 𝜕Σ to a smooth generic immersion 𝑓′,
i.e. a map that is self-transverse by [76, Theorem 4.2.1], [204, Theorem 4.6.6],
with no triple points by general position [204, Theorem 4.7.7] or [56, Chap-
ter III, Corollary 3.3]. We have now shown that 𝑓∶ Σ → 𝑀 is homotopic to a
map 𝑓′∶ Σ → 𝑀 ⧵ {𝑃} which is a smooth generic immersion. But this implies
that𝑓′∶ Σ→ 𝑀⧵{𝑃} is in particular a generic immersion. But then𝑓′∶ Σ→ 𝑀
is also an generic immersion. □

No purely topological proof of this is known. When manipulating generic
immersions of surfaces, it is helpful to have control on the homotopies between
them.

Definition 10.7. A generic homotopy between generic immersions
𝐹0, 𝐹1∶ Σ→ 𝑀

as in Definition 2.13 is sequence of ambient isotopies, finger moves, Whitney
moves, and cusp homotopies.

We finish by quoting the following theorem, which was stated in [50], and
proven in [156].

Theorem 10.8. Every homotopy𝐻∶ Σ×[0, 1]→ 𝑀 between generic immersions
𝐹0, 𝐹1∶ Σ→ 𝑀 is homotopic rel. Σ × {0, 1} to a generic homotopy.

10.2. Transversality for maps.

Definition 10.9. Let 𝑓∶ 𝑀 → 𝑁 be a continuous map between two manifolds
and let 𝑋 be a submanifold of 𝑁 with normal microbundle 𝜈𝑋. The map 𝑓
is said to be transverse to 𝜈𝑋 if 𝑓−1(𝑋) is a submanifold admitting a normal
microbundle 𝜈𝑓−1(𝑋) and

𝑓∶ 𝜈𝑓−1(𝑋)→ 𝑓∗𝜈𝑋
𝑚 ↦ (𝑟(𝑚), 𝑓(𝑚))

is an isomorphism of microbundles.

In thenext theorem,we showhow to reduce transversality formaps to transver-
sality for submanifolds. Again, there are restrictions neither on dimensions nor
codimensions.

Theorem10.10. Let𝑀 and𝑁 be amanifolds, let𝑌 ⊆ 𝑁 be a proper submanifold
with normal microbundle 𝜈𝑌, let 𝑓∶ 𝑀 → 𝑁 be a map such that 𝑓−1(𝑌) is a
submanifold of𝑀, and let𝑈 be a neighbourhood of the set

graph𝑓 ∩ (𝑀 × 𝑌) ⊆ 𝑀 ×𝑁.



THE FOUNDATIONS OF 4-MANIFOLD THEORY 81

M

N

Y

graph(f)
T

F−1
1 (Y )

Figure 10. Transversality for maps from transversality for submanifolds.

Then there exists a homotopy 𝐹∶ 𝑀 × 𝐼 → 𝑁 such that

(1) 𝐹(𝑚, 0) = 𝑓(𝑚) for all𝑚 ∈ 𝑀;
(2) 𝐹1∶ 𝑚 ↦ 𝐹(𝑚, 1) is transverse to 𝜈𝑌; and
(3) for𝑚 ∈ 𝑀 either

(a) (𝑚,𝑓(𝑚)) ∉ 𝑈, in which case 𝐹(𝑚, 𝑡) = 𝑓(𝑚) for all 𝑡 ∈ 𝐼, or
(b) (𝑚,𝑓(𝑚)) ∈ 𝑈, in which case (𝑚,𝐹(𝑚, 𝑡)) ∈ 𝑈 for all 𝑡 ∈ 𝐼.

Proof. Note that 𝑀 × 𝑌 ⊆ 𝑀 × 𝑁 is a proper submanifold with normal mi-
crobundle𝑀 × 𝜈𝑌 = pr∗𝑌 𝜈𝑌. Also graph𝑓 is a proper submanifold of𝑀 × 𝑁.
By Theorem 10.3, there exists an isotopy

𝐺∶ graph𝑓 × 𝐼 → 𝑀 ×𝑁,

supported in 𝑈, of the submanifold graph𝑓 to a submanifold 𝑇 ⊆ 𝑀 ×𝑁 such
that 𝑇 is transverse to𝑀 × 𝜈𝑌 over𝑀 × 𝑌.
Define the map 𝐹 as the composition

𝐹∶ 𝑀 × 𝐼 → graph𝑓 × 𝐼
𝐺
,→ 𝑀 ×𝑁

pr𝑁,,,→ 𝑁.

Since the isotopy 𝐺 is supported in 𝑈, statement (3) holds. By construction,
𝐹(𝑥, 0) = pr𝑁(𝑥, 𝑓(𝑥)) = 𝑓(𝑥), which proves statement (1).
Now we prove statement (2). Let 𝐹1∶ 𝑀 → 𝑁 be the map that sends 𝑥 ↦

𝐹(𝑥, 1). We keep track of the preimages through the maps of the composition
that defines 𝐹1; see Figure 10. By transversality of 𝑇 to𝑀×𝜈𝑌, we see that 𝑍 =
𝑇∩(𝑀×𝑌) = pr−1𝑁 (𝑌) is a submanifold of𝑇with normalmicrobundle𝑀×𝜈𝑌|𝑍 ,

and that the projection to𝑁 induces a microbundle isomorphism𝑀 × 𝜈𝑌|𝑍
∼
,→

pr∗𝑁 𝜈𝑌. By definition, pr𝑁 ∶ 𝑇 → 𝑁 is transverse to 𝜈𝑌.
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We transport the submanifold 𝑍 back to𝑀. Consider the commutative dia-
gram

𝑁

𝑀 graph𝑓 × {1} 𝑇≅

𝐹1

𝑞

≅

pr𝑁 ,

where 𝑞 is the composition, which is a homeomorphism. Now𝐹−11 (𝑌) = 𝑞−1(𝑍)
is a submanifold with normal microbundle

𝑞∗
(
𝑀 × 𝜈𝑌|𝑍

)
= 𝑞∗ pr∗𝑁 𝜈𝑌 = 𝐹∗1𝜈𝑌.

That is 𝐹1∶ 𝑀 → 𝑁 is transverse to 𝜈𝑌. □

10.3. Representing homology classes by submanifolds. Our first goal in
this section is to prove the following theorem.

Theorem 10.11. Let 𝑋 be a compact orientable 𝑛-manifold. Let 𝑘 = 𝑛 − 2 or
𝑘 = 𝑛 − 1 and let 𝜎 ∈ 𝐻𝑘(𝑋, 𝜕𝑋;ℤ). Then the class 𝜎 can be represented by a
𝑘-dimensional submanifold 𝑌 with 𝜕𝑌 ⊆ 𝜕𝑋.

We will prove the theorem using purely topological methods, in particular
the topological transversality arguments from Chapter 10, in particular Sec-
tions 10.1 and 10.2. Then we will prove a refined version in dimension four
that uses the trick of smoothing away from a point. We will need the notion of
a Thom class.

Definition 10.12. Let 𝜉 = 𝑆
𝑖
,→ 𝐸

𝑝
,→ 𝑆 be a 𝑘-dimensional microbundle over

𝑆. For each 𝑥 ∈ 𝑆 we write 𝐸𝑥 ∶= 𝑝−1({𝑥}). A Thom class of 𝜉 is a class 𝜏(𝜉) ∈
𝐻𝑘(𝐸, 𝐸⧵𝑖(𝑆);ℤ) that restricts to a generator𝐻𝑘(𝐸𝑥, 𝐸𝑥⧵𝑖(𝑥);ℤ) ≅ 𝐻𝑘(ℝ𝑘;ℝ𝑘⧵
{0};ℤ) ≅ ℤ for all 𝑥 ∈ 𝑆. The microbundle 𝜉 together with a Thom class is
called an oriented microbundle.
A Thom class of a topologicalℝ𝑛 bundle over 𝑆 is by definition a Thom class

of the underlying microbundle.

Remark 10.13. As in the smooth case, consider the orientation bundle𝜋∶ Or(𝜉)→
𝑆 with fibre over 𝑥 ∈ 𝑆 the discrete set

Or(𝜉)𝑥 =
{
primitive classes of𝐻𝑘(𝐸𝑥, 𝐸𝑥 ⧵ 𝑖(𝑥);ℤ)

}
.

This is a ℤ∕2-principal bundle, and a Thom class 𝜏(𝜉) determines a global sec-
tion 𝑠 ∈ Γ(Or(𝜉)) by enforcing ⟨𝜏(𝜉), 𝑠(𝑥)⟩ = 1 for every 𝑥 ∈ 𝑆. By the same
equation, a global section Γ(Or(𝜉)) determines a Thom class.

Remark 10.14. Let 𝑋 be an oriented manifold. Let 𝑆 be a submanifold with
normal microbundle 𝜈𝑆. A standard argument, similar to the construction of
the fundamental class of an oriented manifold, shows that an orientation of 𝑆
determines a unique Thom class of 𝜈𝑆 compatible with the ambient orientation
and vice versa.
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To prove Theorem 10.11, we will consider a map 𝑓∶ 𝑋 → 𝑌 that is trans-
verse to an oriented submanifold 𝑆 of 𝑌. By Remark 10.14, 𝜈𝑆 is an oriented
microbundle carrying the Thom class 𝜏. Note as 𝑓∶ 𝜈𝑓−1(𝑆) → 𝑓∗𝜈𝑆 is an
isomorphism, also 𝑓∗𝜏 is a Thom class of 𝜈𝑓−1(𝑆) and we orient 𝑓−1(𝑆) accord-
ingly. Before we proceed with the proof, we recall the following compatibil-
ity between Thom classes and Poincaré duality [15, Definition VI.11.1, Corol-
lary VI.11.6], interpreted for microbundles.

Lemma 10.15. Let 𝑋 be a compact oriented 𝑛-manifold with fundamental class
[𝑋] ∈ 𝐻𝑛(𝑋, 𝜕𝑋), and let 𝑖∶ 𝑆 → 𝑋 be an oriented proper 𝑘-dimensional sub-
manifold of 𝑋 with normal microbundle 𝜈𝑆. The composition

𝐻𝑛−𝑘(𝜈𝑆, 𝜈𝑆 ⧵ 𝑖(𝑆)
) Exc.
←,,,,
≅

𝐻𝑛−𝑘(𝑋,𝑋 ⧵ 𝑆)→ 𝐻𝑛−𝑘(𝑋)
PD𝑋,,,,→ 𝐻𝑘(𝑋, 𝜕𝑋)

maps the Thom class 𝜏 of 𝜈𝑆, that is determined by the orientations of𝑋 and 𝑆, to
the fundamental class 𝑖∗[𝑆].

Proof. We start out with a general piece of notation. Given an oriented 𝑛-
dimensional topological manifold𝑊 and given a compact subset 𝐾 ⊆ 𝑊 ⊆ 𝑊
we write [𝑊] ∈ 𝐻𝑛(𝑊, (𝑊 ⧵ 𝐾) ∪ 𝜕𝐸) for the unique element which, for each
𝑥 ∈ 𝑊 ⧵ (𝐾 ⧵ 𝜕𝑊) is sent to the generator of 𝐻𝑛(𝑊,𝑊 ⧵ {𝑥}) given by the ori-
entation of 𝑊. Recall that if 𝑊 is compact, then Poincaré duality map PD𝑊
is X[𝑊]. (We refer to [36, Section VII.12] for the definition and precise nature
of the cap product on relative (co-) homology.)
We set 𝑑 ∶= 𝑛 − 𝑘 and make a few preliminary observations.

(1) It suffices to prove the lemma for connected 𝑆.
(2) We identify 𝑆 with 𝑖(𝑆).
(3) By Kister’s Theorem 6.17 there exists an open subset 𝐸 ⊆ 𝜈𝑆 containing

𝑆 such that 𝑝∶ 𝐸 → 𝐵 is a projection map of a topological ℝ𝑑-bundle
whose 0-section is 𝑖.

(4) Pick an 𝑥 ∈ 𝑆 ⧵ 𝜕𝑆 and a closed 𝑘-disc𝑈 ⊆ 𝑆 ⧵ 𝜕𝑆 containing 𝑥 such that
there is a local trivialisation Φ∶ 𝑝−1(𝑈) → 𝑈 ×ℝ𝑑 for the ℝ𝑑-bundle in
a neighbourhood of 𝑥. We can and will choose Φ such that it preserves
the orientation of the fibres.

(5) We let 𝑗∶ 𝑈 → 𝑈 × {0} and 𝑘∶ 𝑈 ×ℝ𝑑 → ℝ𝑑 denote the obvious maps.
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Next we consider the following diagram.

𝐻𝑑(𝑋,𝑋 ⧵ 𝑆)
X[𝑋] //

Exc.≅
��

𝐻𝑘(𝑋, 𝜕𝑋)

𝐻𝑑(𝜈𝑆, 𝜈𝑆 ⧵ 𝑆
) X [𝜈𝑆] //

Exc.≅
��

𝐻𝑘(𝜈𝑆, 𝜕𝜈𝑆)

OO

𝐻𝑑(𝐸, 𝐸 ⧵ 𝑆)

Id≅
��

X [𝐸] // 𝐻𝑘(𝐸, 𝜕𝐸)

OO

��

𝐻𝑘(𝑆, 𝜕𝑆)
𝑖∗
≅

oo

≅
��

𝐻𝑑(𝐸, 𝐸 ⧵ 𝑆)
X [𝐸] //

Exc.≅
��

𝐻𝑘(𝐸, 𝐸 ⧵ 𝑝−1(𝑥)) 𝐻𝑘(𝑆, 𝑆 ⧵ 𝑥)
𝑖∗
≅

oo

𝐻𝑑(𝑝−1(𝑈), 𝑝−1(𝑈) ⧵ 𝑆)
X [𝑝−1(𝑈)] // 𝐻𝑘(𝑝−1(𝑈), 𝑝−1(𝑈 ⧵ 𝑥))

Φ∗≅
��

Exc. ≅
OO

𝐻𝑘(𝑈,𝑈 ⧵ 𝑥)
𝑖∗
≅
oo

Exc. ≅
OO

𝑗∗tt
𝐻𝑑(𝑈×ℝ𝑑, 𝑈×(ℝ𝑑⧵{0}))

Φ∗ ≅
OO

≅
X [𝑈×ℝ𝑑] // 𝐻𝑘(𝑈×ℝ𝑑, (𝑈⧵{𝑥})×ℝ𝑑)

𝐻𝑑(ℝ𝑑,ℝ𝑑⧵{0})

𝑘∗ ≅
OO

The bottom vertical maps are given by the local trivialisation Φ. All other ver-
tical maps are the obvious maps of pairs of topological spaces. The maps dec-
orated with “Exc.” are isomorphisms by the excision theorem. The horizontal
maps 𝑖∗ to the right are isomorphisms by the Serre spectral sequence (note that
a priori we do not know whether 𝑖∶ 𝑆 → 𝐸 is a homotopy equivalence.) Note
that bottom vertical map is an isomorphism since {𝑥} is a deformation retract
of the disc 𝑈.
We make the following observations.
(1) By definition of the Thom class, it is sent, under the left vertical maps, to

the standard generator [ℝ𝑑]∗ ∈ 𝐻𝑑(ℝ𝑑,ℝ𝑑 ⧵ {0}).
(2) It follows from the compatibility of the cross product with the cap prod-

uct [36, Section VII.12.17] (see also [52, Proposition 138.2]) that

𝑘∗([ℝ𝑑]∗) X [𝑈 ×ℝ𝑑] = 𝑗∗([𝑆]).

Hence the Thom class in 𝐻𝑑(𝜈𝑆, 𝜈𝑆 ⧵ 𝑆) and the fundamental class [𝑆, 𝜕𝑆] ∈
𝐻𝑘(𝑆, 𝜕𝑆) have the same image in𝐻𝑘(𝑈×ℝ𝑑, (𝑈⧵{𝑥})×ℝ𝑑).
Standard facts about the relative cap product show that the diagram com-

mutes. In particular note that the map 𝐻𝑘(𝐸, 𝜕𝐸) → 𝐻𝑘(𝐸, 𝐸 ⧵ 𝑝−1(𝑥)) is
an isomorphism. It is then not too hard to chase the diagram to deduce that
the Thom class and [𝑆, 𝜕𝑆] also have the same image in 𝐻𝑘(𝑋, 𝜕𝑋), and so the
lemma holds. □

Proof of Theorem 10.11. First we let 𝑘 = 𝑛 − 1. Let 𝛼 ∈ 𝐻1(𝑋;ℤ) be the
Poincaré dual to 𝜎 ∈ 𝐻𝑛−1(𝑋, 𝜕𝑋). Recall that in Theorem 3.16 we showed
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that𝑋 is homotopy equivalent to a CW complex. Therefore we have the follow-
ing correspondence between homotopy classes of maps to Eilenberg-Maclane
spaces and cohomology classes of 𝑋:

[𝑋, 𝑆1] = [𝑋,𝐾(ℤ, 1)]
≅
,→ 𝐻1(𝑋;ℤ)

𝑓 ↦ 𝑓∗𝜃,

where 𝜃 is the Hom dual of the fundamental class of 𝑆1. Note that we used here
that𝑋 is homotopy equivalent to a CWcomplex. Pick an arbitrary point pt ∈ 𝑆1
and denote a tubular neighbourhood by 𝜈(pt). Note that the Thom class 𝜏pt
for 𝜈(pt) is mapped under 𝐻1(𝑆1, 𝑆1 ⧵ pt) → 𝐻1(𝑆1) to 𝜃 = PD−1

𝑆1 [pt]. Let
𝑓∶ 𝑋 → 𝑆1 be a map corresponding to 𝛼, so 𝑓∗𝜃 = 𝛼. Make 𝑓 transverse
to a tubular neighbourhood of pt ∈ 𝑆1 using Theorem 10.10. Consequently,
𝑆 ∶= 𝑓−1(pt) is an (𝑛 − 1)-dimensional submanifold of 𝑋. By definition, 𝑓
induces a bundle isomorphism 𝑓∶ 𝜈𝑆 → 𝑓∗𝜈(pt). We have, as elements in
𝐻1(𝑋;ℤ), that

𝛼 = 𝑓∗𝜃 = 𝑓∗ PD−1
𝑆1 [pt] = 𝑓∗𝜏pt.

Note that 𝑓∗𝜏pt is the image of the Thom class of 𝜈𝑆 under the first two maps
in the composition displayed in the statement of Lemma 10.15. Lemma 10.15
thus tells us the last equality of:

𝛼 = 𝑓∗𝜏pt = 𝜏𝑆 = PD−1
𝑋 [𝑆] ∈ 𝐻1(𝑋;ℤ).

We have thus shown that [𝑆] = PD𝑋(𝛼) = 𝜎.
A similar proof works for the codimension two case, i.e. 𝑘 = 𝑛 − 2. Let

𝛼 ∈ 𝐻2(𝑋;ℤ) be Poincaré dual to 𝜎 ∈ 𝐻𝑛−2(𝑋, 𝜕𝑋). Recall that

[𝑋,ℂP∞] = [𝑋,𝐾(ℤ, 2)]
≅
,→ 𝐻2(𝑋;ℤ)

𝑓 ↦ 𝑓∗𝜃,

where 𝜃 ∈ 𝐻2(ℂP∞;ℤ) is the Hom dual of the fundamental class of ℂP1 ⊆
ℂP∞. Since 𝑋 is homotopy equivalent to an 𝑛-dimensional CW complex we
can homotope a given representingmap 𝑓 to have image inℂP𝑚 ⊆ ℂP∞, where
𝑚 = ⌊𝑛∕2⌋. We abuse notation and denote the image of 𝜃 under the restriction
map𝐻2(ℂP∞;ℤ)→ 𝐻2(ℂP𝑚;ℤ) also by 𝜃.
Let 𝑓∶ 𝑋 → ℂP𝑚 be a map corresponding to 𝛼, so 𝑓∗𝜃 = 𝛼. Make 𝑓 trans-

verse to a normal microbundle of ℂP𝑚−1 ⊆ ℂP𝑚 using Theorem 10.10. The
inverse image 𝑆 ∶= 𝑓−1(ℂP𝑚−1) is an (𝑛 − 2)-dimensional submanifold of 𝑋.
Let 𝜏ℂP𝑚−1 ∈ 𝐻2(ℂP𝑚,ℂP𝑚 ⧵ ℂP𝑚−1) denote a Thom class for the normal

bundle 𝜈ℂP𝑚−1. By Lemma 10.15, the map

𝐻2(ℂP𝑚,ℂP𝑚 ⧵ ℂP𝑚−1;ℤ)→ 𝐻2(ℂP𝑚;ℤ)

sends 𝜏ℂP𝑚−1 to 𝜃 = PD−1
ℂP𝑚[ℂP

𝑚−1].
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By definition of 𝑆 and 𝜈𝑆, the map 𝑓∶ 𝑋 → ℂP𝑚 induces a bundle isomor-
phism 𝑓∶ 𝜈𝑆 → 𝑓∗𝜈ℂP𝑚−1. We have, as elements in𝐻2(𝑋;ℤ), that

𝛼 = 𝑓∗𝜃 = 𝑓∗ PD−1
ℂP𝑚[ℂP

𝑚−1] = 𝑓∗𝜏ℂP𝑚−1 .

Note that 𝑓∗𝜏ℂP𝑚−1 is the image of the Thom class of 𝜈𝑆 under the first two
maps in the composition displayed in the statement of Lemma 10.15. Thus
Lemma 10.15 gives the last equality of:

𝛼 = 𝑓∗𝜏ℂP𝑚−1 = 𝜏𝑆 = PD−1
𝑋 [𝑆] ∈ 𝐻2(𝑋;ℤ).

We have now shown that [𝑆] = PD𝑋(𝛼) = 𝜎. □

Remark 10.16. We have seen that 𝑓![pt] = PD𝑋 ◦𝑓∗◦PD
−1
𝑆1 [pt] = [𝑓−1(pt)],

when 𝑓 is transverse to pt, and similarly that 𝑓![ℂP𝑚−1] = 𝑓−1(ℂP𝑚−1).

Next we offer the following promised refinement of Theorem 10.11 in the 4-
dimensional case, together with an alternative proof that uses smoothing away
from a point.

Theorem 10.17. Let𝑋 be a compact orientable 4-manifold and let𝐴 be a union
of components of 𝜕𝑋. Let 𝑘 = 2 or 𝑘 = 3 and let 𝜎 ∈ 𝐻𝑘(𝑋,𝐴;ℤ).
(1) The class 𝜎 can be represented by a 𝑘-dimensional submanifold 𝑌 with

𝜕𝑌 ⊆ 𝐴.
(2) In the case 𝑘 = 3, the boundary of 𝑌 can be specified: if 𝐵 ⊆ 𝐴 is an ori-

ented closed 2-dimensional smooth submanifold contained in 𝐴 such that
𝜕(𝜎) = [𝐵] ∈ 𝐻2(𝐴;ℤ), then 𝜎 can be represented by an oriented compact
3-dimensional submanifold 𝑌 with 𝜕𝑌 = 𝐵.

The submanifold 𝐵 can be assumed to be smooth, since 𝜕𝑋 is a 3-manifold
and so has a unique smooth structure by [134], [135, p. 252–253].
Note that Theorem10.17 also holds for 𝑘 = 0 and 𝑘 = 1. This is trivial for 𝑘 =

0. To see this for 𝑘 = 1, remove a point from each connected component to get a
smooth 4-manifold by Theorem 9.1. Note that𝐻1(𝑋⧵{pt}, 𝐴;ℤ) ≅ 𝐻1(𝑋,𝐴;ℤ).
Then by smooth approximation and general position, every 1-dimensional ho-
mology class can be represented by a 1-dimensional submanifold of 𝑋.

Example 10.18.
(1) If we apply the theorem to 𝐴 = 𝜕𝑋, we see that any homology class in

𝐻2(𝑋, 𝜕𝑋;ℤ) and𝐻3(𝑋, 𝜕𝑋;ℤ) can be represented by a properly embed-
ded submanifold. For 𝐴 = ∅ we obtain the analogous statement for
absolute homology groups.

(2) Let 𝐹 be a properly embedded 2-dimensional submanifold of𝐷4 and let 𝑆
be a surface in 𝜕𝐷4 = 𝑆3 with 𝜕𝑆 = 𝜕𝐹. Consider the 4-manifold 𝑋 ∶=
𝐷4 ⧵ 𝜈𝐹. In the boundary of 𝑋 we have the surface 𝐵 = 𝑆 ∪ 𝐹 × {1}.
It follows from the long exact sequence of the pair (𝑋, 𝜕𝑋) and Poincaré
duality that the map 𝐻3(𝑋, 𝜕𝑋;ℤ) → 𝐻2(𝜕𝑋;ℤ) is an epimorphism. It
follows from Theorem 10.17, applied to 𝐴 = 𝜕𝑋, that there exists a 3-
dimensional submanifold 𝑌 of 𝐷4 ⧵ 𝜈𝐹 with 𝜕𝑌 = 𝐵. This statement is
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folklore, and a proof using topological transversality formapswaswritten
down by Lewark-McCoy [110].

For 𝑛 = 4 the statement of the following theorem is precisely the statement
of Theorem 10.17 in the smooth category.

Proposition 10.19. Let 𝑋 be a compact, orientable, smooth 𝑛-manifold and let
𝐴 be a union of components of 𝜕𝑋. Let 𝓁 = 1 or 𝓁 = 2 and let 𝜎 ∈ 𝐻𝑛−𝓁(𝑋,𝐴;ℤ).
Then the following holds.
(1) The class 𝜎 is represented by an (𝑛 − 𝓁)-dimensional smooth orientable

submanifold 𝑌 with 𝜕𝑌 ⊆ 𝐴.
(2) Suppose 𝓁 = 1 and that we are given a closed, oriented (𝑛−2)-dimensional

smooth submanifold 𝐵 of 𝐴 such that 𝜕(𝜎) = [𝐵] ∈ 𝐻𝑛−2(𝐴). Then 𝜎 is
represented by an oriented compact (𝑛 − 1)-dimensional smooth subman-
ifold 𝑌 with 𝜕𝑌 = 𝐵.

Example 10.20. Let 𝐾 ⊆ 𝑆3 be a knot. We write 𝑋 = 𝑆3 ⧵ 𝜈𝐾. Let 𝜆 ⊆ 𝜕𝑋 be a
longitude of 𝐾, i.e. 𝜆 is a curve that represents a generator of ker(𝐻1(𝜕𝑋;ℤ)→
𝐻1(𝑋;ℤ). There exists a homology class 𝜎 ∈ 𝐻2(𝑋, 𝜕𝑋;ℤ) with 𝜕(𝜎) = [𝜆] ∈
𝐻1(𝜕𝑋;ℤ). It follows from Proposition 10.19 that there exists an orientable sur-
face 𝐹 in 𝑋 with 𝜕𝐹 = 𝐾.

Proof. Let 𝑋 be a compact orientable smooth 𝑛-manifold and let 𝐴 be a union
of components of 𝜕𝑋. First we prove statements (1) and (2) for the case 𝓁 = 1.
Let 𝜎 ∈ 𝐻𝑛−1(𝑋,𝐴;ℤ).
(1) Write𝐴 = 𝜕𝑋⧵𝐴. LetPD∶ 𝐻1(𝑋,𝐴;ℤ)→ 𝐻𝑛−1(𝑋,𝐴;ℤ) be the Poincaré

duality isomorphism. We have 𝐻1(𝑋,𝐴;ℤ) ≅ [𝑋∕𝐴, 𝑆1] and any such
class can be represented by a continuous map 𝜑∶ 𝑋 → 𝑆1 that is con-
stant on𝐴, and uniquely determined up to homotopy rel.𝐴. We can and
shall homotope 𝜑 to a smooth map. Furthermore, arrange that −1 ∈ 𝑆1
is a regular value of 𝜑. Then 𝑌 ∶= 𝜑−1(−1) is an (𝑛 − 1)-dimensional
submanifold whose boundary lies on 𝜕𝑋 ⧵ 𝐴, that is the boundary lies
on 𝐴. The manifold 𝑌 = 𝜑−1(−1) satisfies [𝑌] = 𝜎 (this follows from
Lemma 10.15, as explained in the proof of Theorem 10.11).

(2) Now suppose that we are given an oriented closed (𝑛 − 2)-dimensional
submanifold 𝐵 of𝐴 such that 𝜕(𝜎) = [𝐵] ∈ 𝐻𝑛−1(𝐴). Pick a collar neigh-
bourhood 𝜕𝑋×[0, 1] and choose a continuousmap𝜑∶ 𝑋⧵

(
𝜕𝑋×[0, 1)

)
→

𝑆1 as above. Also choose a tubular neighbourhood𝐵×[−1∕2, 1∕2] of𝐵 in
𝐴. Consider the map sending (𝑏, 𝑡) to 𝑒𝜋𝑖(𝑡−1), 𝑏 ∈ 𝐵, 𝑡 ∈ [−1∕2, 1∕2] and
extend it to a smooth map 𝜓∶ 𝐴 → 𝑆1 by sending all other points into
{𝑒𝜋𝑖𝑡 ∈ 𝑆1 ∣ 𝑡 ∈ [−2∕3, 2∕3]}. Since 𝜕(𝜎) = [𝐵] ∈ 𝐻𝑛−2(𝐴) ≅ 𝐻1(𝐴;ℤ),
we see that the restriction of 𝜑 to𝐴×{1} = 𝐴 is homotopic to 𝜓∶ 𝐴 → 𝑆1.
Therefore, using this homotopy in the interval [ 1

2
, 1], we can extend 𝜑 to

a function on 𝑋 that restricts to 𝜓 on each𝐴× {𝑠}with 𝑠 ∈ [0, 1
2
]. Finally,

smoothen 𝜑 without changing it on 𝐴 × [0, 1
4
] to obtain a smooth map
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𝑋 → 𝑆1 in the same homotopy class. This is possible since the original 𝜑
was already smooth on 𝐴 × [0, 1

2
]. Put differently, the new smooth map

𝜑∶ 𝑋 → 𝑆1 restricts to 𝜓 on 𝐴 = 𝐴 × {0}.
Note that −1 is a regular value of 𝜓, and by changing 𝜑 outside 𝐴 ×

[0, 1
4
], we can also arrange −1 to be a regular value of 𝜑. The manifold

𝑌 = 𝜑−1(−1) satisfies [𝑌] = 𝜎 (as in (1) this follows from Lemma 10.15
below) and 𝜕𝑌 = 𝐵 × {0} = 𝐵.

For 𝓁 = 2 the argument is similar: we have to replace the argument using
𝑆1 by the argument of [58, Proposition 1.2.3]. Recall from Theorem 3.16 that
𝑋 is homotopy equivalent to a finite CW complex. Therefore, we represent a
codimension 2 homology class 𝜎 ∈ 𝐻𝑛−2(𝑋, 𝜕𝑋;ℤ) ≅ 𝐻2(𝑋;ℤ) by a map 𝑋 →
ℂℙ∞, and homotope into the 𝑘-skeleton to a map 𝑓∶ 𝑋 → ℂℙ𝑘 for 𝑘 ≥ 2.
Now arrange 𝑓 to be transverse to the codimension 2 submanifold ℂℙ𝑘−1 ⊆
ℂℙ𝑘. The desired submanifold is the preimage 𝑌 = 𝑓−1(ℂℙ𝑘−1). We leave
further details to the reader. Again the argument is similar to that in the proof
of Theorem 10.11. □

Lemma 10.21. Let 𝑊 be a smooth 𝑛-manifold and let 𝐶 be a compact sub-
set. There exists a compact smooth 𝑛-dimensional submanifold 𝑋 of𝑊 that con-
tains 𝐶.
Proof. By the Whitney Embedding Theorem (see e.g. [108, Theorem 6.15]),
there exists a proper embedding 𝑓∶ 𝑊 → ℝ2𝑛+1. Recall that in this context
proper means that the preimage of a compact set is compact. Pick a point 𝑃 ∈
ℝ2𝑛+1 that does not lie in the image of 𝑓. Denote the Euclidean distance to the
point 𝑃 by 𝑑∶ ℝ2𝑛+1 → ℝ≥0. This map is smooth outside 𝑃, so in particular
𝑑◦𝑓∶ 𝑊 → ℝ≥0 is smooth. Since 𝐶 is compact, there exists an 𝑟 ∈ ℝ≥0 such
that (𝑑◦𝑓)(𝐶) ⊆ [0, 𝑟]. By Sard’s Theorem, there exists a regular value 𝑥 > 𝑟.
Then 𝑋 ∶= (𝑑◦𝑓)−1([0, 𝑥]) has the desired properties. □

Proof of Theorem 10.17. Let𝑀 be a compact orientable connected 4-manifold
and let 𝐴 be a union of components of 𝜕𝑀. Let 𝑘 = 2 or 𝑘 = 3 and let
𝜎 ∈ 𝐻𝑘(𝑋,𝐴;ℤ).
Pick a point 𝑃 ∈ 𝑀 ⧵ 𝜕𝑀 and pick an open ball 𝐵 ⊆ 𝑀 ⧵ 𝜕𝑀 containing 𝑃.

It follows from a Mayer-Vietoris argument applied to 𝑀 = (𝑀 ⧵ {𝑃}) ∪ 𝐵 that
the inclusion induced map 𝐻𝑘(𝑀 ⧵ {𝑃}, 𝐴) → 𝐻𝑘(𝑀,𝐴) is an isomorphism for
𝑘 = 2, 3.
Now let 𝜎 ∈ 𝐻𝑘(𝑀,𝐴). By the previous paragraph we can view 𝜎 as an

element in 𝐻𝑘(𝑀 ⧵ {𝑃}, 𝐴). By Theorem 9.1 the manifold 𝑀 ⧵ {𝑃} is smooth.
There exists a compact subset 𝐾 of 𝑀 ⧵ {𝑃} such that 𝜎 lies in the image of
𝐻𝑘(𝐾,𝐴) → 𝐻𝑘(𝑀 ⧵ {𝑃}, 𝐴), since one can take the union of the images of the
singular simplices in a singular chain representing 𝜎. By Lemma 10.21, there
exists a compact 4-dimensional smooth submanifold𝑋 of𝑀 ⧵ {𝑃} that contains
the compact set 𝐾 ∪ 𝜕𝑀. Note that 𝐴 is again a union of components of 𝜕𝑋.
The desired statement of Theorem 10.17 is now an immediate consequence of
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Proposition 10.19 (1), with 𝜎 the image of 𝜎 ∈ 𝐻𝑘(𝐾,𝐴) under the inclusion
induced map to𝐻𝑘(𝑋,𝐴). □
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11. Tubing of surfaces
As an example of the use of the technology we have discussed thus far, we

show that one can tube together two locally flat embedded surfaces in a 4-
manifold, to obtain an embedding of the connected sum. This operation is
standard in the smooth category, but as ever in the topological category one
should take some care.
The following situation is by nomeans themost general such result possible.

We wish to illustrate two things. First, that operations on surfaces that can be
performed in the smooth category can usually also be performed in general 4-
manifolds with locally flat surfaces (although performing these operations in a
parametrised way seems to be beyond current knowledge). Second, we want to
show the level of detail required to demonstrate that such operations work.

Proposition 11.1. (Tubing Theorem) Let 𝑆 and 𝑇 be 2-dimensional proper
submanifolds of a connected 4-manifold𝑀, that is 𝑆 and𝑇 are locally flat embed-
ded surfaces. Pick a point 𝑃 ∈ 𝑆 ⧵𝜕𝑆 and𝑄 ∈ 𝑇 ⧵𝜕𝑇. Let [𝛾] ∈ 𝐻1(𝑀, {𝑃,𝑄};ℤ)
be a relative homology class. There is a locally flat embedded arc 𝐶 joining 𝑃 and
𝑄, satisfying the following.
(i) We have [𝐶] = [𝛾] ∈ 𝐻1(𝑀, {𝑃,𝑄};ℤ).
(ii) The interior of 𝐶 is disjoint from 𝑆 ∪ 𝑇.
(iii) The arc 𝐶 extends to a neighbourhood 𝐶 × 𝐷2 embedded in 𝑀 such that

𝐸𝑆 ∶= {𝑃} × 𝐷2 ⊆ 𝑆 and 𝐸𝑇 ∶= {𝑄} × 𝐷2 ⊆ 𝑇.
(iv) We have (𝐶 × 𝐷2) ⧵ (𝐸𝑆 ∪ 𝐸𝑇) ⊆ 𝑀 ⧵ (𝑆 ∪ 𝑇).
(v) The intersection of 𝐶 ×𝐷2 with a normal disc bundle𝐷(𝑆) of 𝑆 is such that

for every 𝑑, (𝐶 × {𝑑}) ∩𝐷(𝑆) is a ray in a single fibre of 𝐷(𝑆), and similarly
for 𝑇. Moreover there is a trivialisation of the normal vector bundle over 𝐸𝑆
as 𝐸𝑆 × 𝐷2 such that for every 𝑐 ∈ 𝐶 with ({𝑐} × 𝐷2) ∩ 𝐷(𝑆) ≠ ∅, we have
that {𝑐} ×𝐷2 = 𝐸𝑆 × {𝑒} for some 𝑒 ∈ 𝐷2, and all such 𝑒 that arise this way
lie on a fixed ray from the origin of 𝐷2.

These data allow us to perform tubing of surfaces ambiently.

Proposition 11.2. Given data 𝑆, 𝑇, 𝐶×𝐷2, 𝐸𝑆 and 𝐸𝑇 as in Proposition 11.1, the
subset

(𝑆 ⧵ 1

2
𝐸𝑆) ∪ (𝑇 ⧵

1

2
𝐸𝑇) ∪ 𝐶 × 1

2𝑆
1

is a 2-dimensional submanifold abstractly homeomorphic to 𝑆#𝑇.

Proof. The surfaces and the tube are locally flat by assumption, or by construc-
tion fromProposition 11.1. The circles where the tube is glued to the surface are
locally flat points. To see this observe that we have arranged a coordinate sys-
tem in which this gluing is a completely standard attachment at angle 𝜋∕2. □

Proof of Proposition 11.1. Since 𝑆 and 𝑇 are proper submanifolds, they have
normal vector bundles by Theorem 5.14. Pick normal disc bundles 𝐷(𝑆) and
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Figure 11. Illustration of Proposition 11.1.

𝐷(𝑇), and remove the interiors of 1
2𝐷(𝑆) and

1
2𝐷(𝑇) i.e. smaller disc bundles

inside the normal disc bundles. We obtain a manifold with boundary

𝑋 ∶= 𝑀 ⧵
(
Int 1

2
𝐷(𝑆) ∪ Int 1

2
𝐷(𝑇)

)

together with a collar neighbourhood of the boundary arising from
𝐷(𝑆)⧵Int 12𝐷(𝑆), and the samewith𝑇 replacing 𝑆, extended using Theorem2.16
to a collar neighbourhood for all of 𝜕𝑋. Choose a closed disc neighbourhood
𝐸𝑆 of 𝑃 in 𝑆. We write 𝜕𝑆𝑋 for the fibrewise boundary of 1

2𝐷(𝑆), 𝜕𝑇𝑋 for the

fibrewise boundary of 12𝐷(𝑇), and 𝜕1𝑋 for 𝜕𝑆𝑋 ∪ 𝜕𝑇𝑋 = 𝜕𝑋 ⧵ 𝜕𝑀.
Choose a trivialisation of the normal vctor bundle 𝜈𝑆 in a neighbourhood

𝑁(𝐸𝑆) of 𝐸𝑆, as 𝑁(𝐸𝑆) × 𝐷2. A ray in 𝐷2 from the origin to the boundary de-
termines an embedding 𝐸𝑆 × [0, 1] ⊆ 1

2𝐷(𝑆). We obtain in particular a disc
𝐸𝑆 × {1} ∈ 𝑁(𝐸𝑆) × {pt} ⊆ 𝑁(𝐸𝑆) × 𝑆1. Choose a smooth structure on 𝜕𝑋
(which wemay do since 𝜕𝑋 is a 3-manifold), and choose a smoothly embedded
neighbourhood 𝐹𝑆 ≅ 𝐷3 in 𝜕𝑆𝑋 that contains 𝐸𝑆 × {1} in its interior.
Make the analogous set of choices and constructions for 𝑇, to obtain 𝐸𝑇,

𝑁(𝐸𝑇), 𝐸𝑇 × [0, 1] ⊆ 1
2𝐷(𝑇), and 𝐹𝑇 ≅ 𝐷3 in 𝜕𝑇𝑋 that contains 𝐸𝑇 × {1} in

its interior.
Remove a point 𝑟 from 𝑋, and using Theorem 9.1 choose a smooth structure

on 𝑋 ⧵ {𝑟} extending the chosen smooth structure on 𝜕𝑋. Choose a smoothly
embedded path 𝐶𝑋 ⊆ 𝑋 between the centres of 𝐸𝑆 × {1} and 𝐸𝑇 × {1}, such that
𝐶𝑋 extends along the previously chosen rays inside the normal vector bundles
to a path 𝐶 between 𝑃 and 𝑄 such that [𝐶] = [𝛾] ∈ 𝐻1(𝑀, {𝑃,𝑄};ℤ). Extend
𝐶𝑋 to a codimension zero submanifold 𝑁(𝐶𝑋) homeomorphic to 𝐼 × 𝐷3, with
𝐼 × {0} ⊆ 𝐼 × 𝐷3 mapping to 𝐶𝑋 , and such that {0} × 𝐷3 maps to 𝐹𝑆 ⊆ 𝜕𝑆𝑋 and
{1} × 𝐷3 maps to 𝐹𝑇 ⊆ 𝜕𝑇𝑋.
Now, for small 𝜀, [0, 𝜀] × 𝐷3 and [1 − 𝜀, 1] × 𝐷3 give rise to collar neighbour-

hoods of the closed subsets 𝐹𝑆 and 𝐹𝑇 of 𝜕1𝑋. Use Theorem 2.16 to extend this
collar neighbourhood to a collar neighbourhood over all of 𝜕𝑋.
We now have two collar neighbourhoods of 𝜕𝑋, the collarΨ1∶ 𝜕𝑋×[0, 1]↪

𝑋 we have just constructed which is compatible with 𝑁(𝐶𝑋), and the collar
neighbourhood Ψ2∶ 𝜕𝑋 × [0, 1]↪ 𝑋 constructed above from 𝐷(𝑆) ⧵ Int 12𝐷(𝑆)
and𝐷(𝑇)⧵Int 12𝐷(𝑇). ByTheorem2.18, there is an isotopy𝐻𝑡 ∶ 𝑀 → 𝑀 starting
from the identity, such that𝐻1◦Ψ1 = Ψ2, i.e. sends the first collar to the second.
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Figure 12. Illustration for the proof of Proposition 11.1.

We now obtain a codimension zero submanifold 𝐶𝑋 ×𝐷3 homeomorphic to
𝐼 × 𝐷3 such that, with respect to the collar neighbourhood Ψ2, we have:
∙ For all 𝑐 ∈ 𝐶𝑋 such that {𝑐} × 𝐷3 ∩ Ψ2(𝜕𝑋 × [0, 1]) ≠ ∅, we have that
{𝑐} × 𝐷3 ⊆ Ψ2(𝜕𝑋 × {𝑡}) for some 𝑡 ∈ [0, 1].

∙ For every 𝑑 ∈ 𝐷3, (𝐶 × {𝑑}) ∩ (𝜕𝑋 × [0, 1]) = Ψ2({𝑥} × [0, 1]) for some 𝑥 in
either 𝐹𝑆 or 𝐹𝑇.

In addition, above we constructed two discs 𝐸𝑆 ⊆ 𝐹𝑆 and 𝐸𝑇 ⊆ 𝐹𝑇. Any two
embedded discs in a 3-ball are ambiently isotopic: place this isotopy inside𝐶𝑋×
𝐷3 to obtain a locally flat embedding 𝐶𝑋 × 𝐷2 ≅ 𝐼 × 𝐷2 ⊆ 𝐶𝑋 × 𝐷3.
Now consider 𝑋 ⊆ 𝑀 and take the union

(𝐸𝑆 × [0, 1]) ∪ (𝐶𝑋 × 𝐷2) ∪ (𝐸𝑇 × [0, 1]) ⊆ 𝑀
to obtain an embedding 𝐶 × 𝐷2 ≅ 𝐼 × 𝐷2 whose intersection with 𝑆 equals 𝐸𝑆
and whose intersection with 𝑇 equals 𝐸𝑇. The core 𝐶 = 𝐶 × {0} is a locally
flat embedded path in𝑀 from 𝑃 to 𝑄 with interior in𝑀 ⧵ (𝑆 ∪ 𝑇) and with the
correct relative homology class in 𝐻1(𝑀, {𝑃,𝑄};ℤ). We may then perform the
tubing 𝑆#𝑇 ∶= (𝑆 ⧵ 𝐸𝑆) ∪ (𝑇 ⧵ 𝐸𝑇) ∪ 𝐶 × 𝑆1 as promised. □
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12. Classification results for 4-manifolds
It is well-known (e.g. [31, Theorem 5.1.1]) that any finitely presented group

is the fundamental group of a closed orientable smooth 4-manifold. Markov
[120] used this fact to show that closed 4-manifolds cannot be classified up to
homeomorphism. To circumvent this group theoretic issue one aims to classify
4-manifolds with a given isomorphism type of a fundamental group.
In this chapter we present the known 4-manifold classification results that

have been obtained using the techniques of classical, or modified, surgery the-
ory in the topological category, combined with Freedman’s Disc Embedding
Theorem [51, 50, 7]. The use of this theorem requires the fundamental group
of the 4-manifold be “good” [50, Part II, Introduction], a condition that has a
precise geometric description using the “𝜋1-null disc property”. We will not re-
produce that description here, but will instead note which groups are currently
known to be good. Freedman showed that the infinite cyclic group and finite
groups are good [51, pp. 658-659] (see also [50, Section 5.1]). In addition, by [49,
Lemma 1.2] the class of good groups is closed under extensions, direct limits,
subgroups and quotients. It follows that solvable groups are good. Furthermore
in [49, Theorem 0.1] and [98] it was shown that groups with subexponential
growth are good.

12.1. Simply connected 𝟒-manifolds. The following theorem was the first
noteworthy result towards a classification of 4-dimensional manifolds.

Theorem 12.1. Suppose𝑀 and 𝑁 are two closed oriented simply-connected 4-
dimensional manifolds. If the intersection forms are isometric, then𝑀 and𝑁 are
homotopy equivalent.

Proof. This theorem was proved for smooth manifolds by Milnor [127, Theo-
rem 3], building on work ofWhitehead [207]. A proof that works in the general
case is given in [132, Chapter V, Theorem 1.5]. □

We state Freedman’s classification for closed, simply connected 4-manifolds
[51, Theorem1.5]. We give the statement as in [50, Theorem10.1]. We note that
Freedman’s original statement only applied to 4-manifolds smoothable away
froma point, and so the statement below requires the subsequent developments
by Quinn. The last sentence comes from [158].

Theorem 12.2. Fix a triple (𝐹, 𝜃, 𝑘), where 𝐹 is a finitely generated free abelian
group, 𝜃 is a symmetric, nonsingular, bilinear form 𝜃∶ 𝐹×𝐹 → ℤ, and 𝑘 ∈ ℤ∕2.
If 𝜃 is even, that is 𝜃(𝑥, 𝑥) ∈ ℤ is even for every 𝑥 ∈ 𝐹, then suppose that 𝜎(𝜃)∕8 ≡
𝑘 ∈ ℤ∕2.
Then there exists a closed, simply connected, and oriented 4-manifold𝑀 with

𝐻2(𝑀;ℤ) ≅ 𝐹, with intersection form isometric to 𝜃 and with Kirby-Siebenmann
invariant equal to 𝑘.
Let 𝑀 and 𝑀′ be two closed, simply connected, oriented 4-manifolds and let

𝜙∶ 𝐻2(𝑀;ℤ)
≅
,→ 𝐻2(𝑀′;ℤ) be an isometry of the intersection forms. Suppose
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that ks(𝑀) = ks(𝑀′). Then there is an orientation preserving homeomorphism
𝑀

≅
,→ 𝑀′ inducing 𝜙 on second homology. This homeomorphism is unique up to

isotopy.

In other words, every even, symmetric, integral matrix with determinant ±1
is realised as the intersection form of a unique closed, simply connected, ori-
ented 4-manifold. For such matrices which are odd instead, there are precisely
two closed, simply connected, oriented 4-manifolds up to homeomorphism, ex-
actly one of which has vanishing Kirby-Siebenmann invariant and is therefore
stably smoothable. These two manifolds are homotopy equivalent by Theo-
rem 12.1.
In particular, the last paragraph with 𝑀 = 𝑀′ implies that every automor-

phismof the intersection formof a closed, simply connected, oriented 4-manifold
is realised by a self-homeomorphism of𝑀.
The following special case of Theorem 12.2, when 𝐹 = 0, is worth pointing

out explicitly.

Corollary 12.3. (4-dimensional Poincaré conjecture) If 𝑁 is a 4-manifold
homotopy equivalent to 𝑆4 then𝑁 is homeomorphic to 𝑆4.

Proof. Note 𝑁 and 𝑆4 are closed, simply connected, and oriented. Further-
more, 𝐻2(𝑁;ℤ) = 0 and the zero map 𝐻2(𝑁;ℤ) → 𝐻2(𝑆4;ℤ) is an isometry
(between zero forms). By the last paragraph of Theorem 12.2, there is a home-
omorphism 𝑁 ≅ 𝑆4 realising this isometry. Note that since 𝑁 has trivial and
therefore even intersection form, ks(𝑁) = 𝜎(𝑁)∕8 = 0 by Theorem 9.2 (4). □

12.2. Non simply-connected 𝟒-manifolds. We summarise known classifi-
cation results for different types of nontrivial fundamental groups.

12.3. Infinite cyclic group. First, we present a classification result [50, The-
orem 10.7A] for closed, oriented 4-manifolds with fundamental groupℤwhich
is quite similar to Theorem 12.2. To state the theorem we need some extra def-
initions.

Definition 12.4. For a finitely generated free ℤ[ℤ] module 𝐹, a hermitian
sesquilinear form 𝜃∶ 𝐹×𝐹 → ℤ[ℤ] is called even if there is a leftℤ[ℤ]-module
homomorphism 𝑞∶ 𝐹 → Homℤ[ℤ](𝐹,ℤ[ℤ]) with

𝑞 + 𝑞∗∶ 𝐹 → Homℤ[ℤ](𝐹,ℤ[ℤ])
equal to the adjoint of 𝜃. Otherwise we call the form odd.

Definition 12.5. Two homeomorphisms ℎ0, ℎ1∶ 𝑀 → 𝑁 are pseudo-isotopic if
there is a homeomorphism 𝐻∶ 𝑀 × 𝐼 → 𝑁 × 𝐼 with 𝐻|𝑀×{𝑖} = ℎ𝑖 ∶ 𝑀 × {𝑖} →
𝑁 × {𝑖} for 𝑖 = 0, 1.

An isotopy of homeomorphisms gives rise to a pseudo-isotopy. Perron and
Quinn proved in [154] and [158] that the converse holds for compact simply
connected 4-manifolds. Budney and Gabai [21] showed that pseudo-isotopy
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does not in general imply isotopy for homeomorphisms between 4-manifolds
with nontrivial fundamental groups.
Theorem 12.6. Fix a triple (𝐹, 𝜃, 𝑘), where 𝐹 is a finitely generated free ℤ[ℤ]-
module, 𝜃 is a hermitian, nonsingular, sesquilinear form 𝜃∶ 𝐹 × 𝐹 → ℤ[ℤ], and
𝑘 ∈ ℤ∕2. If 𝜃 is even, then suppose that 𝜎(ℝ⊗ 𝜃)∕8 ≡ 𝑘 ∈ ℤ∕2.
Then there exists a closed and oriented 4-manifold 𝑀 with 𝜋1(𝑀) ≅ ℤ, with

𝐻2(𝑀;ℤ[ℤ]) isomorphic to 𝐹, whose equivariant intersection form
𝜆𝑀 ∶ 𝐻2(𝑀;ℤ[ℤ]) ×𝐻2(𝑀;ℤ[ℤ])→ ℤ[ℤ]

is isometric to 𝜃, and with ks(𝑀) = 𝑘.
Let𝑀 and𝑀′ be two closed, oriented 4-manifolds with 𝜋1(𝑀) ≅ ℤ ≅ 𝜋1(𝑀′)

and let 𝜙∶ 𝐻2(𝑀;ℤ[ℤ])
≅
,→ 𝐻2(𝑀′;ℤ[ℤ]) be an isometry of the equivariant in-

tersection forms. Suppose that ks(𝑀) = ks(𝑀′). Then there is an orientation and
basepoint preserving homeomorphism𝑀

≅
,→ 𝑀′ inducing the given identification

of the fundamental groups and inducing 𝜙 on ℤ[ℤ] coefficient second homology.
There are exactly two pseudo-isotopy classes of such homeomorphisms.
The last sentence of this theorem is a correction to [50, Theorem 10.7A] by

Stong and Wang [185].

12.4. Baumslag-Solitar groups. Here is another family of groups for which a
complete classification of closed orientable 4-manifolds up to homeomorphism
is known. This is the family of solvable Baumslag-Solitar groups

𝐵(𝑘) ∶= ⟨𝑎, 𝑏 ∣ 𝑎𝑏𝑎−1𝑏−𝑘⟩.
Note that 𝐵(0) = ℤ and 𝐵(1) = ℤ2. Baumslag-Solitar groups are solvable and,
aswe pointed out above, solvable groups are good. The next classification result
was proven by Hambleton, Kreck, and Teichner in [67].
Definition 12.7. The𝑤2-type of a closed, oriented 4-manifold𝑀with universal
covering �̃� is type I, II, III, as follows: (I) 𝑤2(�̃�) ≠ 0; (II) 𝑤2(𝑀) = 0; and (III)
𝑤2(𝑀) ≠ 0 but 𝑤2(�̃�) = 0.
Theorem 12.8. Let 𝐵(𝑘) be a solvable Baumslag-Solitar group and let 𝑀 and
𝑁 be closed, oriented 4-manifolds with fundamental group isomorphic to 𝐵(𝑘).
Suppose that there is an isomorphism 𝜙∶ 𝐻2(𝑀;ℤ[𝐵(𝑘)]) → 𝐻2(𝑁;ℤ[𝐵(𝑘)]) of
ℤ[𝐵(𝑘)]-modules such that:
(1) The map 𝜙 induces an isometry between the equivariant intersection form

𝜆∶ 𝐻2(𝑀;ℤ[𝐵(𝑘)]) ×𝐻2(𝑀;ℤ[𝐵(𝑘)]) → ℤ[𝐵(𝑘)] and the corresponding
intersection form on𝐻2(𝑁;ℤ[𝐵(𝑘)]).

(2) The Kirby-Siebenmann invariants agree ks(𝑀) = ks(𝑁).
(3) The 𝑤2-types of𝑀 and𝑁 coincide.

Then𝑀 and𝑁 are homeomorphic via an orientation preserving homeomorphism
that induces 𝜙∶ 𝐻2(𝑀;ℤ[𝐵(𝑘)])→ 𝐻2(𝑁;ℤ[𝐵(𝑘)]).
There is also a precise realisation result for these invariants [67, Theorem B]

and 4-manifolds with fundamental group 𝐵(𝑘).
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12.5. Finite cohomological dimension. In the same paper as that discussed
in the previous section [67], further classification results were given for 4-mani-
folds with geometrically 2-dimensional fundamental groups.
Some partial results towards a classification for 4-manifolds whose

fundamental groups are good and have cohomological dimension 3 appear in
Hambleton-Hildum [62].
Kasprowski-Land [85] studied 4-manifolds𝑀with 4-dimensional fundamen-

tal group, under the assumption that the classifyingmap𝑀 → 𝐵𝜋 is degree one,
i.e. induces an isomorphism𝐻4(𝑀;ℤ)

≅
,→ 𝐻4(𝐵𝜋;ℤ).

12.6. Finite groups. Next, 4-manifolds with finite fundamental groups were
studied by Hambleton and Kreck in [63, 65]. Given a finitely generated abelian
group 𝐺, let 𝑇𝐺 be its torsion subgroup and let F𝐺 ∶= 𝐺∕𝑇𝐺.
Themost complete result was for 4-manifolds with finite cyclic fundamental

group, given below.

Theorem 12.9. Let𝐺 be a finite cyclic group and let𝑀 and𝑁 be closed, oriented
4-manifolds with fundamental group isomorphic to 𝐺. Suppose that there is an
isomorphism 𝜙∶ F𝐻2(𝑀;ℤ)→ F𝐻2(𝑁;ℤ) such that the following hold.
(1) The map 𝜙 induces an isometry between the intersection form

𝜆𝑀 ∶ F𝐻2(𝑀;ℤ) × F𝐻2(𝑀;ℤ)→ ℤ and the intersection form
𝜆𝑁 ∶ F𝐻2(𝑁;ℤ) × F𝐻2(𝑁;ℤ)→ ℤ.

(2) The Kirby-Siebenmann invariants agree ks(𝑀) = ks(𝑁).
(3) The 𝑤2-types of𝑀 and𝑁 coincide.

Then𝑀 and𝑁 are homeomorphic via an orientation preserving homeomorphism
that induces 𝜙∶ F𝐻2(𝑀;ℤ)→ F𝐻2(𝑁;ℤ).

A full realisation result for the invariants in Theorem12.9 is not known, how-
ever Hambleton-Kreck showed how to realise in the majority of cases. The fol-
lowing relations between the invariants hold.
(1) If 𝑤2(𝑀) = 0, then ks(𝑀) ≡ 𝜎(𝑀)∕8 ∈ ℤ∕2 and 𝜆𝑀 is even.
(2) If𝑀 is type I, then 𝜆𝑀 is odd.
(3) If the order of 𝐺 is odd, then 𝑤2(�̃�) = 0 implies 𝑤2(𝑀) = 0, so there are

no 4-manifolds with 𝑤2-type III.
We outline a construction that realises all configurations of the invariants,

with the restriction that in 𝑤2-type III, the intersection form 𝜆𝑀 is even. The
key is a construction of rational homology 4-spheres. For every finite cyclic
group 𝐺, [65, Proposition 4.1] produces the following manifolds.
(1) A rational homology sphere Σ𝐼𝐼𝐺 with 𝑤2-type II and with fundamental

group 𝐺. Note that ks(Σ𝐼𝐼𝐺 ) ≡ 𝜎(Σ𝐼𝐼𝐺 )∕8 = 0.
(2) A rational homology sphere Σ𝐼𝐼𝐼,0𝐺 with 𝑤2-type III and trivial Kirby-

Siebenmann invariant, and fundamental group 𝐺.
(3) A rational homology sphere Σ𝐼𝐼𝐼,1𝐺 with 𝑤2-type III and nontrivial Kirby-

Siebenmann invariant, and fundamental group 𝐺.
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There can beno rational homology spherewith𝑤2-type I by [63, Theorem4.2];
in the notation of that theorem, 𝑄′′(𝜋1, 0) gives rise to manifolds with nontriv-
ial 𝐻2(−;ℚ). Now we describe the partial realisation of the invariants from
Theorem 12.9.
(1) By taking the connected sum of Σ𝐼𝐼𝐺 with a closed, spin, simply connected

manifold, we can realise any even, nonsingular, symmetric, bilinear form
as the intersection form 𝜆𝑀 ∶ F𝐻2(𝑀;ℤ) × F𝐻2(𝑀;ℤ) → ℤ of a closed,
oriented 4-manifold 𝑀 with fundamental group 𝐺 and with 𝑤2 type II.
In this case ks(𝑀) is determined by the signature of 𝜆𝑀 .

(2) Likewise, taking connected sum of Σ𝐼𝐼𝐼,0𝐺 or Σ𝐼𝐼𝐼,1𝐺 with a closed, spin, sim-
ply connected manifold, we can realise every even 𝜆𝑀 as the intersection
form of a closed, oriented 4-manifold𝑀 with fundamental group 𝐺 and
with 𝑤2 type III, with prescribed Kirby-Siebenmann invariant.

(3) Finally, by taking connected sum of Σ𝐼𝐼𝐼,0𝐺 or Σ𝐼𝐼𝐼,1𝐺 with a closed, ori-
ented, simply connected 4-manifold, we can realise any odd, nonsingu-
lar, symmetric, bilinear form as the intersection form 𝜆𝑀 ∶ F𝐻2(𝑀;ℤ) ×
F𝐻2(𝑀;ℤ) → ℤ of a closed, oriented 4-manifold 𝑀 with fundamental
group 𝐺 and with 𝑤2 type I, with prescribed Kirby-Siebenmann invari-
ant.

Question 12.10. Must the intersection form in 𝑤2-type III be even? If not, how
canwe realise all intersection forms and Kirby-Siebenmann invariants in𝑤2-type
III?

In his survey paper, Hambleton [61, Theorem 5.2] also outlined a homeo-
morphism classification for closed, spin 4-manifolds with finite odd order fun-
damental group.
The following result on 4-manifold with finite fundamental group from [64,

Theorem B] also deserves to be mentioned.

Theorem 12.11. Let𝑀 and 𝑁 be closed, oriented, topological 4-manifolds with
finite fundamental group. Suppose that 𝑀#𝑟(𝑆2 × 𝑆2) and 𝑁#𝑟(𝑆2 × 𝑆2) are
homeomorphic for some 𝑟 ∈ ℕ. Suppose that 𝑋 = 𝑋0#(𝑆2 × 𝑆2). Then 𝑋 is
homeomorphic to 𝑌.

12.7. Nonorientable 4-manifolds. For nonorientable closed 4-manifolds, the
homeomorphismclassification resultswe are aware of are for fundamental group
ℤ∕2 in [66] and for fundamental groupℤ in [205]. For nonorientable closed 4-
manifolds with fundamental group ℤ∕2, the paper [66] gives a complete list of
invariants for distinguishing such manifolds up to homeomorphism [66, The-
orem 2], and gives a list of the possible manifolds [66, Theorem 3].

12.8. 4-manifoldswithnonemptyboundary. Simply-connected compact 4-
manifolds with a fixed 3-manifold as boundary were classified by Boyer in [13,
14], with an independent contribution by Stong [184]. Homeomorphisms of
such 4-manifolds were classified up to isotopy by Orson-Powell [147]. Since
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the statements are somewhat involved, we refer the reader to the original arti-
cles.
For compact 4-manifolds with fundamental group ℤ, an analogous classi-

fication was given by Conway-Powell [34] and Conway-Piccirillo-Powell [33],
under the assumptions that 𝜋1(𝜕𝑀) → 𝜋1(𝑀) ≅ ℤ is surjective, and that the
homology 𝐻1(𝜕𝑀;ℤ[ℤ]) of the corresponding ℤ-cover is a ℤ[ℤ]-torsion mod-
ule.
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13. Stable smoothing of homeomorphisms
Wall [198] proved that simply connected, closed, smooth 4-manifolds with

isometric intersection forms are stably diffeomorphic. It follows that every pair
of simply connected, closed, homeomorphic smooth 4-manifolds are stably dif-
feomorphic. We shall discuss the analogous statement without the simply con-
nected hypothesis.

Definition 13.1.
(1) Let 𝑀 and 𝑁 be connected, smooth 4-manifolds. We say that 𝑀 and 𝑁

are stably diffeomorphic if there is an integer 𝑘 such that the connected
sums𝑀#𝑘(𝑆2 × 𝑆2) and 𝑁#𝑘(𝑆2 × 𝑆2) are diffeomorphic.

(2) Let 𝑀 and 𝑁 be connected 4-manifolds. We say that 𝑀 and 𝑁 are sta-
bly homeomorphic if there is an integer 𝑘 such that the connected sums
𝑀#𝑘(𝑆2 × 𝑆2) and 𝑁#𝑘(𝑆2 × 𝑆2) are homeomorphic.

The next theorem is due to Gompf [57].

Theorem 13.2. Every homeomorphic pair of compact, connected, orientable,
smooth 4-manifolds with diffeomorphic boundaries are stably diffeomorphic.
Moreover, let 𝑓∶ 𝑀 → 𝑁 be a homeomorphism between two such 4-manifolds,

that restricts to a diffeomorphism 𝑓|∶ 𝜕𝑀 → 𝜕𝑁. Then 𝑓| extends to a stable
diffeomorphism.

Onemight imagine a stronger statement, that given ahomeomorphism𝑓∶ 𝑀 →
𝑁 we can smoothen it stably up to isotopy. However such a statement is only
known for simply connected 4-manifolds [50, Chapter 8], and does not hold in
general.
For non simply-connected manifolds, one must consider the bundle map

of stable tangent microbundles induced by 𝑓, and lift it to a bundle map be-
tween the stable tangent bundles. Such a lift does not exist in general; there
is a Casson-Sullivan obstruction in 𝐻3(𝑀, 𝜕𝑀;ℤ∕2) to its existence. Cappell-
Shaneson [22], using unpublished work of R. Lee, showed that there is a home-
omorphismof (𝑆1×𝑆3)#(𝑆2×𝑆2) forwhich this obstruction is nontrivial. Hence
this homeomorphism cannot be stably smoothed. If a lift does exist, then for
each lift there is a stabilisation by#𝑘(𝑆2×𝑆2), and then a pseudo-isotopy of the
stabilised 𝐹 to a diffeomorphism [50, Chapter 8]. So even when the Casson-
Sullivan invariant vanishes, one only has a stable smoothing up to pseudo-
isotopy.
The proof of Theorem 13.2 that we shall give using Kreck’s modified surgery

[97] was outlined in Teichner’s thesis [190, Theorem 5.1.1]. We think this proof
is worth publicising with expanded details, because the method is arguably
more conceptual than Gompf’s original, and because it allows us to expand
on Gompf’s statement in the nonorientable case.
Gompf also proved that for every pair of compact, connected, nonorientable,

smooth 4-manifolds𝑀 and𝑁 that are homeomorphic,𝑀#𝑆2×̃𝑆2 and𝑁#𝑆2×̃𝑆2
are stably diffeomorphic. We shall slightly improve on this statement.
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Theorem 13.3. Let𝑀 and 𝑁 be compact, connected, nonorientable, smooth 4-
manifolds. Suppose that𝑀 and𝑁 are homeomorphic via a homeomorphism re-
stricting to a diffeomorphism 𝜕𝑀 ≅ 𝜕𝑁. If 𝑤2(�̃�) ≠ 0 ≠ 𝑤2(�̃�), that is the
universal covers of𝑀 and𝑁 are not spin, then𝑀 and𝑁 are stably diffeomorphic
via a stable diffeomorphism extending the given diffeomorphism 𝜕𝑀 ≅ 𝜕𝑁.

Gompf’s statement [57, p. 116] for the nonorientable case, given in the next
corollary, follows easily from Theorem 13.3. However note that Theorem 13.3
shows that for many nonorientable 4-manifolds, the extra summand given by
the twisted bundle 𝑆2×̃𝑆2 is not necessary.

Corollary 13.4. Let𝑀 and 𝑁 be compact, connected, nonorientable, smooth 4-
manifolds. Suppose that 𝑀 and 𝑁 are homeomorphic via a homeomorphism
restricting to a diffeomorphism 𝜕𝑀 ≅ 𝜕𝑁. Then 𝑀#𝑆2×̃𝑆2 and 𝑁#𝑆2×̃𝑆2 are
stably diffeomorphic.

Proof. Taking the connected sum of any 4-manifold with 𝑆2×̃𝑆2 ≅ ℂℙ2#ℂℙ2

gives rise to a 4-manifoldwhose universal cover is not spin. The corollary there-
fore follows from Theorem 13.3. □

The hypothesis in Theorem 13.3 that𝑤2(�̃�) ≠ 0 ≠ 𝑤2(�̃�) cannot be dropped
in general. Cappell and Shaneson found an example of a smooth 4-manifold
𝑅 that is homotopy equivalent to the real projective space ℝP4 but that is not
stably diffeomorphic to ℝP4 [22, 23]. When these papers were published, it
was not possible to prove that the fake ℝP4 manifold 𝑅 is homeomorphic to
ℝP4, but this was later established [171, p. 221] as a consequence of the work
of Freedman and Quinn [50], and the fact that the Whitehead group of ℤ∕2 is
trivial.
Later, Kreck [96] showed a much more general statement in this direction.

Let 𝐾3 ∶= {[𝑧0 ∶ 𝑧1 ∶ 𝑧2 ∶ 𝑧3] ∈ ℂP3 ∣ 𝑧40 + 𝑧41 + 𝑧42 + 𝑧43 = 0} denote the
Kummer surface. As discussed in [58, Chapter 1.3], this is a closed, smooth,
spin 4-manifold with signature 16, 𝑏2(𝐾3) = 22 and intersection form 3 ⋅ 𝐻 ⊕
2 ⋅𝐸8. Here is Kreck’s result from [96]. These were the first known examples of
exotic pairs of 4-manifolds.

Theorem 13.5. Let 𝜋 be a finitely presented group with a surjective homomor-
phism 𝑤∶ 𝜋 → ℤ∕2. Then there exists a closed, smooth, connected 4-manifold
𝑊 with fundamental group 𝜋 and orientation character𝑤, with the property that
𝑊#𝐾3 and 𝑊#11(𝑆2 × 𝑆2) are homeomorphic 4-manifolds that are not stably
diffeomorphic.

One part of this is easy to see: if𝑊 is nonorientable then there are homeo-
morphisms

𝑊#𝐾3 ≅ 𝑊#𝐸8#𝐸8#3(𝑆2 × 𝑆2) ≅ 𝑊#𝐸8#𝐸8#3(𝑆2 × 𝑆2)
≅ 𝑊#8(𝑆2 × 𝑆2)#3(𝑆2 × 𝑆2) ≅ 𝑊#11(𝑆2 × 𝑆2).
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Here we used Theorem 12.2 that simply connected closed 4-manifolds with
Kirby-Siebenmann invariant vanishing are determined by their intersection
forms, and we used that the connected sum 𝑀#𝑁 of an oriented manifold 𝑀
with a nonorientable manifold 𝑁 is homeomorphic to𝑀#𝑁.
In the following three sectionswewill proveTheorems 13.2 and 13.3. To keep

the notationmanageable we will only provide a proof for closedmanifolds, and
descirbe the case of nonempty boundary in Section 13.4.

13.1. Kreck’smodified surgery. Belowwewill state a theorem due to Kreck
that relates stable diffeomorphisms of 4-manifolds with bordism theory. This
came as a corollary of Kreck’s modified surgery theory [97]. First we need some
definitions from [97].
Recall that a topological space 𝐴 is𝑚-connected if 𝜋𝑘(𝐴) = 0 for 1 ≤ 𝑘 ≤ 𝑚

and is 𝑚-coconnected if 𝜋𝑘(𝐴) = 0 for 𝑘 ≥ 𝑚. A map of spaces 𝑓∶ 𝐴 → 𝐵
is𝑚-connected if the homotopy cofibre (i.e. the mapping cone) is𝑚-connected;
equivalently 𝑓∗∶ 𝜋𝑘(𝐴)→ 𝜋𝑘(𝐵) is an isomorphism for 𝑘 < 𝑚 and is surjective
for 𝑘 = 𝑚. Amap of spaces 𝑓∶ 𝐴 → 𝐵 is𝑚-coconnected if the homotopy fibre is
𝑚-coconnected; equivalently 𝑓∗∶ 𝜋𝑘(𝐴)→ 𝜋𝑘(𝐵) is an isomorphism for 𝑘 > 𝑚
and is injective for 𝑘 = 𝑚.

Definition 13.6. A normal 1-type of a closed, connected, smooth 4-manifold
𝑀 is a 2-coconnected fibration 𝜉 ∶ 𝐵 → BO for which there is a 2-connected
lift 𝜈𝑀 ∶ 𝑀 → 𝐵 of the stable normal vector bundle 𝜈𝑀 ∶ 𝑀 → BO such that
𝜉◦𝜈𝑀 = 𝜈𝑀 ∶ 𝑀 → BO. We call such a choice of lift 𝜈𝑀 ∶ 𝑀 → 𝐵 a normal
1-smoothing.

Remark 13.7. The data of a normal 1-type is 𝜉 ∶ 𝐵 → BO. The existence of 𝜈𝑀
is a condition on that data.

Definition 13.8. A normal 1-type of a closed, connected 4-manifold𝑀 is a 2-
coconnected fibration 𝜉TOP∶ 𝐵TOP → BTOP for which there is a 2-connected
lift 𝜈𝑀 ∶ 𝑀 → 𝐵TOP of the stable topological normal bundle 𝜈𝑀 ∶ 𝑀 → BTOP
(Definition 6.22) such that 𝜉TOP◦𝜈𝑀 = 𝜈𝑀 ∶ 𝑀 → BTOP. We call such a choice
of lift 𝜈𝑀 ∶ 𝑀 → 𝐵TOP a normal TOP 1-smoothing.

Normal 1-types 𝜉 ∶ 𝐵 → BO of a closed, connected smooth 4-manifold are
fibre homotopy equivalent over BO, and using this we abuse notation and refer
to the normal 1-type of a smooth 4-manifold, and similarly for the topological
version. Here are some of the key examples in the oriented case. We will give
the details of the nonorientable case in Section 13.3.
Write 𝜋 = 𝜋1(𝑀) and let 𝑤2 ∈ 𝐻2(𝑀;ℤ∕2) be the second Stiefel-Whitney

class of𝑀. There are threemain cases for the normal 1-types of oriented, closed
smooth 4-manifolds. For more details, see [86, Sections 2 and 3].

Lemma 13.9. Let 𝑀 be a closed, oriented, connected, smooth 4-manifold with
universal covering �̃�. We write 𝜋 ∶= 𝜋1(𝑀).
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(1) Suppose that we have 𝑤2(�̃�) ≠ 0. Then 𝜉 ∶ 𝐵 = B𝜋×BSO → BO is the
normal 1-type of𝑀, with the map 𝜉 given by projection to BSO followed by
the canonical map BSO→ BO.

(2) Suppose that 𝑤2(𝑀) = 0, i.e. 𝑀 is spin. Then 𝜉 ∶ 𝐵 = B𝜋×BSpin →
BO is the normal 1-type of𝑀, with the map 𝜉 given by projection to BSpin
followed by the canonical map BSpin→ BO.

(3) Suppose that we have𝑤2(𝑀) ≠ 0 but𝑤2(�̃�) = 0. Then there is a model for
B𝜋 and afibration𝑤2∶ B𝜋 → 𝐾(ℤ∕2, 2) that pulls back along𝑀 → B𝜋 to
𝑤2(𝑀). The fibration 𝜉 ∶ 𝐵 → BO is obtained from pulling back 𝑤2 along
the universal class 𝑤2∶ BSO → 𝐾(ℤ∕2, 2), to obtain the space 𝐵 and a
fibration 𝐵 → BSO, and then composing with BSO → BO. Since we have

a fibration sequence BSpin → BSO
𝑤2,,→ 𝐾(ℤ∕2, 2), the pullback gives rise

to a fibration sequence BSpin→ 𝐵 → B𝜋. Then 𝜉 ∶ 𝐵 → BO is the normal
1-type of𝑀.

Recall 𝜋1(STOP) ≅ 𝜋1(TOP) ≅ 𝜋1(O) ≅ ℤ∕2; see Chapter 7.

Lemma 13.10. Let𝑀 be a closed, oriented, connected 4-manifold with universal
covering �̃�. We write 𝜋 ∶= 𝜋1(𝑀).
(1) Suppose that we have 𝑤2(�̃�) ≠ 0. Then

𝜉TOP∶ 𝐵TOP = B𝜋×BSTOP→ BTOP

is the normal 1-type of𝑀, with the map given by projection to BSTOP fol-
lowed by the canonical map BSTOP→ BTOP.

(2) Suppose that 𝑤2(𝑀) = 0, i.e.𝑀 is spin. Then

𝜉TOP∶ 𝐵TOP = B𝜋×BTOPSpin→ BTOP

is the normal 1-type of𝑀, with the map given by projection to BTOPSpin
followed by the map BTOPSpin→ BTOP.

(3) Suppose that we have𝑤2(𝑀) ≠ 0 but𝑤2(�̃�) = 0. Then there is a model for
B𝜋 and afibration𝑤2∶ B𝜋 → 𝐾(ℤ∕2, 2) that pulls back along𝑀 → B𝜋 to
𝑤2(𝑀). The fibration 𝜉TOP∶ 𝐵TOP → BTOP is obtained from pulling back
𝑤2 along the universal class𝑤2∶ BSTOP→ 𝐾(ℤ∕2, 2), to obtain the space
𝐵TOP and a fibration 𝐵TOP → BSTOP, and then composing withBSTOP→

BTOP. Since we have a fibration sequence BTOPSpin → BSTOP
𝑤2,,→

𝐾(ℤ∕2, 2), the pullback gives rise to a fibration sequence BTOPSpin →
𝐵 → B𝜋. Then 𝜉TOP∶ 𝐵TOP → BTOP is the normal 1-type of𝑀.

Here is the relevant theorem of Kreck [97, Theorem C], which relates bor-
dism over the normal 1-type to stable diffeomorphism. We write Ω4(𝐵, 𝜉) for
the group under disjoint union of closed 4-manifolds 𝑀 together with a lift
𝜈∶ 𝑀 → 𝐵 along 𝜉 of the stable normal vector bundle, considered up to bor-
dism over (𝐵, 𝜉).
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Theorem 13.11. Two closed, connected, smooth 4-manifolds 𝑀 and 𝑁 with
𝜒(𝑀) = 𝜒(𝑁) and normal 1-types both fibre homotopy equivalent to a fixed
fibration 𝜉 ∶ 𝐵 → BO are stably diffeomorphic if and only if

[(𝑀, 𝜈𝑀)] = [(𝑁, 𝜈𝑁)] ∈ Ω4(𝐵, 𝜉)
for some choices of normal 1-smoothings 𝜈𝑀 and 𝜈𝑁 .

Sketch of the proof. One direction is quite easy: one has to check that𝑀 and
𝑀#(𝑆2 × 𝑆2) are bordant over the normal 1-type of𝑀.
For the other direction, start with a 5-dimensional bordism 𝑊 over (𝐵, 𝜉)

and perform surgery below the middle dimension [97, Section 3] to arrange
that the map 𝑊 → 𝐵 is 1-connected. We outline the procedure next. First
perform surgery on pairs of discs, extending the map to 𝐵 over the new copies
of 𝐷1 × 𝑆4 to make the map 𝜋1(𝑊)→ 𝜋1(𝐵) surjective. Then represent normal
generators of the kernel of 𝜋1(𝑊)→ 𝜋1(𝐵)) by framed circles using Chapters 5
and 10. Since 𝜋1(𝑊) and 𝜋1(𝐵) are finitely presented, this can be done with
finitely many circles. To prove that the normal vector bundles admit framings
one must use the bundle data 𝜉; for this we refer to [97, Section 3]. Perform
surgery on the framed circles tomake themap to𝐵 1-connected. This completes
the surgery below the middle dimension step.
Now represent the elements of Ker(𝜋2(𝑊) → 𝜋2(𝐵)) by framed embedded

spheres, and remove thickenings of these spheres. Also, for each sphere, re-
move a tube 𝐷1 ×𝐷4 connecting that sphere to either𝑀 or𝑁. Choose whether
to tube to 𝑀 or 𝑁 so as to preserve the Euler characteristic equality. This op-
eration of removing copies of 𝑆2 × 𝐷3, tubed to the boundary, has the effect
of adding copies of 𝑆2 × 𝑆2 to 𝑀 and 𝑁 giving rise to 𝑀′ and 𝑁′ respectively.
The operation also converts 𝑊 to an 𝑠-cobordism 𝑊′. That (𝑊′;𝑀′, 𝑁′) is
an 𝑠-cobordism means by definition that the inclusion maps 𝑀′ → 𝑊′ and
𝑁′ → 𝑊′ are simple homotopy equivalences. The stable 𝑠-cobordism theo-
rem [162] states that every 5-dimensional 𝑠-cobordism becomes diffeomorphic
to a product after adding copies of (𝑆2 × 𝑆2) × 𝐼 along a smoothly embedded
interval 𝐼 ⊆ 𝑊′ with one endpoint on each of 𝑀 and 𝑁. This completes the
sketch proof of Theorem 13.11. □

The proof of the topological version is similar.

Theorem 13.12. Two closed, topological 4-manifolds 𝑀 and 𝑁 with 𝜒(𝑀) =
𝜒(𝑁) and normal 1-types both fibre homotopy equivalent to a fixed fibration
𝜉TOP∶ 𝐵TOP → BTOP are stably homeomorphic if and only if

[(𝑀, 𝜈𝑀)] = [(𝑁, 𝜈𝑁)] ∈ ΩTOP
4 (𝐵TOP, 𝜉TOP)

for some choices of normal 1-smoothings 𝜈𝑀 and 𝜈𝑁 .

From now on, to ease notation, we will sometimes abbreviate the bordism
group ΩTOP

4 (𝐵TOP, 𝜉TOP) to ΩTOP
4 (𝐵, 𝜉).

Proof. One direction is again quite easy: we need that homeomorphic mani-
folds are bordant over𝐵, and that𝑀 and𝑀#(𝑆2×𝑆2) are bordant inΩTOP

4 (𝐵, 𝜉).
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For the other direction, apply the same argument as above to improve a cobor-
dism 𝑊 to an 𝑠-cobordism. The stable 𝑠-cobordism Theorem applies to topo-
logical 𝑠-cobordisms as well as to smooth 𝑠-cobordisms. This is not written in
[162], but the same proof applies, with the following additions (see the Exercise
on [50, p. 107]). First, 5-dimensional cobordisms admit a topological handle
structure [50, Theorem 9.1]. The proof of [162] consists of simplifying a han-
dle decomposition, and tubing surfaces in 4-manifolds around and into parallel
copies of one another to remove intersections. This is possible in the topologi-
cal category by using transversality (Theorem10.3) to arrange that intersections
between surfaces are isolated points, and the existence of normal vector bun-
dles (Theorem 5.14) to take parallel copies using sections. □

13.2. Stable diffeomorphism of homeomorphic orientable 4-manifolds.
Now we will explain the proof of Theorem 13.2. For the convenience of the
reader, we recall the statement.

Theorem. 13.2. Every homeomorphic pair of closed, connected, orientable, smooth
4-manifolds are stably diffeomorphic.

The proof will rest on the following proposition.

Proposition 13.13. Let (𝐵, 𝜉) be one of the oriented smooth normal 1-types from
Lemma 13.9, and let (𝐵TOP, 𝜉TOP) be the corresponding topological normal 1-
type from Lemma 13.10 obtained by replacing BSO with BSTOP or BSpin with
BTOPSpin as appropriate. The forgetful map

𝐹∶ Ω4(𝐵, 𝜉)→ ΩTOP
4 (𝐵TOP, 𝜉TOP) = ΩTOP

4 (𝐵, 𝜉)
is injective.

The combination of this proposition with Theorems 13.11 and 13.12 implies
the following corollary, which is the closed version of Theorem 13.2, with a
slightly more precise statement concerning orientations.

Corollary 13.14. Every pair of smooth, closed, connected, oriented 4-manifolds
that are homeomorphic via an orientation preserving homeomorphism are stably
diffeomorphic via an orientation preserving diffeomorphism.

Proof. We prove the corollary assuming Proposition 13.13. Homeomorphic 4-
manifolds are in particular stably homeomorphic and have the same normal
1-types. Therefore two homeomorphic smooth 4-manifolds as in the statement
of the corollary are bordant over the normal 1-type, so give rise to equal ele-
ments in ΩTOP

4 (𝐵, 𝜉). By Proposition 13.13, they give rise to equal elements of
Ω4(𝐵, 𝜉). Then by Theorem 13.11, the two 4-manifolds are stably diffeomor-
phic, as asserted. □

Proof of Proposition 13.13. Let 𝑆 be SO in case (1) of the smooth list of 1-
types given in Lemma 13.10, and let 𝑆 denote Spin in cases (2) and (3).
Let 𝑆𝑇 be STOP in case (1) of the topological list of 1-types above, and let 𝑆𝑇

denote TOPSpin in cases (2) and (3).
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The James spectral sequence [190, Theorem 3.1.1], [86, Section 3] is of the
form:

𝐸2𝑝,𝑞 = 𝐻𝑝(B𝜋; Ω𝑆
𝑞) ⇒ Ω𝑝+𝑞(𝐵, 𝜉).

We have that Ω𝑆
4 ≅ ℤ, detected by the signature. Indeed, the signature is a ℤ-

valued invariant that agrees for stably diffeomorphic 4-manifolds. The signa-
ture of a 4-manifold with a normal 1-smoothing into 𝐵 gives rise to an element
of Ω4(𝐵, 𝜉). The 𝐸2 term𝐻0(B𝜋; Ω𝑆

4) ≅ ℤ is computed using Ω𝑆
4 ≅ ℤ.

Claim. This term𝐻0(B𝜋; Ω𝑆
4) survives to the 𝐸

∞ page. That is, all differentials
with this as codomain are trivial.

Let us prove the claim. Since Ω𝑆
𝑞 is torsion for 𝑞 = 1, 2, 3, no terms from

those 𝑞-lines can map to𝐻0(B𝜋; Ω𝑆
4) under a differential.

Aside from 𝐻0(B𝜋; Ω𝑆
4), there is one other potentially infinite term on the

4-line of the 𝐸∞ page, namely the subgroup of𝐻4(B𝜋; Ω𝑆
0) arising as the kernel

of relevant differentials. Since there are no differentials with the (4, 0) term
as codomain, this subgroup is a quotient of Ω4(𝐵, 𝜉). The image of [𝑀, 𝑐] ∈
Ω4(𝐵, 𝜉) is the image 𝑐∗([𝑀]) of the fundamental class under the classifying
map 𝑐∗∶ 𝐻4(𝑀;ℤ)→ 𝐻4(B𝜋;ℤ) ≅ 𝐻4(B𝜋; Ω𝑆

0).
There could be a nontrivial differential 𝑑55,0∶ 𝐻5(B𝜋; Ω𝑆

0) → 𝐻0(B𝜋; Ω𝑆
4).

However if there were a nonzero differential, then only finitely many signa-
tures would occur for 4-manifolds with normal 1-type 𝐵 and fixed invariant in
𝐻4(B𝜋; Ω𝑆

0). But we can add copies of the 𝐾3-surface, mapping to a point in 𝐵,
to a given fixed element ofΩ4(𝐵, 𝜉), keeping the normal 1-type and 𝑐∗([𝑀]) the
same, but changing the signature by +16 for each copy of 𝐾3. This contradic-
tion implies that 𝑑55,0 is the zeromap. This completes the proof of the claim that
the term𝐻0(B𝜋; Ω𝑆

4) survives to the 𝐸
∞ page.

Since𝐻0(B𝜋; Ω𝑆
4) survives to the 𝐸

∞ term, we have a short exact sequence:

0→ Ω𝑆
4 → Ω4(𝐵, 𝜉)→ Ω̃4(𝐵, 𝜉)→ 0,

where Ω̃4(𝐵, 𝜉) denotes the quotient. That is, there is a filtration with iterated
graded quotients given by the 𝐸∞ page:

0 ⊆ 𝐸∞4,0 = Ω𝑆
4 ⊆⋯ ⊆ Ω4(𝐵, 𝜉),

and it is the quotient by the 𝐸∞4,0 subgroup that we denote Ω̃4(𝐵, 𝜉).
Similarly, for the topological case, we have

0→ Ω𝑆𝑇
4 → ΩTOP

4 (𝐵, 𝜉)→ Ω̃TOP
4 (𝐵, 𝜉)→ 0.

The only difference in the proof from the smooth case is that we also have to
argue that the Kirby-Siebenmann invariant ℤ∕2 ⊆ Ω𝑆𝑇

4 survives to the 𝐸∞
page. But the Kirby-Siebenmann invariant is additive, and realised on sim-
ply connected manifolds, by the 𝐸8 manifold. Thus there exist bordism classes
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(i.e. stable homeomorphism classes) realising both trivial and nontrivial Kirby-
Siebenmann invariantswithin a normal 1-type, and so thisℤ∕2 cannot be killed
by a differential.
Since the structure forgetting map Ω𝑆

𝑞 → Ω𝑆𝑇
𝑞 is an isomorphism for 0 ≤

𝑞 ≤ 3, we have an isomorphism Ω̃4(𝐵, 𝜉) ≅ Ω̃TOP
4 (𝐵, 𝜉). This uses that the

differentials agree, by naturality of the James spectral sequence with respect
to homology theories. Indeed, note that the differentials depend only on the
classifying space B𝜋, and on the complex line bundle 𝐸 → B𝜋 in case (3). Both
are category independent.
Then there is a map of short exact sequences:

0 // Ω𝑆
4

//

��

Ω4(𝐵, 𝜉) //

��

Ω̃4(𝐵, 𝜉) //

≅
��

0

0 // Ω𝑆𝑇
4

// ΩTOP
4 (𝐵, 𝜉) // Ω̃TOP

4 (𝐵, 𝜉) // 0.

The left vertical map is injective, either inclusion into the first summand ℤ →
ℤ⊕ℤ∕2 for non-spin or 16ℤ→ 8ℤ in the spin case, when 𝐵 = B𝜋×BSpin and
𝐵TOP = B𝜋×BTOPSpin. Since the left and right vertical maps are injective, it
follows from a diagram chase that the central vertical map is also injective, as
required. □

13.3. Nonorientable 4-manifolds and stablediffeomorphism. For the con-
venience of the reader, we recall the statement of Theorem 13.3.

Theorem. 13.3. Let 𝑀 and 𝑁 be closed, connected, nonorientable, smooth 4-
manifolds. Suppose that𝑀 and 𝑁 are homeomorphic. If 𝑤2(�̃�) ≠ 0 ≠ 𝑤2(�̃�),
that is the universal covers of 𝑀 and 𝑁 are not spin, then 𝑀 and 𝑁 are stably
diffeomorphic.

Here is the normal 1-type for nonorientable manifolds with a certain 𝑤2-
type [190, Chapter 2], first in the smooth and then in the topological case.

Lemma 13.15. Let𝑀 be a nonorientable closed, connected smooth 4-manifold
with 𝑤2(�̃�) ≠ 0. We set 𝜋 ∶= 𝜋1(𝑀). Then the normal 1-type of𝑀 is 𝜉 ∶ 𝐵 =
B𝜋×BSO→ BOwith themap 𝜉 = 𝑤1⊕B𝑖 given by theWhitney sum of a bundle
on B𝜋 determined by 𝑤1∶ 𝜋 → ℤ∕2 and the canonical map B𝑖∶ BSO → BO
induced by the inclusion 𝑖∶ SO→ O.

Lemma 13.16. Let 𝑀 be a nonorientable closed, connected 4-manifold with
𝑤2(�̃�) ≠ 0. We set 𝜋 ∶= 𝜋1(𝑀). Then the normal 1-type of 𝑀 is 𝜉 ∶ 𝐵 =
B𝜋×BSTOP → BTOP with the map 𝜉 = 𝑤1 ⊕ B𝑖 given by the Whitney sum of
a bundle on B𝜋 determined by the orientation character 𝑤1∶ 𝜋 → ℤ∕2 and the
canonicalmapB𝑖∶ BSTOP→ BTOP induced by the inclusion 𝑖∶ STOP→ TOP.

These normal 1-types give rise to a James spectral sequence (see [189, Chap-
ter II] for details) governing the bordism groups of (𝐵, 𝜉)

𝐸2𝑝,𝑞 = 𝐻𝑝(B𝜋; Ω
𝑤1
𝑞 ) ⇒ Ω𝑝+𝑞(𝐵, 𝜉).
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Note that the coefficients are twisted using ℤ𝑤1 ⊗Ω𝑞, where by definition, 𝑔 ∈
𝜋 acts on ℤ𝑤1 by multiplication by (−1)𝑤1(𝑔). The corresponding topological
James spectral sequence is:

𝐸2𝑝,𝑞 = 𝐻𝑝(B𝜋; (ΩSTOP
𝑞 )𝑤1) ⇒ ΩTOP

𝑝+𝑞(𝐵, 𝜉).

As in the previous section, here we abbreviateΩTOP
4 (𝐵TOP, 𝜉TOP) toΩTOP

4 (𝐵, 𝜉).
By Kreck’s Theorem 13.11) and the argument in the proof of Theorem 13.2,

in order to prove Theorem13.3 it suffices to prove the next injectivity statement,
which is an analogue of Proposition 13.13.

Proposition 13.17. Let (𝐵, 𝜉) be one of the normal 1-types in Lemma 13.15 and
let (𝐵TOP, 𝜉TOP) be the corresponding topological normal 1-type over BTOP. The
forgetful map

𝐹∶ Ω4(𝐵, 𝜉)→ ΩTOP
4 (𝐵TOP, 𝜉TOP) = ΩTOP(𝐵, 𝜉)

is injective.

Proof of Theorem 13.3 assuming Proposition 13.17. Homeomorphic
4-manifolds have the same normal 1-types and are trivially TOP bordant over
this normal 1-type, injectivity of 𝐹 implies that homeomorphic nonorientable,
closed, connected, smooth 4-manifolds are smoothly bordant over their normal
1-type, and therefore by Theorem 13.11 are stably diffeomorphic. □

Proof of Proposition 13.17. The structure of the proof is very similar to that
of the proof of Proposition 13.13. This proof is therefore somewhat terse. In the
smooth James spectral sequence computing Ω4(𝐵, 𝜉), we consider the term on
the 𝐸2 page 𝐻0(B𝜋; Ω

𝑤1
4 ) ≅ ℤ∕2. This is detected by the Euler characteristic of

the manifold modulo two.
Sincewe can always performconnected sumwith a copy ofℂℙ2 (note that for

nonorientable manifolds connected sum with ℂP2 and ℂP2 is the same), both
mod 2 Euler characteristics are realised by bordism classes over (𝐵, 𝜉). Also
note that adding ℂP2 does not change the normal 1-type when 𝑤2(�̃�) ≠ 0.
Therefore𝐻0(B𝜋; Ω

𝑤1
4 ) ≅ ℤ∕2 survives to the 𝐸∞ page.

In the topological case, the corresponding term in the James spectral se-
quence computing ΩTOP

4 (𝐵, 𝜉) is

𝐻0(B𝜋; (ΩSTOP
4 )𝑤1) ≅ ℤ∕2⊕ℤ∕2.

We can add copies of ℂP2 and ∗ ℂP2 to a given element of ΩTOP
4 (𝐵, 𝜉) to show

that this term survives to the 𝐸∞ page. The structure forgetting map ℤ∕2 ≅
𝐻0(B𝜋; Ω

𝑤1
4 )→ 𝐻0(B𝜋; (ΩSTOP

4 )𝑤1) ≅ ℤ∕2⊕ℤ∕2 is injective.
Therefore the filtrations ofΩ4(𝐵, 𝜉) andΩTOP

4 (𝐵, 𝜉) arising from the spectral
sequence give rise to short exact sequences, that form the rows of the following
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commutative diagram:

0 // ℤ∕2 //

��

Ω4(𝐵, 𝜉) //

��

Ω̃4(𝐵, 𝜉) //

≅
��

0

0 // ℤ∕2⊕ℤ∕2 // ΩTOP
4 (𝐵, 𝜉) // Ω̃TOP

4 (𝐵, 𝜉) // 0.

We noted above that the left vertical map is injective. Since Ω𝑞 → ΩSTOP
𝑞 is

an isomorphism for 0 ≤ 𝑞 ≤ 3, the right vertical map is an isomorphism and
is therefore injective. It follows from a diagram chase that the central vertical
map is also injective, as required. □

For the other normal 1-types of nonorientable 4-manifolds, the𝐸20,4 terms are
given by the homology with twisted coefficients 𝐻0(B𝜋; (Ω

Spin
4 )𝑤1) and

𝐻0(B𝜋; (Ω
TOPSpin
4 )𝑤1). The forgetful map

𝐻0(B𝜋; (Ω
Spin
4 )𝑤1)→ 𝐻0(B𝜋; (Ω

TOPSpin
4 )𝑤1)

is not injective, because 16ℤ ≅ ΩSpin
4 → ΩTOPSpin

4 ≅ 8ℤ is not surjective.
Not only does the proof break down in these cases, but the examples in The-
orem 13.5 show that the hypothesis on the 𝑤2-type cannot be removed.

13.4. Homeomorphic 4-manifolds with boundary. In this section we will
briefly explain how to extend the proofs to manifolds with boundary. Here is
the relevant version of Kreck’s theorem [97].

Theorem 13.18. Let𝑀 and 𝑁 be compact (smooth) 4-manifolds, let 𝑓∶ 𝜕𝑀 →
𝜕𝑁 be adiffeomorphism, and suppose that the normal 1-types of𝑀 and𝑁 are both
fibre homotopy equivalent to the same fibration 𝜉TOP∶ 𝐵TOP → BTOP (𝜉 ∶ 𝐵 →
BO).
Then𝑀 and 𝑁 are stably homeomorphic (diffeomorphic) via a stable homeo-

morphism (diffeomorphism) extending 𝑓 if and only if 𝑀 and 𝑁 admit normal
1-smoothings 𝜈𝑀 and 𝜈𝑁 into 𝐵TOP (𝐵) such that 𝜈𝑀 = 𝜈𝑁◦𝑓∶ 𝜕𝑀 → 𝐵TOP
(𝐵), for which the union (𝑀 ∪𝑓 𝑁, 𝜈𝑀 ∪ −𝜈𝑁) represents the trivial element of
Ω4(𝐵TOP, 𝜉TOP) (Ω4(𝐵, 𝜉)).

In Propositions 13.13 and 13.17 we proved injectivity of the forgetful maps
in bordism Ω4(𝐵, 𝜉)→ ΩTOP

4 (𝐵TOP, 𝜉TOP) relevant to Theorems 13.2 and 13.3.

Proof of Theorems 13.2 and 13.3. Let𝑀 and𝑁 be smooth, compact 4-mani-
folds with nonempty boundary. Let (𝐵TOP, 𝜉TOP) and (𝐵, 𝜉) be the relevant nor-
mal 1-types. Let 𝑓∶ 𝜕𝑀 → 𝜕𝑁 be a diffeomorphism that extends to a home-
omorphism from𝑀 to 𝑁. Then by Theorem 13.18 in the topological category,
there exist normal 1-smoothings 𝜈TOP𝑀 ∶ 𝑀 → 𝐵TOP and 𝜈TOP𝑁 ∶ 𝑁 → 𝐵TOP such
that (𝑀 ∪𝑓 𝑁, 𝜈

TOP
𝑀 ∪ −𝜈TOP𝑁 ) represents the trivial element of Ω4(𝐵TOP, 𝜉TOP).

Since𝑀 and𝑁 are smooth, their stable normal vector bundle classifying maps
lift along BO → BTOP, and we obtain normal 1-smoothings 𝜈𝑀 ∶ 𝑀 → 𝐵 and
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𝜈𝑁 ∶ 𝑁 → 𝐵 such that (𝑀 ∪𝑓 𝑁, 𝜈𝑀 ∪ −𝜈𝑁) ∈ Ω4(𝐵, 𝜉)maps under the forget-
ful map to (𝑀 ∪𝑓 𝑁, 𝜈

TOP
𝑀 ∪ −𝜈TOP𝑁 ) = 0 ∈ Ω4(𝐵TOP, 𝜉TOP). By injectivity of the

forgetful maps Ω4(𝐵, 𝜉) → ΩTOP
4 (𝐵TOP, 𝜉TOP), as proven in Propositions 13.13

and 13.17, it follows that (𝑀∪𝑓𝑁, 𝜈𝑀∪−𝜈𝑁) = 0 ∈ Ω4(𝐵, 𝜉). By Theorem13.18,
we learn that indeed𝑀 and 𝑁 are stably diffeomorphic via a stable diffeomor-
phism extending the given diffeomorphim 𝑓∶ 𝜕𝑀 → 𝜕𝑁. □
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14. Reidemeister torsion in the topological category
14.1. The simple homotopy type of a manifold. In the following we need
the notion of a simple homotopy equivalence. We will not give a definition,
instead we refer to [196, p. 40] for details. Roughly, a simple homotopy equiva-
lence between CW complexes is a sequence of elementary expansions and col-
lapses of pairs of cells whose dimension differs by one.
As we discussed in Chapter 3, it is not clear whether topological 4-manifolds

have CW-structure. Fortunately the following definition allows us to define a
simple homotopy type even for topological spaces which are not homeomor-
phic to a CW complex.

Definition 14.1. Let (𝑊,𝑉) be a pair of topological spaces. Consider tuples
(𝑊,𝑉, 𝑓, 𝑋, 𝑌), where (𝑋,𝑌) is a finite CW complex pair with 𝑌 ⊆ 𝑋, and
𝑓∶ 𝑊 → 𝑋 and 𝑓|𝑉 ∶ 𝑉 → 𝑌 homotopy equivalences. Two such tuples
(𝑊,𝑉, 𝑓, 𝑋, 𝑌) and (𝑊,𝑉, 𝑓′, 𝑋′, 𝑌′), with (𝑋′, 𝑌′) another finite CW pair and
𝑓′∶ (𝑊,𝑉) → (𝑋′, 𝑌′), are equivalent if there exists a simple homotopy equiv-
alence of pairs 𝑠∶ (𝑋,𝑌) → (𝑋′, 𝑌′) such that 𝑠◦𝑓 is homotopic to 𝑓′ and
𝑠|𝑌◦𝑓|𝑉 ∶ 𝑉 → 𝑌′ is homotopic to 𝑓′|𝑉 . Such an equivalence class of
(𝑊,𝑉, 𝑓, 𝑋, 𝑌) is called a simple homotopy type of (𝑊,𝑉). In particular, a sim-
ple homotopy type of (𝑊,∅) is called a simple homotopy type of𝑊.

Now consider a compact, connected 𝑛-manifold 𝑀. If 𝑀 admits a smooth
structure, then by Theorem 3.13 we know that 𝑀 admits in particular a CW
structure, and we equip 𝑀 with the simple homotopy type given by
(𝑀,∅, Id,𝑀,∅). By Chapman’s Theorem [28, p. 488] below, this simple ho-
motopy type is independent of the choice of CW structure on𝑀.

Theorem 14.2. (Chapman’s Theorem) Let𝑊 be a compact topological space.
Any two CW structures on𝑊 are simple homotopy equivalent.

As we pointed out in Chapter 3, it is unknown whether every compact man-
ifold admits a CW structure. In the remainder of this section, we will nonethe-
less introduce the simple homotopy type of a compact manifold 𝑀 following
[91, Essay III, Section 4, p. 117]. The first step is to construct a disc bundle
𝐷(𝑀)→ 𝑀 together with a PL structure on the total space𝐷(𝑀). We will work
with a compact 𝑚-dimensional manifold 𝑀 with boundary 𝜕𝑀, and seek to
construct the simple homotopy type of (𝑀, 𝜕𝑀).

Construction 14.3. We deal with the case 𝜕𝑀 = ∅ first, and then later address
the additional complications arising from having nonempty boundary.
As a first step to constructing the disc bundle 𝐷(𝑀) ⊆ ℝ𝑛, we need an em-

bedding of𝑀 intoℝ𝑛−1 for some large integer 𝑛−1 > 2𝑚+5. For a closed𝑚–
manifold𝑀 such an embedding is readily available [72, Corollary A.9]. It fol-
lows fromTheorem6.20 that for𝑛−1 > 2𝑚+5 all such embeddings of𝑀 are iso-
topic, and that they admit a normal microbundle 𝜈ℝ𝑛−1(𝑀) that is unique up to
isotopy. By Theorem 6.17 this normal microbundle 𝜈ℝ𝑛−1(𝑀) can be upgraded
to a topological ℝ𝑛−1−𝑚–bundle. By taking the product with ℝ, construct an
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embedding𝑀 ⊆ ℝ𝑛 whose normalmicrobundle is 𝜈(𝑀) = 𝜈ℝ𝑛−1(𝑀)×ℝ. Since
we stabilised once, the normal microbundle 𝜈(𝑀) contains a normal disc bun-
dle 𝐵(𝑀) [91, Essay III, Proposition 4.4, p. 120].
The next big step will be to upgrade 𝐵(𝑀) ⊆ ℝ𝑛 from a submanifold to a

PL submanifold. Since the interior is codimension 0, the interior of 𝐵(𝑀) is
automatically also a PL submanifold. However, we have to arrange 𝜕𝐵(𝑀) to
be a PL submanifold of ℝ𝑛 itself. In the next paragraphs, we modify the PL
structure on ℝ𝑛 such that 𝜕𝐵(𝑀) becomes a PL submanifold and then isotope
this new PL structure on ℝ𝑛 back to the standard PL structure.
Using the Collar Neighbourhood Theorem 2.16, pick a collar structure𝑊𝜕 =

𝜕𝐵(𝑀) × (−1, 1) and 𝐷𝜕 = 𝜕𝐵(𝑀) × [− 1
2
, 1
2
]. The Local Product Structure The-

orem 4.18 [91, Essay I, Theorem 5.2, p. 36], applied with𝑊 =𝑊𝜕 and 𝐷 = 𝐷𝜕,
gives a PL structure 𝜎𝜕 on ℝ𝑛 such that 𝜕𝐵(𝑀) is a PL submanifold and 𝜎𝜕 is
concordant to the standard PL structure 𝜎std.
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𝑀

Figure 13. Illustration of 𝐵(𝑀).

Now we will isotope the pair 𝜕𝐵(𝑀) ⊆ 𝐵(𝑀) so that they become PL sub-
manifolds of (ℝ𝑛, 𝜎std). The PL structure 𝜎𝜕 is concordant to 𝜎std. Since con-
cordance implies isotopy [91, Essay I, Theorem 4.1, p. 25] in dimension𝑚 ≥ 6,
there is an isotopy 𝜙𝑡 ∈ Homeo(ℝ𝑛) such that 𝜙0 = Id, and 𝜙∗1𝜎std = 𝜎𝜕. Con-
sequently, 𝐷(𝑀) ∶= 𝜙1(𝐵(𝑀)) and 𝐷(𝜕𝑀) ∶= 𝜙1(𝐵(𝜕𝑀)) are PL submanifolds
of (ℝ𝑛, 𝜎std), which defines a simple type of 𝑀, the tuple (𝑀, 𝑧, 𝐷(𝑀)), where
𝑧∶ 𝑀 → 𝐷(𝑀) is the zero section.
Having finished the case 𝜕𝑀 ≠ ∅, next we discuss the procedure for a man-

ifold𝑀 with nonempty boundary.
Take the union of𝑀 with an external open collar 𝜕𝑀×[0, 1) of its boundary.

Write 𝑀′ ∶= 𝑀 ∪𝜕𝑀 𝜕𝑀 × [0, 1). Embed 𝑀′ into ℝ𝑛 as in the closed case
[72, Corollary A.9]. Note that 𝑀′ has empty boundary and so it is properly
embedded. As in the closed case, obtain a disc bundle 𝐵(𝑀′) and let 𝐵(𝑀) be
the restriction of this disc bundle to𝑀.
Now we have to take much more care. Note that 𝜕𝐵(𝑀) decomposes as

𝜕𝐵(𝑀) = 𝐵(𝜕𝑀) ∪𝑋 𝐵𝜕(𝑀). Here 𝐵𝜕(𝑀) denotes the fibrewise boundary and
𝑋 = 𝜕

(
𝐵(𝜕𝑀)

)
denotes the intersection of 𝐵(𝜕𝑀) and 𝐵𝜕(𝑀). As above, we

will find a PL structure 𝜎𝜕 of ℝ𝑛 such that each subset 𝐵(𝜕𝑀), 𝑋 and 𝐵𝜕(𝑀) is
PL–submanifold of ℝ𝑛.
Our first goal is to modify the PL structure on ℝ𝑛 so that the corners 𝑋 be-

come a PL submanifold ofℝ𝑛. Denote the standard PL structure onℝ𝑛 by 𝜎std.
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Pick a bicollar 𝜕𝐵(𝑀)×[−1, 1] ⊆ ℝ𝑛 of the boundary of the codimension 0 sub-
manifold𝐵(𝑀). Again by theCollarNeighbourhoodTheorem2.16, we can pick
a bicollar𝑋×[−1, 1] ⊆ 𝜕𝐵(𝑀). We consider the open set𝑊𝑋 ∶= 𝑋×(−1, 1)2 ⊆
𝜕𝐵(𝑀) × (−1, 1) ⊆ ℝ𝑛, and 𝐷𝑋 = 𝑋 × [− 1

2
, 1
2
]2. The Local Product Structure

Theorem 4.18 [91, Essay I, Theorem 5.2, p. 36], applied with 𝑊 = 𝑊𝑋 and
𝐷 = 𝐷𝑋 , gives a PL structure on 𝑋 and a PL structure 𝜎𝑋 on ℝ𝑛, which is con-
cordant to 𝜎std rel. ℝ𝑛 ⧵

(
𝑋 × (− 2

3
, 2
3
)2
)
. This PL structure 𝜎𝑋 has the property

that it agrees with the product PL structure on𝑋×(−1, 1)2 in a neighbourhood
of 𝐷𝑋 . Thus 𝑋 is a PL submanifold of (ℝ𝑛, 𝜎𝑋).
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Figure 14. Illustration of construction of 𝐷(𝑀) if 𝜕𝑀 ≠ ∅.

Now we arrange the next stratum 𝜕𝐵(𝑀) ⊇ 𝑋 to be a PL submanifold ofℝ𝑛.
Near 𝐷𝑋 = 𝑋 × [− 1

2
, 1
2
], the PL structure 𝜎𝑋 is the product PL structure, and

therefore 𝜕𝐵(𝑀) ∩ Int𝐷𝑋 = 𝑋 × (− 1
2
, 1
2
) × {0} is already a PL submanifold of

(ℝ𝑛, 𝜎𝑋). Furthermore, 𝜎𝑋 is a product along (− 1
2
, 1
2
) near 𝑋 × [− 1

3
, 1
3
]. Pick

𝑊𝜕 = 𝜕𝐵(𝑀) × (−1, 1), 𝐶𝜕 = 𝑋 × [− 1
3
, 1
3
] × [− 1

3
, 1
3
] and 𝐷𝜕 = 𝜕𝐵(𝑀) × [− 1

2
, 1
2
].

As above, the Local Product Structure Theorem 4.18 [91, Essay I, Theorem 5.2,
p. 36], applied with 𝑊 = 𝑊𝜕, 𝐶 = 𝐶𝜕, and 𝐷 = 𝐷𝜕, gives a PL structure 𝜎𝜕
on ℝ𝑛 such that 𝜕𝐵(𝑀) is a PL submanifold and 𝜎𝜕 is concordant to 𝜎𝑋 rel.(
ℝ𝑛 ⧵ 𝜕𝐵(𝑀) × (− 2

3
, 2
3
)
)
∪ 𝐶𝜕. Since 𝑋 ⊆ 𝐶𝜕 the submanifold 𝑋 is still a PL

submanifold of (ℝ𝑛, 𝜎𝜕).
As in the closed case, use a concordance from 𝜎𝜕 to 𝜎std to obtain an iso-

topy 𝜙𝑡 ∈ Homeo(ℝ𝑛) such that 𝜙0 = Id, and 𝜙∗1𝜎std = 𝜎𝜕. Define 𝐷(𝑀) ∶=
𝜙1(𝐵(𝑀)) and 𝐷(𝜕𝑀) ∶= 𝜙1(𝐵(𝜕𝑀)), which are both PL submanifolds of
(ℝ𝑛, 𝜎std). We obtain a simple homotopy type (𝑀, 𝜕𝑀, 𝑧, 𝐷(𝑀), 𝐷(𝜕𝑀), where
again 𝑧 is the zero section of the disc bundle. This finishes the case where 𝑀
has nonempty boundary.
In both cases, 𝜕𝑀 empty and nonempty, our construction involved many

choices. Let 𝐷′(𝜕𝑀) ⊆ 𝐷′(𝑀) be obtained by other choices. Following the
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discussion [91, p. 123], we can suitably stabilise the bundles and find a com-
mutative diagram of PLmaps:

𝐷(𝑀) × 𝐷𝑠 𝐷′(𝑀) × 𝐷𝑟

𝐷(𝜕𝑀) × 𝐷𝑠 𝐷′(𝜕𝑀) × 𝐷𝑟,

≅

≅

where 𝐷𝑘 denotes the disc with its standard PL structure and the horizontal
maps are PL isomorphisms that preserve the zero sections up to homotopy.

Definition 14.4. The simple homotopy type of a compact connected 𝑛-manifold
𝑀 is given by (𝑀, 𝑠), where 𝑠∶ 𝑀 → 𝐷(𝑀) is the inclusion of the 0-section. The
simple homotopy type of the pair (𝑀, 𝜕𝑀) is given by the square

𝑀 𝐷(𝑀)

𝜕𝑀 𝐷(𝜕𝑀),

𝑠

𝑠|𝜕𝑀

where 𝐷(𝜕𝑀) ⊆ 𝐷(𝑀) are the disc bundles from Construction 14.3, with CW
structures arising from a choice of PL triangulations corresponding to the PL
structures.

By the commutative square at the end of Construction 14.3, the simple ho-
motopy type of (𝑀, 𝜕𝑀) is well-defined. Here we use that PL isomorphisms
are simple: for any choice of triangulations underpinning the PL structures,
the resulting homeomorphism is a simple homotopy equivalence. Also stabil-
ising by 𝐷𝑠 does not change the simple homotopy type, since as PL manifolds
𝐷𝑠 ≅ 𝐷𝑠−1 × [−1, 1], and 𝐷𝑠−1 × {0}→ 𝐷𝑠−1 × [−1, 1] is a simple equivalence.

Remark 14.5. Why is the simple homotopy type of 𝜕𝑀 obtained in this way the
same as that obtained by applying Construction 14.3 with 𝜕𝑀 considered as a
manifold without boundary?
For suitably high 𝑛, we may assume that the embedding of (𝑀, 𝜕𝑀) into ℝ𝑛

is isotopic, and thus by Theorem 2.20 ambiently isotopic, to an embedding with
𝑖∶ 𝜕𝑀 ↪ {�⃗� ∈ ℝ𝑛 ∣ 𝑥1 = 0} ≅ ℝ𝑛−1 and an (interior) collar 𝜕𝑀 × [0, 1] em-
bedded as a product in {�⃗� ∈ ℝ𝑛 ∣ 0 ≤ 𝑥1 ≤ 1} with (𝑥, 𝑡) ↦ (𝑖(𝑥), 𝑡), as in
Theorem 2.21. Such an isotopy does not affect the simple homotopy type ob-
tained, by the argument sketched above, which can also be foundon [91, p. 123].
The simple homotopy type of 𝜕𝑀 obtained from Construction 14.3, via an em-
bedding of 𝜕𝑀 intoℝ𝑛−1, uses a disc bundle 𝐷(𝜕𝑀) that stabilises using the 𝑥1
direction to a disc bundle𝐷′(𝜕𝑀), with fibre a disc of one dimension higher, for
𝜕𝑀 embedded in ℝ𝑛. This latter disc bundle gives rise to the canonical simple
homotopy type of 𝜕𝑀 from Definition 14.4.

Remark 14.6. If 𝑀 is a smooth manifold, then 𝑀 has an underlying PL struc-
ture, and with a bit more care in Construction 14.3, we can arrange that the
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bundle 𝐷(𝑀) is a PL bundle. Note that this is stronger than just a PL structure
on the total space. For PL bundles, the bundle projection 𝐷(𝑀) → 𝑀 is a sim-
ple homotopy equivalence. Indeed, for trivial bundles this is discussed above,
and in general the projection is an 𝛼-equivalence (a notion defined in [43]) for
any cover 𝛼 of𝑀 and so is simple [43, Corollary 3.2]. It follows that the simple
homotopy type defined by (𝑀, Id) agrees with the one of (𝑀, 𝑠), and the same
holds for the relative simple homotopy type of the pair (𝑀, 𝜕𝑀).
According to [91, Essay III, Theorem 5.11, p. 123], if a manifold has a trian-

gulation, then the simple homotopy type of themanifold agrees with the simple
homotopy type of that triangulation. It is not clear to us whether the analogous
statement holds if𝑀 has a CW structure not coming from a triangulation.

14.2. The cellular chain complex and Poincaré triads. Throughout this
section let𝑀 be a compact connected𝑛-manifold. Furthermore assume thatwe
are given a decomposition 𝜕𝑀 = 𝑅− ∪ 𝑅+ into codimension zero submanifolds
such that 𝜕𝑅− = 𝑅− ∩ 𝑅+ = 𝜕𝑅+.
The following proposition follows from the argument of Construction 14.3,

applied with even more iterations to deal with corners of corners. See also the
proof of [91, Essay III, Theorem 5.13, p. 136].

Proposition 14.7. There exists a finite CW complex triad (𝑋,𝑋−, 𝑋+) and a ho-
motopy equivalence of triads 𝑓∶ (𝑀,𝑅−, 𝑅+)→ (𝑋,𝑋−, 𝑋+) such that the follow-
ing two statements hold:
(1) The restrictions of 𝑓 to𝑀, 𝑅± and 𝑅− ∩ 𝑅+ give the simple homotopy types

of these manifolds, as defined in Defintion 14.1.
(2) The restrictions of 𝑓 to the pairs (𝑀, 𝜕𝑀), (𝜕𝑀, 𝑅±) and (𝑅±, 𝑅− ∩𝑅+) give

the simple homotopy types of these pairs of manifolds, as defined in the pre-
vious section.

We continue with a general definition regarding CW complexes.

Definition 14.8. Let (𝑋,𝑌) be a pair of CW complexes such that 𝑋 is con-
nected. We write 𝜋 = 𝜋1(𝑋) and we denote the universal covering by 𝑝∶ 𝑋 →
𝑋. The group𝜋 acts on the left on the cells of the CWcomplex (𝑋, 𝑝−1(𝑌)). This
equips 𝐶cell∗ (𝑋, 𝑝−1(𝑌)) with the structure of a left ℤ[𝜋]-module. We define

𝐶cell∗ (𝑋,𝑌;ℤ[𝜋]) ∶= ℤ[𝜋]⊗ℤ[𝜋] 𝐶cell∗ (𝑋, 𝑝−1(𝑌))
𝐶∗cell(𝑋,𝑌;ℤ[𝜋]) ∶= Homright-ℤ[𝜋](𝐶cell∗ (𝑋, 𝑝−1(𝑌)),ℤ[𝜋]).

Here, given a left ℤ[𝜋]-module 𝑀 we denote the right ℤ[𝜋]-module given by
𝑚 ⋅ 𝑔 ∶= 𝑔−1 ⋅𝑚 by𝑀. Note that the group 𝜋 acts freely on the left on the cells
of the CW complex (𝑋, 𝑝−1(𝑌)). For each cell in 𝑋 ⧵ 𝑌, pick a lift to 𝑋. This
turns 𝐶cell∗ (𝑋,𝑌;ℤ[𝜋]) and 𝐶∗cell(𝑋,𝑌;ℤ[𝜋]) into based left ℤ[𝜋]-module (co-)
chain complexes.

Now we can state the main theorem of this section.
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Theorem 14.9. The finite CW complex triad (𝑋,𝑋−, 𝑋+) from Proposition 14.7
is a simple Poincaré triad, meaning that there is a chain level representative 𝜎 ∈
𝐶cell𝑛 (𝑋,𝑋− ∪ 𝑋+) of the fundamental class

[𝑋] ∈ 𝐻𝑛(𝑋,𝑋+ ∪ 𝑋−;ℤ) ≅ 𝐻𝑛(𝑀, 𝜕𝑀;ℤ)

such that

− X 𝜎∶ 𝐶𝑛−𝑟cell (𝑋,𝑋−;ℤ[𝜋1(𝑋)]) → 𝐶cell𝑟 (𝑋,𝑋+;ℤ[𝜋1(𝑋)])

is a simple chain homotopy equivalence.

The theorem is proved in [91, Essay III, Theorem 5.13, p. 136]. In the Univer-
sal Poincaré Duality Theorem A.16 we will prove that there exists a chain ho-
motopy equivalence between the two chain complexes. But we will not prove
that there exists a simple homotopy equivalence; for that the reader will need
to consult [91].

14.3. Reidemeister torsion. In this section we introduce Reidemeister tor-
sion invariants for compact manifolds and discuss some of the key properties
of these invariants.
Let𝑀 be a compact connected 𝑛-manifold and write 𝜋 = 𝜋1(𝑀). Let 𝑅− be

a compact codimension 0 submanifold of 𝜕𝑀. In many applications 𝑅− = ∅ or
𝑅− = 𝜕𝑀. We write 𝑅+ = 𝜕𝑀 ⧵ 𝑅−. Let 𝐹 be a field and let 𝛼∶ 𝜋 → GL(𝑑, 𝐹)
be a representation of the fundamental group of 𝑀. With respect to this rep-
resentation, we consider the twisted homology 𝐻𝑘(𝑀,𝑅−;𝐹𝑑), as defined in
Section A.1.

Assumption 14.10. Suppose that𝐻𝑘(𝑀,𝑅−;𝐹𝑑) = 0 for all 𝑘.

Pick a homotopy equivalence of triads 𝑓∶ (𝑀,𝑅−, 𝑅+) → (𝑋,𝑋−, 𝑋+) as
in Proposition 14.7. We use the homotopy equivalence 𝑓 to make the iden-
tification 𝜋1(𝑋) = 𝜋. By a serious abuse of notation, we refer to the cellu-
lar chain complex 𝐶cell∗ (𝑋,𝑋−;ℤ[𝜋]) of (𝑋,𝑋−) as the cellular chain complex
𝐶cell∗ (𝑀,𝑅−;ℤ[𝜋]) of (𝑀,𝑅−). As in Section 14.2 we view 𝐶cell∗ (𝑀,𝑅−;ℤ[𝜋]) as
a based left ℤ[𝜋]-module chain complex. Equip the 𝐹-module chain complex
𝐶cell∗ (𝑀,𝑅−;𝐹𝑑) = 𝐹𝑑⊗ℤ[𝜋]𝐶cell∗ (𝑀,𝑅−;ℤ[𝜋])with the basing given by the ten-
sor products of the ℤ[𝜋]-bases of 𝐶cell∗ (𝑀,𝑅−;ℤ[𝜋]) and the canonical 𝐹-basis
for 𝐹𝑑.
We write∼𝛼 for the equivalence relation on 𝐹× ∶= 𝐹⧵ {0} that is given by the

subgroup {± det(𝛼(𝑔)) ∣ 𝑔 ∈ 𝜋1(𝑀)} ⊆ 𝐹×. We define 𝜏(𝑀,𝑅−, 𝛼) ∈ 𝐹×∕ ∼𝛼 to
be the Reidemeister torsion of the above acyclic, based 𝐹-module chain com-
plex. We refer to [196, Section 6] for the definition of the Reidemeister torsion
of an acyclic, based 𝐹-module chain complex. It follows from a slight generali-
sation of [196, Theorem 9.1] that 𝜏(𝑀,𝑅−, 𝛼) ∈ 𝐹×∕ ∼𝛼 is well-defined, in that
it is independent of the choice of the representative of the simple homotopy
type of (𝑋,𝑋−, 𝑋+) and it is independent of the choice of the lifts of the cells. If
𝑅− = ∅ then we write 𝜏(𝑀,𝛼) ∶= 𝜏(𝑀,∅, 𝛼).
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The following two theorems give the two arguablymost important properties
of Reidemeister torsion.

Theorem 14.11. Let 𝑀 be a compact connected 𝑛-manifold, let 𝑅− be a com-
pact codimension zero submanifold of 𝜕𝑀 and let 𝛼∶ 𝜋1(𝑀) → GL(𝑑, 𝐹) be a
representation. Let 𝑅1−,… , 𝑅𝑚− be the components of 𝑅−. By abuse of notation we
also write 𝛼 for the composition 𝛼∶ 𝜋1(𝑅𝑖−) → 𝜋1(𝑀) → GL(𝑑, 𝐹) defined us-
ing a path from the base point of𝑀 to a base point of 𝑅𝑖𝑖 . If 𝐻∗(𝑅1−;𝐹𝑑) = ⋯ =
𝐻∗(𝑅𝑚− ;𝐹𝑑) = 𝐻∗(𝑀;𝐹𝑑) = 0, then

𝜏(𝑀,𝛼) =
𝑚∏

𝑖=1
𝜏(𝑅𝑖−, 𝛼) ⋅ 𝜏(𝑀,𝑅−, 𝛼) ∈ 𝐹×∕ ∼𝛼 .

Proof. We have the following short exact sequence of chain complexes with
compatible bases:

0 → 𝐶cell∗ (𝑋−;𝐹𝑑) → 𝐶cell∗ (𝑋;𝐹𝑑) → 𝐶cell∗ (𝑋,𝑋−;𝐹𝑑) → 0.

Given such a short exact sequence, the multiplicativity of the torsion is proven
in [196, Theorem 3.4]. □

Definition 14.12. Let 𝐹 be a field with (possibly trivial) involution. Given a

representation 𝛼∶ 𝜋 → GL(𝑑, 𝐹)we denote the representation 𝑔 ↦ 𝛼(𝑔−1)
𝑇
by

𝛼†. We say that 𝛼 is unitary if 𝛼 = 𝛼†.

Example 14.13. Let 𝜙∶ 𝜋 → ℤ be a group homomorphism. Equip ℚ(𝑡) with
the usual involution given by 𝑡 = 𝑡−1. The representation 𝛼∶ 𝜋 → GL(1,ℚ(𝑡))
given by 𝑔 ↦ 𝑡𝜙(𝑔) is unitary.

Theorem 14.14. Let𝑀 be a compact 𝑛-manifold with (possibly empty) bound-
ary. Assume that we are given a decomposition 𝜕𝑀 = 𝑅− ∪ 𝑅+ into codimension
zero submanifolds such that 𝜕𝑅− = 𝑅− ∩ 𝑅+ = 𝜕𝑅+. Furthermore let 𝐹 be a field
with (possibly trivial) involution. Let 𝛼∶ 𝜋1(𝑀) → GL(𝑑, 𝐹) be a representation
such that𝐻∗(𝜕𝑀;𝐹𝑑) = 0 = 𝐻∗(𝑀;𝐹𝑑). Then

𝜏(𝑀,𝑅−, 𝛼) = 𝜏(𝑀,𝑅+, 𝛼†)
(−1)𝑛+1

∈ 𝐹×∕ ∼𝛼 .

In particular, if 𝛼 is unitary we have

𝜏(𝑀,𝑅−, 𝛼) = 𝜏(𝑀,𝑅+, 𝛼)
(−1)𝑛+1

∈ 𝐹×∕ ∼𝛼 .

Proof. We write 𝜋 = 𝜋1(𝑀). Write 𝐶±∗ = 𝐶cell∗ (𝑀,𝑅±;ℤ[𝜋]), recalling the
convention described below Assumption 14.10.
It follows from Theorem 14.9 that the torsion of the based 𝐹-module chain

complex 𝐹𝑑⊗ℤ[𝜋]𝐶−∗ agrees with the torsion of the based 𝐹-module chain com-
plex

𝐹𝑑 ⊗ℤ[𝜋] Homright-ℤ[𝜋](𝐶+𝑛−∗,ℤ[𝜋]).
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Consider the following isomorphism of based left 𝐹-module chain complexes

𝐹𝑑𝛼 ⊗ℤ[𝜋] Homright-ℤ[𝜋](𝐶+𝑛−∗,ℤ[𝜋])→ Homleft-𝐹(𝐹𝑑𝛼† ⊗ℤ[𝜋] 𝐶+𝑛−∗, 𝐹)

𝑣 ⊗ 𝜑 ↦
⎛
⎜
⎝

𝐹𝑑𝛼† ⊗ℤ[𝜋] 𝐶+𝑛−∗ → 𝐹

(𝑤 ⊗ 𝜎) ↦ 𝑣𝛼(𝜑(𝜎))𝑤𝑇

⎞
⎟
⎠

Using this isomorphism 𝜏(𝑀,𝑅−, 𝛼) also equals the torsion of the chain com-
plex on the right hand side. It follows from algebraic duality for torsions [196,
Theorem 1.9] that the torsion of the based chain complex on the right hand side

equals 𝜏(𝑀,𝑅+, 𝛼†)
(−1)𝑛+1

. □
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15. Obstructions to being topologically slice
15.1. The Fox-Milnor Theorem. In this section we provide an example of
the use of many of the theorems described in the previous chapters by applying
them to obtain an obstruction for a knot to be topologically slice.

Definition 15.1. Let 𝑌 be a homology 3-sphere that is the boundary of an in-
tegral homology 4-ball 𝑋.
(1) We say a knot𝐾 in𝑌 is topologically slice in𝑋 if𝐾 bounds a slice disc, that

is a proper submanifold of 𝑋 homeomorphic to a disc.
(2) Suppose 𝑋 is equipped with a smooth structure, e.g. 𝑋 = 𝐷4. We say a

knot 𝐾 in 𝑌 is smoothly slice in 𝑋 if 𝐾 bounds a smooth slice disc, that is a
proper smooth submanifold of 𝑋 diffeomorphic to a disc.

There are many classical obstructions to a knot in 𝑆3 being smoothly slice
in 𝐷4. For example, there are obstructions based on the Alexander polynomial
[48] and the Levine-Tristram signatures [195, 113] and there are themore subtle
Casson-Gordon [24, 25] obstructions. It is not hard to see that these results also
apply if we replace 𝑆3 by any integral homology 3-sphere and if we replace 𝐷4

by any smooth homology 4-ball.
Even though these results, having appeared prior to the work of Freedman

andQuinn, were formulated as obstructions to being smoothly slice, it has been
understood formany years that the original proofs can bemodified to prove that
these are in fact obstructions to being topologically slice.
In this section we will prove a sample theorem on the Alexander polynomial

∆𝐾(𝑡) of a knot 𝐾. (On page 123 we recall the definition of the Alexander poly-
nomial of a knot.) The following theorem, which in the smooth setting was
first proved by Fox-Milnor [48], is arguably the most basic obstruction to a knot
being topologically slice knot.

Theorem 15.2. (Fox-Milnor) Suppose that 𝐾 is a knot in a homology 3-sphere
𝑌 that bounds an integral homology 4-ball𝑋. If𝐾 is topologically slice in𝑋, then
the Alexander polynomial ∆𝐾(𝑡) of 𝐾 factors as ∆𝐾(𝑡) = ±𝑡𝑘 ⋅ 𝑓(𝑡) ⋅ 𝑓(𝑡−1) for
some 𝑘 ∈ ℤ and for some 𝑓(𝑡) ∈ ℤ[𝑡, 𝑡−1] such that 𝑓(1) = ±1.

Even though this result is very well known we want to provide a detailed
proof. In particular we want to highlight where some of the results discussed
in this book are used. The reader is encouraged to go through the above papers
[195, 113, 24, 25] and tomodify the proofs to deal with topologically slice knots.

15.2. A proof of the Fox-Milnor Theorem. For the proof of the Fox-Milnor
Theorem 15.2 we adopt the following notation.
(1) Let𝑌 be ahomology 3-sphere bounding some integral homology 4-ball𝑋.
(2) Given a knot 𝐾 in 𝑌, denote its zero framed surgery by 𝑁𝐾 .
(3) Given an oriented knot 𝐾 let 𝜇𝐾 be an oriented meridian.
(4) For a slice disc 𝐷 in 𝑋, let𝑁(𝐷) be a tubular neighbourhood provided by

Theorem 5.5. We refer to𝑊𝐷 = 𝑋 ⧵𝑁(𝐷) as the exterior of 𝐷.
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(5) The ring of integral Laurent polynomials in one variable is denoted by
ℤ[𝑡, 𝑡−1] or ℤ[𝑡±1].

Many topological slicing obstructions, such as knot signatures [195], the Fox-
Milnor condition [48], theBlanchfield form [87], Casson-Gordon invariants [24,
25], 𝐿2-signature defects [29] and 𝐿(2)-von Neumann 𝜌-invariants [30], rely im-
plicitly and explicitly on the next three propositions or slight variations thereof.

Proposition 15.3. Let 𝐾 be an oriented knot in 𝑌 and let 𝐷 be a slice disc in 𝑋.
(1) We have 𝜕𝑊𝐷 = 𝑁𝐾 .
(2) The inclusion map 𝜇𝐾 →𝑊𝐷 induces a ℤ-homology equivalence.

In the remainder of this section, given anoriented knot, weuse𝜙∶ 𝜋1(𝑁𝐾)→
⟨𝑡⟩ and 𝜙∶ 𝜋1(𝑊𝐷) → ⟨𝑡⟩ to denote the unique homomorphisms that send the
oriented meridian to 𝑡. These homomorphisms allow us to view ℤ[𝑡±1] and
ℚ(𝑡) as a ℤ[𝜋1(𝑁𝐾)]-module and a ℤ[𝜋1(𝑊𝐷)]-module.

Proof. First note that it follows from Proposition 5.10 (or more directly, the
fact that 𝐷 is contractible) that the tubular neighbourhood of 𝐷 is trivial, thus
we can identify it with 𝐷 × 𝐷2.
(1) We have to check that the framing of 𝐾 induced by the unique trivialisa-

tion𝑁(𝐷) ≅ 𝐷2 ×𝐷 is the 0–framing. Consider the double𝐷𝑋 = 𝑋 ∪𝑌 𝑋
. Note that 𝑌 splits 𝐷𝑋 into two copies of 𝑋. Let 𝐷 be contained in
one copy of 𝑋, and push a Seifert surface Σ into the other copy of 𝑋. By
picking a collar neighbourhood for 𝑌 = 𝜕𝑋 we obtain a bicollar neigh-
bourhood 𝑌 × [−1, 1] ⊆ 𝐷𝑋. Using Theorem 2.21 we can arrange that
𝐷 ∩ (𝑌 × [−1, 1]) = 𝐾 × [−1, 0], and Σ ∩ (𝑌 × [0, 1]) = 𝐾 × [0, 1]. Let
𝐹 = Σ∪−𝐷 ⊆ 𝐷𝑋. We compute the Euler number 𝑒(𝐹) ∈ ℤ in twoways.
First, note that 𝑒(𝐹) = [𝐹] ⋅ [𝐹] = 0, since 𝐻2(𝐷𝑋;ℤ) = 0. On the other
hand, the number 𝑒(𝐹) is also the difference between the induced fram-
ings of 𝑁(Σ)|𝐾 and 𝑁(𝐷)|𝐾 . Consequently, the two framings agree and
𝑁(𝐷) induces the 0–framing, which by definition is the framing induced
by 𝑁(Σ)|𝐾 .

(2) Let 𝜇𝐾 → 𝑊𝐷 be the inclusion of the meridian 𝜇𝐾 of 𝐾. Then we have
𝐻∗(𝑊𝐷, ∗ ×𝜇𝐾 ;ℤ) = 𝐻∗(𝑊𝐷, 𝐷×𝑆1;ℤ) = 𝐻∗(𝑋,𝐷×𝐷2) = 0 by excision
and the hypothesis that 𝑋 be a homology 4-ball. By the homology long
exact sequence for the pair (𝑊𝐷, 𝜇𝐾), the meridional map 𝜇𝐾 → 𝑊𝐷
induces a homology equivalence, so𝑊𝐷 is a homology circle. □

Proposition 15.4. The exterior𝑊𝐷 of a slice disc 𝐷 is homotopy equivalent to a
finite 3-dimensional CW complex. In particular the homology groups

𝐻∗(𝑊𝐷;ℤ[𝑡±1]), 𝐻∗(𝑊𝐷, 𝑁𝐾 ;ℤ[𝑡±1]) and𝐻∗(𝑁𝐾 ;ℤ[𝑡±1])

are all finitely generated.

Proof. Note that 𝑊𝐷 is a compact 4-manifold with nonempty boundary. It
follows from Theorem 3.16 that𝑊𝐷 is homotopy equivalent to a 3-dimensional
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CWcomplex. The statements regarding thehomology groups follow fromPropo-
sition A.9. □

Proposition 15.5.
(1) For any knot 𝐾 in a homology 3-sphere the modules 𝐻∗(𝑁𝐾 ;ℤ[𝑡±1]) are

ℤ[𝑡±1]-torsion.
(2) If𝐷 is a slice disc, then all the modules𝐻∗(𝑊𝐷;ℤ[𝑡±1]) areℤ[𝑡±1]-torsion.

Proof. We start out with the proof of the second statement. Let 𝑃 ⊆ ℤ[𝑡±1]
be the multiplicative subset of Laurent polynomials that augment to ±1, that is
𝑝(1) = ±1 if and only if 𝑝 ∈ 𝑃. We shall prove the slightly stronger statement,
that𝐻𝑘(𝑊𝐷;ℤ[𝑡±1]) is𝑃-torsion for 𝑘 > 0. Since𝐻0(𝑊𝐷;ℤ[𝑡±1]) ≅ ℤ[𝑡±1]∕(𝑡−
1) is ℤ[𝑡±1]-torsion, the result will follow. We write 𝜋 = 𝜋1(𝑊𝐷). Let

𝑄 ∶= 𝑃−1ℤ[𝑡±1]

be the result of inverting the polynomials in 𝑃. By Proposition A.5 there exists a
chain complex 𝐶∗ of finite length consisting of finitely generated free leftℤ[𝜋]-
modules such that for any ring 𝑅 and any (𝑅,ℤ[𝜋])-bimodule 𝐴 we have

𝐻𝑘(𝑊𝐷, 𝜇𝐾 ;𝐴) ≅ 𝐻𝑘(𝐴⊗ℤ[𝜋] 𝐶∗).

By Proposition 15.3 we know that𝐻𝑘(ℤ⊗ℤ[𝜋]𝐶∗) = 𝐻𝑘(𝑊𝐷, 𝜇𝐾 ;ℤ) = 0. Since
𝐶∗ is a chain complex of finite length consisting of finitely generated free left
ℤ[𝜋]-modules we obtain from chain homotopy lifting [29, Proposition 2.10],
see also [142, Lemma 3.1], that 𝐻𝑘(𝑄 ⊗ℤ[𝜋] 𝐶∗) = 0. A straightforward calcu-
lation shows that 𝐻∗(𝑆1, pt;𝑄) = 0. It follows that 𝐻∗(𝑊𝐷, pt;𝑄) = 0, so that
𝐻𝑘(𝑊𝐷;ℤ[𝑡±1]) is 𝑃-torsion for 𝑘 > 0.
The first statement is very well known. One of the many proofs would be to

use the above argument and the fact that 𝑆1 → 𝑌⧵𝜈𝐾 is a homology equivalence
to show that themodules𝐻∗(𝑌⧵𝜈𝐾;ℤ[𝑡±1]) are torsion. A basicMayer-Vietoris
argument then shows that the modules𝐻∗(𝑁𝐾 ;ℤ[𝑡±1]) are also torsion. □

We want to recall the definition of the Alexander polynomial of a knot. To
do so we need the notion of the order of a module.

Definition 15.6. Let𝐻 be a finitely generated free abelian group and let𝑀 be
a finitely generated ℤ[𝐻]-module. By [103, Corollary IV.9.5] the ring ℤ[𝐻] is
Noetherian which implies that𝑀 admits a free resolution

ℤ[𝐻]𝑟
⋅𝐴
,,→ ℤ[𝐻]𝑠 → 𝑀 → 0.

Without loss of generality we can assume that 𝑟 > 𝑠. Since ℤ[𝐻] is unique
factorisation domain, see [103, Lemma IV.2.3], the order ord(𝑀) is defined as
the greatest common divisor of the 𝑠 × 𝑠-minors of 𝐴. By [196, Lemma 4.4] the
order is well-defined, i.e. independent of the choice of the free resolution, up to
multiplication by a unit in ℤ[𝐻].

The fact that the order is only well-defined up to multiplication by a unit
leads us to the following notation:
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Notation 15.7. Let𝐻 be a free abelian group. Given 𝑝, 𝑞 ∈ ℤ[𝐻]wewrite 𝑝 ≐ 𝑞
if 𝑝 = ±ℎ ⋅ 𝑞 for some ℎ ∈ 𝐻.

In the proof of the Fox-Milnor Theorem we will need the following lemma,
collecting basic facts about orders of finitely generated ℤ[𝐻]-modules.

Lemma 15.8. Let𝐻 be a finitely generated free abelian group.
(1) If 0 → 𝐴 → 𝐵 → 𝐶 → 0 is a short exact sequence of finitely generated

ℤ[𝐻]-modules, then ord(𝐵) ≐ ord(𝐴) ⋅ ord(𝐶).
(2) If 0 → 𝐶𝑘 → ⋯ → 𝐶0 → 0 is an exact sequence of finitely generated

ℤ[𝐻]-torsion modules, then the alternating product of the orders is a unit
in ℤ[𝐻].

(3) For any finitely generatedℤ[𝐻]-module𝐴we have ord(𝐴) ≐ ord(𝐴). Here
we write 𝑓 ↦ 𝑓 for the natural involution on ℤ[𝐻] given by ℎ ↦ ℎ−1 for
ℎ ∈ 𝐻, and given aℤ[𝐻]-module𝐴 we write𝐴 for theℤ[𝐻]-module given
by 𝑓 ⋅ 𝑎 ∶= 𝑓 ⋅ 𝑎.

(4) For any finitely generated torsion ℤ[𝐻]-module 𝐴 we have that

ord(Ext1ℤ[𝐻](𝐴,ℤ[𝐻])) ≐ ord(𝐴).

Proof. Statement (1) is proven for𝐻 ≅ ℤ in [111, Lemma 5]. The general case
follows from [74, Theorem 3.12]. Note that (2) is an immediate consequence
of (1), by separating the long exact sequence into short exact sequences such as
0→ Im𝐶𝑗 → 𝐶𝑗−1 → Im𝐶𝑗−1 → 0, applying (1), and performing substitutions
using the resulting equations involving orders.
Next (3) follows immediately from the definition. Finally (4) is well-known

to the experts, but we could not find a reference, therefore we sketch the key
ingredients in the proof. We introduce the following notation.
(a) Given any prime ideal 𝔭 of ℤ[𝐻], let ℤ[𝐻]𝔭 be the localisation at 𝔭, that

is we invert all elements that do not lie in 𝔭. We view ℤ[𝐻] as a subring
of ℤ[𝐻]𝔭.

(b) Given a ring 𝑅 and 𝑓, 𝑔 ∈ 𝑅 we write 𝑓 ≐𝑅 𝑔 if 𝑓 and 𝑔 differ by multipli-
cation by a unit in 𝑅.

Now we sketch the proof of (4). We will use the following five observations.
(i) Since ℤ[𝐻] is a unique factorisation domain, for any prime element 𝑝 ∈

ℤ[𝐻] the ideal (𝑝) is a prime ideal.
(ii) Being a unique factorisation domain and being Noetherian are preserved

under localisation [155, Theorem 7.53], [170, Corollary 8.8’]. In particu-
lar eachℤ[𝐻]𝔭 is a Noetherian unique factorisation domain. This allows
us, by the same definitions as above, to define the order of a finitely gen-
erated module over ℤ[𝐻]𝔭.

(iii) Localisation is flat [103, Proposition XVI.3.2]. It follows that for any
finitely generated ℤ[𝐻]-module 𝑀 and any prime element 𝑝 ∈ ℤ[𝐻]
one has

ord(𝑀) ≐ℤ[𝐻](𝑝) ord(ℤ[𝐻](𝑝) ⊗ℤ[𝐻] 𝑀)
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and

ℤ[𝐻](𝑝) ⊗ℤ[𝐻] Ext
1
ℤ[𝐻](𝑀,ℤ[𝐻]) ≅ Ext1ℤ[𝐻](𝑝)(ℤ[𝐻](𝑝) ⊗ℤ[𝐻] 𝑀,ℤ[𝐻](𝑝))

as ℤ[𝐻](𝑝)-modules.
(iv) By [148, Corollary A.14] every commutative ring with the property that

every prime ideal is principal, is a PID. It follows easily that for each
prime element 𝑝, the localisation ℤ[𝐻](𝑝) is a PID.

(v) Let 𝐿 be a torsion ℤ[𝐻](𝑝)-module. Since ℤ[𝐻](𝑝) is a PID every two el-
ements have a greatest common divisor. We can therefore perform row
and column operations to find a resolution for 𝐿 such that the presen-
tation matrix is diagonal. From this observation one easily deduces that
𝐿 ≅ Ext1ℤ[𝐻](𝑝)(𝐿,ℤ[𝐻](𝑝)) as left ℤ[𝐻](𝑝)-modules. Since 𝐿 is torsion
the presentation matrix is injective and so its transpose presents the Ext
group. To convert the Ext group to a left module, we use the trivial invo-
lution, which we may do since ℤ[𝐻](𝑝) is a commutative ring.

(vi) Suppose that 𝑓 and 𝑔 are in ℤ[𝐻]. If 𝑓 ≐ℤ[𝐻](𝑝) 𝑔 for all prime elements
𝑝 ∈ ℤ[𝐻], then since ℤ[𝐻] is a unique factorisation domain we must
have 𝑓 ≐ℤ[𝐻] 𝑔.

Now with 𝐿 = ℤ[𝐻](𝑝) ⊗ℤ[𝐻] 𝐴 a finitely generated ℤ[𝐻]-torsion module,
we have

ℤ[𝐻](𝑝) ⊗ℤ[𝐻] 𝐴 ≅ Ext1ℤ[𝐻](𝑝)(ℤ[𝐻](𝑝) ⊗ℤ[𝐻] 𝐴,ℤ[𝐻](𝑝))

for every prime element 𝑝, by (iv). On the other hand, again for each prime
element 𝑝, we have

ord(𝐴) ≐ℤ[𝐻](𝑝) ord(ℤ[𝐻](𝑝) ⊗ℤ[𝐻] 𝐴)

by (iii). Combining these two observations yields

ord(𝐴) ≐ℤ[𝐻](𝑝) ord(Ext
1
ℤ[𝐻](𝑝)

(ℤ[𝐻](𝑝) ⊗ℤ[𝐻] 𝐴,ℤ[𝐻](𝑝))).

By the second part of (iii) we have that

ord(Ext1ℤ[𝐻](𝑝)(ℤ[𝐻](𝑝) ⊗ℤ[𝐻] 𝐴,ℤ[𝐻](𝑝)))

≐ℤ[𝐻](𝑝) ord(ℤ[𝐻](𝑝) ⊗ℤ[𝐻] Ext
1
ℤ[𝐻](𝐴,ℤ[𝐻])).

By the first part of (iii) again we have

ord(ℤ[𝐻](𝑝) ⊗ℤ[𝐻] Ext
1
ℤ[𝐻](𝐴,ℤ[𝐻])) ≐ℤ[𝐻](𝑝) ord(Ext

1
ℤ[𝐻](𝐴,ℤ[𝐻])).

Thus combining the last three equalities we have

ord(𝐴) ≐ℤ[𝐻](𝑝) ord(Ext
1
ℤ[𝐻](𝐴,ℤ[𝐻]))

for all prime elements 𝑝. Now (4) follows by applying (vi). □

We use the notion of order to define the Alexander polynomial of a knot in
a homology 3-sphere.
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Definition 15.9. The Alexander polynomial ∆𝐾(𝑡) of a knot 𝐾 is defined as the
order of the Alexander module 𝐻1(𝑁𝐾 ;ℤ[𝑡±1]). Note that this polynomial is
only well-defined up to units in ℤ[𝑡±].

After these preparations we turn to the actual proof of the Fox-Milnor Theo-
rem 15.2. We need the following elementary lemma.

Lemma 15.10. Let 𝜋 be a group, let 𝐶∗ be a chain complex of left free ℤ[𝜋]-
modules and let 𝜙∶ 𝜋 → ⟨𝑡⟩ be a homomorphism. The map

Homright−ℤ[𝜋](𝐶∗,ℤ[𝑡±1]) → Homlef t−ℤ[𝑡±1](ℤ[𝑡±1]⊗ℤ[𝜋] 𝐶∗,ℤ[𝑡±1])
𝑓 ↦ (𝑝 ⊗ 𝜎 ↦ 𝑝 ⋅ 𝑓(𝜎))

is well-defined and is an isomorphism of left ℤ[𝑡±1]-cochain complexes. □

First proof of the Fox-Milnor Theorem 15.2. In this proof we abbreviate
Λ ∶= ℤ[𝑡±1]. We start out with the following three observations.
(a) We have𝐻0(𝑊𝐷; Λ) ≅ 𝐻0(𝑁𝐾 ; Λ) ≅ Λ∕(𝑡 − 1).
(b) We have𝐻0(𝑊𝐷, 𝑁𝐾 ; Λ) = 0.
(c) By Proposition 15.5 and Proposition 15.4 we know that for all 𝑘

Ext0Λ(𝐻𝑘(𝑊𝐷, 𝑁𝐾 ; Λ),Λ) = HomΛ(𝐻𝑘(𝑊𝐷, 𝑁𝐾 ; Λ),Λ) = 0.

Claim. For any 𝑖 ∈ ℕ we have

𝐻𝑖(𝑁𝐾 ; Λ) ≅ Ext1Λ(𝐻2−𝑖(𝑁𝐾 ; Λ),Λ)

𝐻𝑖(𝑊𝐷; Λ) ≅ Ext1Λ(𝐻3−𝑖(𝑊𝐷, 𝑁𝐾 ; Λ),Λ).

We prove the second statement of the claim. The proof of the first statement
is almost identical. By the Poincaré Duality Theorem A.15 we have an isomor-
phism𝐻𝑖(𝑊𝐷; Λ) ≅ 𝐻4−𝑖(𝑊𝐷, 𝑁𝐾 ; Λ) of Λ-modules. By Lemma 15.10, applied
to 𝐶∗ = 𝐶∗(𝑊𝐷, 𝑁𝐾 ;ℤ[𝜋]), we know that

𝐻4−𝑖(𝑊𝐷, 𝑁𝐾 ; Λ) ≅ 𝐻4−𝑖(HomΛ(Λ⊗ℤ[𝜋] 𝐶∗(𝑊𝐷, 𝑁𝐾 ;ℤ[𝜋]),Λ)).
Finally we apply the universal coefficient spectral sequence [112, Theorem 2.3]
to the Λ-module chain complex 𝐶∗(𝑊𝐷, 𝑁𝐾 ; Λ). It follows from the above ob-
servations (b) and (c) that the spectral sequence collapses and that we have an
isomorphism

𝐻4−𝑖
(
HomΛ(Λ⊗ℤ[𝜋] 𝐶∗(𝑊𝐷, 𝑁𝐾 ; Λ)

)
≅ Ext1Λ(𝐻3−𝑖(𝑊𝐷, 𝑁𝐾 ; Λ),Λ).

This concludes the proof of the claim.
Next we consider the long exact sequence of the pair (𝑊𝐷, 𝑁𝐾) of twisted

homology with Λ-coefficients:
⋯→ 𝐻2(𝑊𝐷; Λ)→ 𝐻2(𝑊𝐷, 𝑁𝐾 ; Λ)→ 𝐻1(𝑁𝐾 ; Λ)→ 𝐻1(𝑊𝐷; Λ)

→ 𝐻1(𝑊𝐷, 𝑁𝐾 ; Λ)→⋯
It follows from Propositions 15.4 that all the above modules are finitely gener-
ated. Thus it makes sense to consider their orders. Also note that in Proposi-
tion 15.5 we saw that the modules for 𝑁𝐾 and𝑊𝐷 are all Λ-torsion. It follows
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from the long exact sequence that the relative homology groups𝐻∗(𝑊𝐷, 𝑁𝐾 ; Λ)
are also Λ-torsion. By Lemma 15.8 (3) the alternating product of the orders
equals ±𝑡𝑘.
By the above claim and Lemma 15.8 (3) and (4) the orders are anti-symmetric

around𝐻1(𝑁𝐾 ; Λ). More precisely, we have

ord(𝐻2(𝑊𝐷, 𝑁𝐾 ; Λ)) ≐ ord
(
Ext1Λ(𝐻1(𝑊𝐷; Λ),Λ)

)
≐ ord(𝐻1(𝑊𝐷; Λ)),

and the same type of relation holds as we progress further from themiddle term
𝐻1(𝑁𝐾 ; Λ) in the above long exact sequence. But this implies that there exist
nonzero polynomials 𝑓, 𝑔 ∈ Λwith 𝑓 ⋅𝑓 ≐ ∆𝐾(𝑡)⋅𝑔 ⋅𝑔. It follows easily from the
fact that Λ = ℤ[𝑡±1] is a UFD that there exists an ℎ ∈ Λwith ℎ ⋅ℎ ≐ ∆𝐾(𝑡). □

A knot 𝐾 in 𝑌 is homotopy ribbon if there is a slice disc 𝐷 in 𝑋 such that
𝜋1(𝑌 ⧵ 𝜈𝐾)→ 𝜋1(𝑊𝐷) is surjective.

Corollary 15.11. Let 𝐷 ⊆ 𝑋 be a homotopy ribbon disc for 𝐾 ⊆ 𝑌. Let 𝑓(𝑡) =
ord𝐻1(𝑊𝐷; Λ). Then ∆𝐾(𝑡) ≐ 𝑓(𝑡)𝑓(𝑡−1).

Proof. Since𝜋1(𝑆3⧵𝜈𝐾)→ 𝜋1(𝑊𝐷) factors through𝜋1(𝑁𝐾), themap𝜋1(𝑁𝐾)→
𝜋1(𝑊𝐷) is surjective. Hence 𝜋1(𝑁𝐾)(1) → 𝜋1(𝑊𝐷)(1), the map on commutator
subgroups is surjective. The respective homology groups with Λ coefficients
are the abelianisations of the commutator subgroups, and so 𝐻1(𝑁𝐾 ; Λ) →
𝐻1(𝑊𝐷; Λ) is surjective. Hence𝐻1(𝑊𝐷, 𝑁𝐾 ; Λ) = 0, and so

1 = ord(𝐻1(𝑊𝐷, 𝑁𝐾 ; Λ)) = ord(𝐻2(𝑊𝐷; Λ).

The pervious proof then implies that

∆𝐾(𝑡) ≐ ord(𝐻1(𝑁𝐾 ; Λ)) ≐ ord𝐻1(𝑊𝐷; Λ) ⋅ ord𝐻1(𝑊𝐷; Λ) = 𝑓(𝑡)𝑓(𝑡−1)

as required. □

We conclude with an alternative argument for the Fox-Milnor Theorem in
the topological category using Reidemeister torsion. The advantage of the Rei-
demeister torsion invariant is that proofs are often easier, and it has in general a
smaller indeterminacy than the order of homology, although this will not man-
ifest itself in the upcoming proof.

Second proof of Theorem 15.2. We continue with the notation introduced
above. As before we have a homomorphism 𝛼∶ 𝜋1(𝑊𝐷) → 𝐻1(𝑊𝐷;ℤ)

≃
,→ ℤ,

sending an oriented meridian of 𝐾 to 1 ∈ ℤ. As usual ℚ(𝑡) denotes the field
of fractions of the Laurent polynomial ring ℤ[𝑡, 𝑡−1]. We take 𝑑 = 1, and so
obtain a representation 𝜙∶ 𝜋1(𝑊𝐷) → GL(1,ℚ(𝑡)), that sends 𝑔 ↦ (𝑡𝛼(𝑔)).
In the previous proof we had already seen that the modules 𝐻∗(𝑁𝐾 ;ℤ[𝑡±1]),
𝐻∗(𝑊𝐷;ℤ[𝑡±1]) and 𝐻∗(𝑁𝐾 ;ℤ[𝑡±1]) are ℤ[𝑡±1]-torsion. Since ℚ(𝑡) is flat over
ℤ[𝑡±1] it follows that the corresponding twisted homology groups with ℚ(𝑡)-
coefficients are zero.
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By the discussion in Section 14.3 we can consider the Reidemeister torsions
𝜏(𝑊𝐷, 𝜙), 𝜏(𝑁𝐾 , 𝜙) and 𝜏(𝑊𝐷, 𝑁𝐾 , 𝜙). By Theorem 14.14, we have that

𝜏(𝑊𝐷, 𝑁𝐾 , 𝜙) ≐ 𝜏(𝑊𝐷, 𝜙)
(−1)5

≐ 𝜏(𝑊𝐷, 𝜙)
−1
.

Since the torsion is multiplicative in short exact sequences by Theorem 14.11,
we have that

𝜏(𝑊𝐷, 𝜙) ≐ 𝜏(𝑁𝐾 , 𝜙) ⋅ 𝜏(𝑊𝐷, 𝑁𝐾 , 𝜙) ≐ 𝜏(𝑁𝐾 , 𝜙) ⋅ 𝜏(𝑊𝐷, 𝜙)
−1
.

By [196, Theorem 14.12] the torsion of the zero surgery of a knot is equal to
∆𝐾(𝑡)∕((𝑡 − 1)(𝑡−1 − 1)). It follows that ∆𝐾(𝑡) is a norm as claimed. □

Remark 15.12. The two proofs presented above avoid the use of the smooth
category, and so are in keeping with the spirit of this book. However, one can
give a further alternative proof by allowing smooth techniques. First one can
use Theorem 9.9 to find a simply connected 4-manifold 𝑊′ such that 𝑊 ∶=
𝑊𝐷#𝑊′ is smoothable. Then one can triangulate 𝑊 and apply Reidemeister
torsion machinery without appealing to [91, Essay III]. The disadvantage of
this approach is that typically 𝐻2(𝑊′;ℤ) will be nontrivial, so that 𝑊 is not
acyclic overℚ(𝑡). One can proceed by choosing a self-dual basis for homology,
so that one can still obtain a torsion invariant that is well-defined up to norms.
Apply [27, Theorem 2.4], and argue that since the intersection form of 𝑊 is
nonsingular, the contribution of𝑊′ to the torsion is a norm.
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Appendix A. Poincaré Duality with twisted coefficients
Surveying the literature, we felt it would be beneficial to have amore detailed

proof of Poincaré duality with twisted coefficients formanifolds with boundary,
but without a smooth or PL structure, so we offer one in this appendix. One can
find other proofs of Poincaré duality for some subsets of these conditions, e.g.
Sun [187] and Kwasik-Sun [100] provide a proof in the closed case. A detailed
discussion of twisted (co-) homology and Poincaré duality can also be found in
[52, Part XXIV].

A.1. Twistedhomology and cohomology groups. We start outwith the fol-
lowing notation.

Notation A.1. Given a group 𝜋 and a left ℤ[𝜋]-module 𝐴, write 𝐴 for the right
ℤ[𝜋]-module that has the same underlying abelian group but for which the
right action ofℤ[𝜋] is defined by 𝑎 ⋅𝑔 ∶= 𝑔−1 ⋅𝑎 for 𝑎 ∈ 𝐴 and 𝑔 ∈ 𝜋. The same
notation is also used with the rôles of left and right reversed and 𝑔 ⋅𝑎 ∶= 𝑎 ⋅𝑔−1.

We recall the definition of twisted homology and cohomology groups.

DefinitionA.2. Let𝑋 be a connected topological space that admits a universal
cover 𝑝∶ 𝑋 → 𝑋. Write 𝜋 = 𝜋1(𝑋). Let 𝑌 be a subset of 𝑋 and let 𝐴 be a right
ℤ[𝜋]-module. Let 𝜋 act on 𝑋 by deck transformations, which is naturally a left
action. Thus, the singular chain complex 𝐶∗(𝑋, 𝑝−1(𝑌)) becomes a left ℤ[𝜋]-
module chain complex. Define the twisted chain complex

𝐶∗(𝑋,𝑌;𝐴) ∶=
(
𝐴⊗ℤ[𝜋] 𝐶∗(𝑋, 𝑝−1(𝑌)), Id⊗𝜕∗

)
.

The corresponding twisted homology groups are𝐻𝑘(𝑋,𝑌;𝐴). With

𝛿𝑘 = Hom(𝜕𝑘, Id)
we define the twisted cochain complex to be

𝐶∗(𝑋,𝑌;𝐴) ∶=
(
Homright-ℤ[𝜋]

(
𝐶∗(𝑋, 𝑝−1(𝑌)), 𝐴

)
, 𝛿∗

)
.

The corresponding twisted cohomology groups are𝐻𝑘(𝑋,𝑌;𝐴).

Note that if 𝑅 is some ring (not necessarily commutative) and if 𝐴 is an
(𝑅,ℤ[𝜋])-bimodule, then the above twisted homology and cohomology groups
are naturally left 𝑅-modules.
Given a CW complex one can similarly define twisted cellular (co-) chain

complexes and twisted cellular (co-) homology groups. The following propo-
sition implies that twisted singular (co-) homology groups are isomorphic to
twisted cellular (co-) homology groups.

Proposition A.3. Let (𝑋,𝑌) be a CW complex pair and write 𝜋 = 𝜋1(𝑋). The
singular chain complex 𝐶sing∗ (𝑋,𝑌;ℤ[𝜋]) and the cellular chain complex
𝐶cell∗ (𝑋,𝑌;ℤ[𝜋]) are chain homotopy equivalent as chain complexes of leftℤ[𝜋]-
modules.

The proof of Proposition A.3 relies on the following very useful lemma.
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Lemma A.4. Let 𝑓∶ 𝐶∗ → 𝐷∗ be a chain map of chain complexes of free left
ℤ[𝜋]-modules (here chain complexes are understood to start in degree 0) that in-
duces an isomorphism on homology. Then 𝑓 is a chain equivalence.

Proof. Since 𝑓 induces an isomorphism of homology groups we know that the
mapping cone cone(𝑓)∗ is acyclic. By assumption 𝐶∗ and 𝐷∗ are free left ℤ[𝜋]-
modules. It follows that cone(𝑓)∗ is also a chain complex of free left ℤ[𝜋]-
modules. But this guarantees the existence of a chain homotopy Idcone (𝑓)∗ ≃𝑃 0,
since we can view cone(𝑓)∗ as a free resolution of 0 and any two such resolu-
tions are chain homotopic. Recall that chain homotopy means

𝜕cone (𝑓)∗◦𝑃 + 𝑃◦𝜕cone𝑓∗ = Idcone (𝑓)∗(2)

If we write 𝑃 as a matrix

𝑃𝑛 = (𝑃
11
𝑛 𝑃12𝑛
𝑃21𝑛 𝑃22𝑛

) ∶ 𝐶𝑛−1 ⊕𝐷𝑛 → 𝐶𝑛 ⊕𝐷𝑛+1

then one easily verifies using Equation (2), that 𝑃12∗ ∶ 𝐷∗ → 𝐶∗ is a chain homo-
topy inverse of 𝑓∗, where the chain homotopies are given by 𝑃11∗ and 𝑃22∗ . □

Proof of Proposition A.3. Given a CW complex 𝐴 we consider the interme-
diate chain complex

𝐶int∗ (𝐴) ∶= Ker(𝐶𝑛(𝐴𝑛)
𝜕
,→ 𝐶𝑛−1(𝐴𝑛)→ 𝐶𝑛−1(𝐴𝑛, 𝐴𝑛−1)).

Given a subcomplex 𝐵 of 𝐴 we set 𝐶int∗ (𝐴, 𝐵) ∶= coker(𝐶int𝑛 (𝐴)→ 𝐶int𝑛 (𝐵)).
Let 𝑝∶ 𝑋 → 𝑋 denote the universal cover. We write 𝑌 ∶= 𝑝−1(𝑌). In

[176, p. 303] (see also [114, Lemma 4.2]) it is shown that the natural maps
𝜄∶ 𝐶int∗ (𝑋,𝑌) → 𝐶∗(𝑋,𝑌) and 𝜋∶ 𝐶int∗ (𝑋,𝑌) → 𝐶cell∗ (𝑋,𝑌) induce isomor-
phisms of homology groups.
Note that 𝐶∗(𝑋,𝑌) and 𝐶cell∗ (𝑋,𝑌) are free ℤ[𝜋]-left modules. But it is not

clear whether each 𝐶int∗ (𝑋,𝑌) is a free ℤ[𝜋]-left module. But it is straightfor-
ward to show that there exists a chain complex 𝐹∗ consisting of free ℤ[𝜋]-left
modules and a chain map 𝜑∶ 𝐹∗ → 𝐶int∗ (𝑋,𝑌) of left ℤ[𝜋]-modules which in-
duces isomorphisms of homology groups.
It follows from Lemma A.4 that the mappings 𝜄◦𝜑∶ 𝐹∗ → 𝐶∗(𝑋,𝑌) and

𝜋◦𝜑∶ 𝐹∗ → 𝐶cell∗ (𝑋,𝑌) are chain homotopy equivalences of leftℤ[𝜋]-modules.
It follows that 𝐶∗(𝑋,𝑌) and 𝐶cell∗ (𝑋,𝑌) are chain homotopy equivalent as chain
complexes of let ℤ[𝜋]-modules, which is equivalent to 𝐶sing∗ (𝑋,𝑌;ℤ[𝜋]) and
𝐶cell∗ (𝑋,𝑌;ℤ[𝜋]) being chain homotopy equivalent as chain complexes of left
ℤ[𝜋]-modules. □

Proposition A.5. Let𝑀 be a compact 𝑛-manifold and let𝑁 ⊆ 𝑀 be a subspace
that is a compactmanifold in its own right. Write𝜋 = 𝜋1(𝑀). There exists a chain
complex 𝐶∗ of finite length consisting of finitely generated free left ℤ[𝜋]-modules
such that for any ring 𝑅, for any (𝑅,ℤ[𝜋])-bimodule 𝐴 and for any 𝑘 ∈ ℕ0 we
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have left 𝑅-module isomorphisms

𝐻𝑘(𝑀,𝑁;𝐴) ≅ 𝐻𝑘(𝐴⊗ℤ[𝜋] 𝐶∗)

and
𝐻𝑘(𝑀,𝑁;𝐴) ≅ 𝐻𝑘(Homℤ[𝜋](𝐶∗, 𝐴)).

Remark A.6. Note that we do not demand that 𝑁 be a submanifold of𝑀. For
example 𝑁 could be a union of boundary components of 𝑀, or 𝑁 could be a
submanifold of the boundary. Evidently 𝑁 could also be the empty set.

Proof. By Theorem 3.16 the manifolds 𝑀 and 𝑁 are homotopy equivalent to
finite CWcomplexes𝑋 and𝑌 respectively. Let 𝑖∶ 𝑁 → 𝑀 be the inclusionmap.
By the Cellular Approximation Theorem there exists a cellular map 𝑗∶ 𝑌 → 𝑋
such that the following diagram commutes up to homotopy:

𝑁 𝑖 //

≃
��

𝑀
≃
��

𝑌
𝑗 // 𝑋.

Next we replace 𝑀 and 𝑋 by the mapping cylinders of 𝑖 and 𝑗 respectively, to
create cofibrations. Given a map 𝑓∶ 𝑈 → 𝑉 between topological spaces let
cyl(𝑓) be the mapping cylinder. We view𝑈 as a subset of cyl(𝑓) in the obvious
way. With this notation we have

𝐻𝑘(𝑀,𝑁;𝐴) ≅ 𝐻𝑘(cyl(𝑖∶ 𝑁 → 𝑀), 𝑁;𝐴) ≅ 𝐻𝑘(cyl(𝑗∶ 𝑌 → 𝑋), 𝑌;𝐴).

Themapping cylinder 𝑍 ∶= cyl(𝑗∶ 𝑌 → 𝑋) admits the structure of a finite CW
complex such that 𝑌 is a subcomplex. Thus we can compute the twisted ho-
mology groups 𝐻𝑘(cyl(𝑗∶ 𝑋 → 𝑌);𝐴) using the relative twisted cellular chain
complex, and similarly for cohomology. Put differently, 𝐶∗ = 𝐶cell∗ (𝑍,𝑌;ℤ[𝜋])
has the desired properties. □

In order to give a criterion for twisted homology modules to be finitely gen-
erated, we need the notion of a Noetherian ring.

DefinitionA.7. Aring𝑅 is said to be left Noetherian if for any descending chain

𝑅 ⊇ 𝐼1 ⊇ 𝐼2 ⊇ 𝐼3 ⊇ …

of left 𝑅-ideals the inclusions eventually become equality. If 𝑅 is commutative,
then we just say Noetherian.

Example A.8. The following rings are left Noetherian:
(1) The ring ℤ is Noetherian.
(2) Any (skew) field is left Noetherian.
(3) If 𝐴 is a commutative Noetherian ring, then the multivariable Laurent

polynomial ring 𝐴[𝑡±11 ,… , 𝑡±1𝑘 ] is also Noetherian [103, Corollary IV.9.5].

The following theorem is often implicitly used.
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Proposition A.9. Let𝑀 be a compact 𝑛-manifold, let𝑁 ⊆ 𝑀 be a subspace that
is a compact manifold in its own right, let 𝑅 be a ring and let 𝐴 be an (𝑅,ℤ[𝜋])-
bimodule. If 𝑅 is left Noetherian and if 𝐴 is finitely generated as a left 𝑅-module,
then all the twisted homology modules 𝐻∗(𝑀,𝑁;𝐴) are finitely generated left 𝑅-
modules.

In the proof of Proposition A.9 we will need the following lemma; cf. [101,
Proposition 1.21] or [103, Proposition X.1.4].

Lemma A.10. Let 𝑅 be a left Noetherian ring. If 𝑃 is a finitely generated left
𝑅-module, then any left submodule of 𝑃 is also a finitely generated left 𝑅-module.

Proof of Proposition A.9. ByPropositionA.5, there exists a chain complex𝐶∗
of finite length consisting of finitely generated free leftℤ[𝜋]-modules such that

𝐻𝑘(𝑀,𝑁;𝐴) ≅ 𝐻𝑘(𝐴⊗ℤ[𝜋] 𝐶∗).

Given 𝑘 ∈ ℕ0 we denote the rank of 𝐶𝑘 as a free left ℤ[𝜋]-module by 𝑟𝑘. Then
we have 𝐴 ⊗ℤ[𝜋] 𝐶𝑘 ≅ 𝐴 ⊗ℤ[𝜋] ℤ[𝜋]𝑟𝑘 ≅ 𝐴𝑟𝑘 . In particular 𝐻𝑘(𝑀,𝑁;𝐴) is
isomorphic to a quotient of a submodule of a finitely generated 𝑅-module. The
desired statement follows from Lemma A.10. □

A.2. Cup and cap products on twisted (co-) chain complexes. Through-
out this section let 𝑋 be a connected topological space admitting a universal
cover, and write 𝜋 = 𝜋1(𝑋). We want to introduce the cup product and the cap
product on twisted (co-) chain complexes. Given an 𝑛-simplex 𝜎, define the
𝑝-simplices 𝜎⌊𝑝 and 𝜎⌋𝑝 by

𝜎⌋𝑝(𝑡0,… , 𝑡𝑝) ∶= 𝜎(𝑡0,… , 𝑡𝑝, 0,… , 0),
𝜎⌊𝑝(𝑡0,… , 𝑡𝑝) ∶= 𝜎(0,… , 0, 𝑡0,… , 𝑡𝑝).

Throughout this section let 𝐴 and 𝐵 be two right ℤ[𝜋]-modules 𝐴. We view
𝐴⊗ℤ 𝐵 as a right ℤ[𝜋]-module via the diagonal action of 𝜋.
First we introduce the cup product on twisted cohomology. The following

lemma can be verified easily by hand, say along the lines of the proof of [72,
Lemma 3.6].

Lemma A.11. Let 𝑌 be a subset of 𝑋. For all 𝑝, 𝑞 ∈ ℕ0 We consider the map

Y∶ 𝐶𝑝(𝑋,𝑌;𝐴) × 𝐶𝑞(𝑋,𝑌;𝐵)⟶ 𝐶𝑝+𝑞(𝑋,𝑌;𝐴⊗ℤ 𝐵)

(𝜙, 𝜓)⟼
(
𝜎 ↦ 𝜑(𝜎⌊𝑝)⊗ℤ 𝜓(𝜎⌋𝑘−𝑝)

)
.

(Note that the right-hand side is indeed a ℤ[𝜋]-homomorphism, i.e. it defines an
element 𝐶𝑝+𝑞(𝑋;𝐴⊗ℤ 𝐵).) Furthermore the map descends to a well defined map

Y∶ 𝐻𝑝(𝑋,𝑌;𝐴) ×𝐻𝑞(𝑋,𝑌;𝐵) ⟶ 𝐻𝑝+𝑞(𝑋,𝑌;𝐴⊗ℤ 𝐵).

We refer to this map as the cup product.

Next we introduce the cap product. As with cup product, first we define it
on the chain level.
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Lemma A.12. Let 𝑆, 𝑇 ⊆ 𝑋 be subsets. We write

𝐶𝑘(𝑋, {𝑆, 𝑇}) = 𝐶𝑘(𝑋)∕(𝐶𝑘(𝑆) + 𝐶𝑘(𝑇)).

The map

X∶ 𝐶𝑝(𝑋, 𝑆;𝐴) × 𝐶𝑘(𝑋, {𝑆, 𝑇};𝐴)⟶ 𝐶𝑘−𝑝(𝑋, 𝑇;𝐴⊗ℤ 𝐵)
(𝜓, 𝑏 ⊗ℤ[𝜋] 𝜎)⟼ (𝜓(𝜎⌊𝑝)⊗ℤ 𝑏)⊗ℤ[𝜋] 𝜎⌋𝑘−𝑝.

is well-defined. We refer to this map as the cap product.

Proof. We verify that the given map respects the tensor product. Thus let 𝜓 ∈
𝐶𝑝(𝑋;𝐴), 𝜎 ∈ 𝐶𝑘(𝑋), 𝛾 ∈ 𝜋 and 𝑏 ∈ 𝐵. We calculate that

𝜓 X 𝑏 ⊗ℤ[𝜋] 𝛾𝜎 =
(
𝜓(𝛾𝜎⌊𝑝)⊗ℤ 𝑏

)
⊗ℤ[𝜋] 𝛾𝜎⌋𝑘−𝑝

= (𝛾𝜓(𝜎⌊𝑝)⊗ℤ 𝑏) ⋅ 𝛾 ⊗ℤ[𝜋] 𝜎⌋𝑘−𝑝
= (𝛾−1𝛾𝜓(𝜎⌊𝑝)⊗ℤ 𝑏𝛾)⊗ℤ[𝜋] 𝜎⌋𝑘−𝑝
= 𝜓 X 𝑏𝛾 ⊗ℤ[𝜋] 𝜎.

It follows easily from the definitions that the cap product descends to the given
quotient (co-) chain complexes. □

Lemma A.13. Let 𝑓 ∈ 𝐶𝑝(𝑋;𝐴) and let 𝑐 ∈ 𝐶𝑘(𝑋;𝐵). We have

𝜕(𝑓 X 𝑐) = (−1)𝑝 ⋅ (−𝛿(𝑓) X 𝑐 + 𝑓 X 𝜕𝑐) ∈ 𝐶𝑘−1(𝑋;𝐴⊗ℤ 𝐵).

Proof. The lemma follows from a calculation using the definition of the cap
product and the boundary maps, see e.g. [52, Lemma 192.9] for details. Note
that the precise signs differ from similar formulas in some textbooks in alge-
braic topology since there are many different sign conventions in usage. □

Corollary A.14. Let 𝑆, 𝑇 ⊆ 𝑋 be subsets, let 𝑅 be a ring, and let 𝐴 be an
(𝑅,ℤ[𝜋1(𝑀)])-bimodule. For any cycle 𝜎 ∈ 𝐶𝑛(𝑋, {𝑆, 𝑇};ℤ) the cap product

X[𝜎]∶ 𝐻𝑘(𝑋, 𝑆;𝐴) → 𝐻𝑛−𝑘(𝑋, 𝑇;𝐴) = 𝐻𝑛−𝑘(𝑋, 𝑇;𝐴⊗ℤ ℤ)
[𝜑] ↦ [𝜑 X 𝜎]

is well-defined. Furthermore this map only depends on the homology class [𝜎] ∈
𝐻𝑛(𝑋, 𝑆 ∪ 𝑇;ℤ).

A.3. The Poincaré Duality Theorem. The following theorem is a generali-
sation of the familiar Poincaré duality for untwisted coefficients to the case of
twisted coefficients.

Theorem A.15. (Twisted Poincaré Duality Theorem) Let𝑀 be a compact,
oriented, connected 𝑛-dimensional manifold. Let 𝑆 and 𝑇 be codimension 0 com-
pact submanifolds of 𝜕𝑀 such that 𝜕𝑆 = 𝜕𝑇 = 𝑆 ∩ 𝑇 and 𝜕𝑀 = 𝑆 ∪ 𝑇. Let
[𝑀] ∈ 𝐻𝑛(𝑀, 𝜕𝑀;ℤ) be the fundamental class of𝑀. If 𝑅 is a ring and if 𝐴 is an
(𝑅,ℤ[𝜋1(𝑀)])-bimodule, then the map

− X [𝑀]∶ 𝐻𝑘(𝑀, 𝑆;𝐴) → 𝐻𝑛−𝑘(𝑀,𝑇;𝐴)

defined by Lemma A.13 is an isomorphism of left 𝑅-modules.
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We also have the following Poincaré Duality statement on the (co-) chain
level.

Theorem A.16. (Universal Poincaré Duality Theorem) Let𝑀 a compact,
oriented, connected 𝑛-dimensional manifold. Let 𝑆 and 𝑇 be codimension 0 com-
pact submanifolds of 𝜕𝑀 such that 𝜕𝑆 = 𝜕𝑇 = 𝑆 ∩ 𝑇 and 𝜕𝑀 = 𝑆 ∪ 𝑇. Let
𝜎 ∈ 𝐶𝑛(𝑀, {𝑆, 𝑇};ℤ) be a representative of the fundamental class of𝑀. If 𝑅 is a
ring and if 𝐴 is an (𝑅,ℤ[𝜋1(𝑀)])-bimodule, then the map

− X 𝜎∶ 𝐶𝑘(𝑀, 𝑆;ℤ[𝜋1(𝑀)])→ 𝐶𝑛−𝑘(𝑀,𝑇;ℤ[𝜋1(𝑀)])

defined by Lemma A.13 is a chain homotopy equivalence of left 𝑅-chain com-
plexes.

Note that Theorem14.9 can be used to give an alternative proof that the chain
complexes of the theorem are chain homotopy equivalent.

Proof of Theorem A.16 using Theorem A.15. The Universal Poincaré Du-
ality Theorem A.16 follows immediately from the Twisted Poincaré Duality
Theorem A.15 together with Lemma A.4. □

In the following sections we will provide a proof of the Twisted Poincaré Du-
ality Theorem A.15. But just for fun we would like to show that the Universal
Poincaré Duality TheoremA.16 also implies the Twisted Poincaré Duality The-
orem A.15, in other words, the two theorems are equivalent:

Proof of Theorem A.15 using Theorem A.16. Let𝑀 be a compact, oriented,
connected 𝑛-dimensional manifold. To simplify the discussion we just deal
with the case that 𝑆 = 𝜕𝑀 and 𝑇 = ∅. We pick a representative 𝜎 for [𝑀]
and we write 𝜋 = 𝜋1(𝑀). Let 𝐴 be an (𝑅,ℤ[𝜋])-bimodule. Given a chain com-
plex 𝐷∗ of right ℤ[𝜋]-modules we consider the cochain map

Ξ∶ 𝐴⊗ℤ[𝜋] Homright-ℤ[𝜋](𝐷∗;ℤ[𝜋])) → Homright-ℤ[𝜋](𝐷∗, 𝐴)
𝑎 ⊗ 𝑓 ↦ (𝜎 ↦ 𝑎 ⋅ 𝑓(𝜎)).

Note that Ξ is an isomorphism if each 𝐷𝑘 is a finitely generated free ℤ[𝜋]-
module. But in general Ξ is not an isomorphism.
Furthermore we consider the following diagram

𝐻𝑘(𝐴 ⊗
ℤ[𝜋]

𝐶∗(𝑀, 𝜕𝑀;ℤ[𝜋])) 𝐻𝑛−𝑘(𝐴 ⊗
ℤ[𝜋]

𝐶∗(𝑀;ℤ[𝜋]))

𝐻𝑘(𝐶∗(𝑀, 𝜕𝑀;𝐴))

𝐻𝑘(𝑀, 𝜕𝑀;𝐴) 𝐻𝑛−𝑘(𝑀;𝐴)

Id𝐴⊗(X𝜎)

Ξ∗

=

=

X[𝑀]

One easily verifies that the diagram commutes. The top horizontal map is an
isomorphism by the Universal Poincaré Duality Theorem A.16. It remains to
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show that the vertical map is an isomorphism. As we had pointed out above,
on the chain level Ξ is in general not an isomorphism.
As in the proof of Proposition A.5 we can use Theorem 3.16 to find a pair

(𝑋,𝑌) of finite CW complexes and a homotopy equivalence 𝑓∶ (𝑋,𝑌) →
(𝑀, 𝜕𝑀). By Proposition A.3 there exists a homotopy equivalence

Θ∶ 𝐶cell∗ (𝑋,𝑌;ℤ[𝜋])→ 𝐶∗(𝑋,𝑌;ℤ[𝜋])

of ℤ[𝜋]-chain complexes. We consider the following diagram where all tensor
products and homomorphism are over ℤ[𝜋]:

𝐴⊗ 𝐶∗cell(𝑋,𝑌;ℤ[𝜋])
Ξ∗
��

Θ∗
// 𝐴⊗ 𝐶∗(𝑋,𝑌;ℤ[𝜋])

Ξ∗
��

𝑓∗ // 𝐴⊗ 𝐶∗(𝑀, 𝜕𝑀;ℤ[𝜋])
Ξ∗
��

𝐶∗cell(𝑋,𝑌;𝐴)
Θ∗

// 𝐶∗(𝑋,𝑌;𝐴)
𝑓∗ // 𝐶∗(𝑀, 𝜕𝑀;𝐴).

One easily verifies that the diagram commutes. As pointed out above, the hor-
izontal maps are chain homotopy equivalences over ℤ[𝜋]. Since 𝑋 is a finite
CW complex we see that each𝐶cell𝑘 (𝑋,𝑌;ℤ[𝜋]) is a finitely generated freeℤ[𝜋]-
module. Thus we obtain from the above that the left vertical map is an isomor-
phism. Therefore the right vertical map is a chain homotopy equivalence. In
particular it induces an isomorphism of homology groups. □

The remainder of this appendix is dedicated to the proof of the Twisted
Poincaré Duality Theorem A.15. Even though the theorem is well-known and
often used, there are not many satisfactory proofs in the literature. The proof
which is closest to ours in spirit is the proof of Sun [187]. For closed manifolds
Kwasik-Sun [100] provide a proof by using the work of Kirby-Siebenmann to
reduce the proof to the case of triangulated manifolds.
The proof of the Twisted Poincaré Duality Theorem A.15 is modelled on the

proof of untwisted Poincaré Duality that is given in Bredon’s book [15, Chapter
VI.8]. The logic of his proof is unchanged, but some arguments and definitions
have to be adjusted for the twisted setting.

A.4. Preparations for the proof of the Twisted Poincaré Duality Theo-
rem. We fix some notation that we will use for the remainder of the appendix.
Let𝑀 be a connected manifold, let 𝑥0 ∈ 𝑀 and denote by 𝜋 ∶= 𝜋1(𝑀,𝑥0) the
fundamental group. Finally let 𝑅 be a ring and let 𝐴 be an (𝑅,ℤ[𝜋])-bimodule.
We write 𝑝∶ �̃� → 𝑀 for the universal cover of𝑀. For a subset 𝑋 ⊆ 𝑀 (not

necessarily connected) we consider the (co)-homology of 𝑋 with respect to the
coefficient system coming from𝑀 by setting

𝐶∗(𝑋;𝐴) ∶= 𝐴⊗ℤ[𝜋] 𝐶∗(𝑝−1(𝑋);ℤ),

𝐶∗(𝑋;𝐴) ∶= Homℤ[𝜋]

(
𝐶∗(𝑝−1(𝑋);ℤ), 𝐴

)
,
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with generalisation to pairs 𝑌 ⊆ 𝑋 ⊆ 𝑀 by

𝐶∗(𝑋,𝑌;𝐴) ∶= 𝐴⊗ℤ[𝜋] 𝐶∗(𝑝−1(𝑋), 𝑝−1(𝑌);ℤ),

𝐶∗(𝑋,𝑌;𝐴) ∶= Homℤ[𝜋]

(
𝐶∗(𝑝−1(𝑋), 𝑝−1(𝑌);ℤ), 𝐴

)
.

We summarise the basic properties of (co-) homology with twisted coeffi-
cients in the following theorem, which should be compared to the untwisted
case.

TheoremA.17. Let𝑀 be a connected manifold with fundamental group 𝜋, and
let 𝐴 be an (𝑅,ℤ[𝜋])-bimodule.
(1) Given 𝑌 ⊆ 𝑋 ⊆ 𝑀 there is a long exact sequence of pairs in homology

⋯ 𝐻𝑘(𝑌;𝐴) 𝐻𝑘(𝑋;𝐴) 𝐻𝑘(𝑋,𝑌;𝐴) 𝐻𝑘−1(𝑌;𝐴) ⋯

and cohomology

⋯ 𝐻𝑘(𝑋,𝑌;𝐴) 𝐻𝑘(𝑋;𝐴) 𝐻𝑘(𝑌;𝐴) 𝐻𝑘+1(𝑋,𝑌;𝐴) ⋯ .

(2) Suppose we have a chain of subspaces 𝑍 ⊆ 𝑌 ⊆ 𝑋 ⊆ 𝑀 such that the
closure of 𝑍 is contained in the interior of 𝑌. Then the inclusion (𝑋 ⧵ 𝑍,𝑌 ⧵
𝑍) → (𝑋,𝑌) induces an isomorphism in homology and cohomology i.e. for
all 𝑘 ∈ ℕ0 we have

𝐻𝑘(𝑋 ⧵ 𝑍,𝑌 ⧵ 𝑍;𝐴)
≅
,→ 𝐻𝑘(𝑋,𝑌;𝐴) and 𝐻𝑘(𝑋 ⧵ 𝑍,𝑌 ⧵ 𝑍;𝐴)

≅
←, 𝐻𝑘(𝑋,𝑌;𝐴)

(3) If 𝑈1 ⊆ 𝑈2 ⊆ 𝑀 and 𝑉1 ⊆ 𝑉2 ⊆ 𝑀 are open subsets in𝑀, then there are
long exact sequences in homology

… 𝐻𝑘(𝑈1 ∩ 𝑉1, 𝑈2 ∩ 𝑉2;𝐴)
𝐻𝑘(𝑈1, 𝑈2;𝐴)

⊕
𝐻𝑘(𝑉1, 𝑉2;𝐴)

𝐻𝑘(𝑈1 ∪ 𝑉2, 𝑈2 ∪ 𝑉2;𝐴)

𝐻𝑘−1(𝑈1 ∩ 𝑉1, 𝑈2 ∩ 𝑉2;𝐴) …

and cohomology

⋯ 𝐻𝑘−1(𝑈1 ∩ 𝑉1, 𝑈2 ∩ 𝑉2;𝐴)

𝐻𝑘(𝑈1 ∪ 𝑉1, 𝑈2 ∪ 𝑉2;𝐴)
𝐻𝑘(𝑈1, 𝑈2;𝐴)

⊕
𝐻𝑘(𝑉1, 𝑉2;𝐴)

𝐻𝑘(𝑈1 ∩ 𝑉2, 𝑈2 ∩ 𝑉2;𝐴) ⋯

(4) Suppose the inclusion𝑌 → 𝑋 is a homotopy equivalence, then the inclusion
induced maps

𝐻𝑘(𝑌;𝐴)
≅
,→ 𝐻𝑘(𝑋;𝐴) and 𝐻𝑘(𝑌;𝐴)

≅
←, 𝐻𝑘(𝑋;𝐴)

are isomorphisms.
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(5) Let 𝑈1 ⊆ 𝑈2 ⊆ … be a sequence of open sets in 𝑀 and let 𝑈 =
⋃

𝑖∈ℕ𝑈𝑖 ,
then for each 𝑘 ∈ ℕ0 the inclusions induce an isomorphism

lim,,→𝑖∈ℕ
𝐻𝑘(𝑈𝑖;𝐴)

≅
,→ 𝐻𝑘(𝑈;𝐴).

The proofs are essentially the same as in the classical case. Therefore we will
only sketch the arguments and focus on what is different. We also warn the
reader that we give the “philosophically wrong proof” of statement (4). This
is due to the fact that we developed the theory of twisted coefficients only for
inclusions and hence a homotopy inverse does not fit in our theory. Therefore
statement (4) will be deduced in a slightly round-about way using the following
elementary lemma [15, Theorem III.3.4 & remark after proof].

LemmaA.18. (CoveringHomotopy Theorem)Given a covering𝑝∶ 𝑋 → 𝑋,
a homotopy𝐻∶ 𝑌× 𝐼 → 𝑋, and a lift ℎ̃∶ 𝑌 → 𝑋 of𝐻(−, 0), there exists a unique
lift �̃�∶ 𝑌 × 𝐼 → 𝑋 of𝐻 with ℎ̃ = �̃�(−, 0).

Proof of Theorem A.17. Recall that 𝑝∶ �̃� → 𝑀 denotes the universal cover.
For statement (1) we consider the short exact sequence 0 → 𝐶∗(𝑌;ℤ[𝜋]) →
𝐶∗(𝑋;ℤ[𝜋]) → 𝐶∗(𝑋,𝑌;ℤ[𝜋]) → 0 of free ℤ[𝜋]-modules. Since the modules
are free the sequence stays exact after applying the functors 𝐴 ⊗ℤ[𝜋] − and
Homℤ[𝜋](−, 𝐴).
Recall the proof of statement (2) and (3) in the classical case as in [15, Chap-

ter IV.17]. Themain ingredient is to show that the inclusion of chain complexes
𝐶𝒰∗ (𝑋;ℤ[𝜋])→ 𝐶∗(𝑋;ℤ[𝜋]) induces an isomorphism on homology [15, Theo-
rem IV.17.7]. Here 𝒰 is an open cover of 𝑋 and 𝐶𝒰∗ (𝑋;ℤ[𝜋]) is the free abelian
group generated by simplices 𝜎 for which there is a 𝑈 ∈ 𝒰 such that 𝜎∶ ∆∗ →
𝑝−1(𝑈). This is done by defining the barycentric subdivision Υ∗∶ 𝐶∗(𝑋;ℤ) →
𝐶∗(𝑋;ℤ) and a chain homotopy 𝑇 between Υ∗ and the identity [15, Lemma
IV.17.1]. The important thing for us to observe is that bothmaps are natural [15,
Claim (1) in proof of Lemma IV.17.1]. Hence for a twisted chainΥ(𝑒⊗ℤ[𝜋]𝜎) ∶=
𝑒 ⊗ℤ[𝜋] Υ(𝜎) is well-defined, because

Υ(𝑒 ⊗ℤ[𝜋] 𝛾𝜎) = 𝑒 ⊗ℤ[𝜋] Υ(𝛾𝜎)
= 𝑒 ⊗ℤ[𝜋] 𝛾Υ(𝜎) (naturality of Υ)
= 𝑒𝛾 ⊗ℤ[𝜋] Υ(𝜎) = Υ(𝑒𝛾 ⊗ℤ[𝜋] 𝜎).

The same holds for 𝑇 and from now on one can follow the classical proofs.
Alternatively, one could invoke Lemma A.4.
Next we prove statement (4). Let 𝑓∶ 𝑋 → 𝑌 ⊆ 𝑋 be a homotopy inverse

of the inclusion and 𝐻∶ 𝑋 × 𝐼 → 𝑋 a homotopy between Id𝑋 and 𝑓. Since
𝑝∶ 𝑋 → 𝑋 is a covering and Id𝑋 is a lift of 𝐻(𝑝(−), 0), we get by Lemma A.4
a lift �̃�∶ 𝑋 × 𝐼 → 𝑋 of the homotopy 𝐻. One easily verifies that the inclusion
𝑌 → 𝑋 induces a homotopy equivalence where a homotopy inverse is given by
�̃�(−, 1). Hence the inclusion induced map 𝐻𝑘(𝐶∗(𝑌;ℤ)) → 𝐻𝑘(𝐶∗(𝑋;ℤ)) is
an isomorphism for every 𝑘. Thus the claim follows from Lemma A.4.
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The proof of Statement (5) is almost verbatim the same proof as in the clas-
sical case. □

A.5. The main technical theorem. Given a group 𝜋 we can view ℤ as a
ℤ[𝜋]-modulewith trivial𝜋-action. Wedenote thismodule byℤtriv . Let𝑝∶ �̃� →
𝑀 be the covering projection. We have the following useful lemma, concerning
the chain map 𝐶∗(𝑋;ℤtriv)→ 𝐶∗(𝑋;ℤ) defined by 𝑘 ⊗ℤ[𝜋] 𝜎 ↦ 𝑘 ⋅ 𝑝(𝜎).

Lemma A.19. Given any subset 𝑋 ⊆ 𝑀 the chain map above is an isomor-
phism between𝐶∗(𝑋;ℤtriv) and𝐶∗(𝑋;ℤ), and induces one between𝐶∗(𝑋;ℤ) and
𝐶∗(𝑋;ℤtriv), where𝐶∗(𝑋;ℤ) and𝐶∗(𝑋;ℤ) are the untwisted singular chain com-
plexes.

Proof. The isomorphism is given by lifting a simplex, which is always possible
since a simplex is simply connected. If one has two different choices of lifts,
then they differ by an element in 𝜋. But the action of ℤ[𝜋] on ℤ is trivial and
hence this indeterminacy vanishes. □

We will keep the notational difference between 𝐶∗(𝑋;ℤ) and 𝐶∗(𝑋;ℤtriv) to
emphasise where our simplices live.
As above let 𝑅 be a ring and let 𝐴 be an (𝑅,ℤ[𝜋])-bimodule. Let 𝐾 ⊆ 𝑀 be a

compact subset of𝑀. We define the (twisted) Cech cohomology groups

�̌�𝑝(𝐾;𝐴) ∶= lim
⟶

𝐾⊆𝑈⊆𝑀

𝐻𝑝(𝑈;𝐴),

where the direct limit runs over all open sets in 𝑀 containing 𝐾. Since coho-
mology is contravariant, we define the order on open sets in the reversed way
i.e. 𝑈 ≤ 𝑉 if 𝑉 ⊆ 𝑈.
Nowwe assume that𝑀 is oriented. Being oriented gives us, for any compact

subset 𝐾 ⊆ 𝑀, a preferred element 𝜃𝐾 ∈ 𝐻𝑛(𝑀,𝑀 ⧵ 𝐾;ℤtriv) ≅ 𝐻𝑛(𝑀,𝑀 ⧵
𝐾;ℤ), which restricts for all 𝑥 ∈ 𝐾 to the generator in𝐻𝑛(𝑀,𝑀 ⧵ {𝑥} ;ℤtriv).
For any open set𝑈 ⊆ 𝑀 containing𝐾, the inclusion inducedmap𝐻𝑛(𝑈,𝑈⧵

𝐾;ℤtriv) → 𝐻𝑛(𝑀,𝑀 ⧵ 𝐾;ℤtriv) is an isomorphism by Theorem A.17 (2). Let
ex𝑈 ∶ 𝐻𝑛(𝑀,𝑀⧵𝐾;ℤtriv)→ 𝐻𝑛(𝑈,𝑈⧵𝐾;ℤtriv) be the inverse of this inclusion
induced isomorphism i.e. if 𝑗∶ 𝑈 → 𝑀 is the inclusion then 𝑗∗◦ ex𝑈 = Id. We
then obtain a map

𝐷𝑈 ∶ 𝐻𝑝(𝑈;𝐴)⟶ 𝐻𝑛(𝑀,𝑀 ⧵ 𝐾;𝐴)
𝜙⟼ 𝑗∗(𝜙 X ex𝑈(𝜃𝐾)).

Given another open set 𝑉 ⊆ 𝑈 denote by 𝑖∶ 𝑉 → 𝑈 the inclusion. Then one
easily calculates:

PD𝑉(𝑖∗𝜙) = 𝑗∗𝑖∗(𝑖∗𝜙 X ex𝑉(𝜃𝐾)) = 𝑗∗(𝜙 X 𝑖∗ ex𝑉(𝜃𝐾))
= 𝑗∗(𝜙 X ex𝑈(𝜃𝐾)) = PD𝑈(𝜙).



136 S. FRIEDL, M. NAGEL, P. ORSON ANDM. POWELL

Or, in other words, the following diagram commutes:

𝐻𝑝(𝑈;𝐴)

𝐻𝑛−𝑝(𝑀,𝑀 ⧵ 𝐾;𝐴).

𝐻𝑝(𝑉;𝐴)

𝑖∗

PD𝑈

PD𝑉

By the universal property of the direct limit we obtain the dualisingmap

PD𝐾 ∶ �̌�𝑝(𝐾;𝐴)→ 𝐻𝑛−𝑝(𝑀,𝑀 ⧵ 𝐾;𝐴).

In the remainder of this section we will prove the following theorem.

Theorem A.20. (Poincaré Duality Theorem) The map PD𝐾 ∶ �̌�𝑝(𝐾;𝐴) →
𝐻𝑛−𝑝(𝑀,𝑀⧵𝐾;𝐴) is a left𝑅-module isomorphism for all compact subsets𝐾 ⊆ 𝑀.

Here, as above,𝐴 is an (𝑅,ℤ[𝜋])-bimodule. In the subsequent sectionwewill
see that the Twisted Poincaré Duality TheoremA.15 is a reasonably straightfor-
ward consequence of Theorem A.20.
The proof of Theorem A.20 will be an application of the following lemma.

Lemma A.21. (Bootstrap lemma) For each compact subspace 𝐾 ∈ 𝑀 let
𝑃𝑀(𝐾) be a statement. If 𝑃𝑀(⋅) satisfies the following three conditions:
(1) 𝑃𝑀(𝐾) holds true for all compact subsets 𝐾 ⊆ 𝑀 with the property that for

all 𝑥 ∈ 𝐾 the inclusions {𝑥} → 𝐾 and𝑀 ⧵ 𝐾 → 𝑀 ⧵ {𝑥} are deformation
retracts,

(2) If 𝑃𝑀(𝐾1), 𝑃𝑀(𝐾2) and 𝑃𝑀(𝐾1 ∩ 𝐾2) are true, then 𝑃𝑀(𝐾1 ∪ 𝐾2) is true,
(3) If⋯ ⊆ 𝐾2 ⊆ 𝐾1 and 𝑃𝑀(𝐾𝑖) is true for all 𝑖 ∈ ℕ, then 𝑃𝑀(

⋂
𝑖∈ℕ 𝐾𝑖) is true.

Then 𝑃𝑀(𝐾) is true for all 𝐾 ⊆ 𝑀.

Proof. See [15, Lemma VI.7.9]. □

The idea is to apply the bootstrap lemma to the statement that the conclusion
of Theorem A.20 holds for a given compact set 𝐾. It turns out that condition
(3) is the easiest to verify. It follows from formal properties about direct limits.
For the verification of condition (1) we have to do one explicit calculation. This
is the content of the next lemma.

LemmaA.22. Let 𝑥 ∈ 𝑀 be a point. Themap PD{𝑥}∶ �̌�0({𝑥} ;𝐴)→ 𝐻𝑛(𝑀,𝑀⧵
{𝑥} ;𝐴) is an 𝑅-module isomorphism.

Proof. Let 𝑝∶ �̃� → 𝑀 be the universal cover. Since 𝑥 is a point in a man-
ifold we can calculate the dualising map PD{𝑥} by taking the limit over open
neighbourhoods 𝑈 of 𝑥 with the following two properties:
(1) 𝑈 is contractible,
(2) for any connected component 𝑈 ⊆ 𝑝−1(𝑈) the map 𝑝|𝑈 is a homeomor-

phism.
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This can be done, since any neighbourhood of 𝑥 contains a neighbourhoodwith
these two properties. Let 𝑈 be such a neighbourhood of 𝑥 and 𝑈 ⊆ 𝑝−1(𝑈) a
fixed connected component. This choice of connected component gives us an
isomorphism 𝐻0(𝑈;𝐴) ≅ 𝐴 as follows. Let 𝑓 ∈ 𝐻0(𝑈;𝐴) be arbitrary and
𝑥 ∈ 𝑈 be a point in our connected component. Then we get an element in 𝐴
by evaluating 𝑓([𝑥]). Conversely, given an element 𝑒 ∈ 𝐴 we can construct a
function in 𝐻0(𝑈;𝐴) by setting 𝑓([𝑥]) = 𝑒 for all 𝑥 ∈ 𝑈. Note that there is a
unique way to extend 𝑓 equivariantly to 𝐶0(𝑝−1(𝑈);ℤ).
We are now going to construct a representative of the orientation class 𝜃𝐾 ∈

𝐻𝑛(𝑀,𝑀 ⧵ {𝑥} ;ℤtriv) for which it is very simple to calculate the dualising map.
Let 𝑥 be the preimage of 𝑥 in 𝑈. Now take a cycle

∑𝑑
𝑖=1 𝑘𝑖𝜎𝑖 which generates

𝐻𝑛(𝑈,𝑈 ⧵
{
𝑥
}
;ℤ). By Theorem A.17 (2) and Lemma A.19 one easily sees that

1⊗ℤ[𝜋]
∑𝑑

𝑖=1 𝑘𝑖𝜎𝑖 is a generator of𝐻𝑛(𝑀,𝑀 ⧵ {𝑥} ;ℤtriv).
Using the isomorphism 𝐻0(𝑈;𝐴) ≅ 𝐴 from above the dualising map be-

comes PD{𝑥}∶ 𝐴 → 𝐻𝑛(𝑀,𝑀 ⧵ {𝑥} ;𝐴), 𝑒 ↦ 𝑒 ⊗ℤ[𝜋]
∑𝑑

𝑖=1 𝑘𝑖𝜎𝑖. This is clearly
an isomorphism, since on the chain level we have:

𝐶∗(𝑈,𝑈 ⧵ {𝑥} ;𝐴) = 𝐴⊗ℤ[𝜋]
⨁

𝛾∈𝜋
𝐶∗(𝛾𝑈, 𝛾𝑈 ⧵

{
𝛾𝑥
}
;ℤ)

≅ 𝐴⊗ℤ 𝐶∗(𝑈,𝑈 ⧵
{
𝑥
}
;ℤ). □

In order to verify condition (2) of the bootstrap lemma we will need the fol-
lowing lemma (compare [15, Lemma VI.8.2]).

Lemma A.23. If 𝐾 and 𝐿 are two compact subsets of𝑀, then for all 𝑝 ∈ ℕ0 the
diagram

...
...

�̌�𝑝(𝐾∪𝐿;𝐴) 𝐻𝑛−𝑝(𝑀,𝑀⧵(𝐾∪𝐿);𝐴)

�̌�𝑝(𝐾;𝐴)
⊕

�̌�𝑝(𝐿;𝐴)

𝐻𝑛−𝑝(𝑀,𝑀⧵𝐾;𝐴)
⊕

𝐻𝑛−𝑝(𝑀,𝑀⧵𝐿;𝐴)

�̌�𝑝(𝐾 ∩ 𝐿;𝐴) 𝐻𝑛−𝑝(𝑀,𝑀⧵(𝐾 ∩ 𝐿);𝐴)

�̌�𝑝+1(𝐾∪𝐿;𝐴) 𝐻𝑛−𝑝−1(𝑀,𝑀⧵(𝐾∪𝐿);𝐴)

...
...

PD𝐾∪𝐿

PD𝐾 ⊕PD𝐿

PD𝐾∩𝐿

PD𝐾∪𝐿
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has exact rows and it commutes up to a sign depending only on 𝑝.

Proof. The rows are exact by Mayer-Vietoris (see Theorem A.17 (3)) and the
fact that direct limit is an exact functor. The commutativity of the squares is
clear except for the last one involving the boundary map. This will be a painful
diagram chase. Let 𝑈 ⊇ 𝐾 and 𝑉 ⊇ 𝐿 be open neighbourhoods containing
𝐾 resp. 𝐿. The sequence in the top row comes from the short exact sequence
(𝒰 = {𝑈,𝑉}):

0 𝐶∗𝒰(𝑈 ∪ 𝑉;𝐴) 𝐶∗(𝑈;𝐴)⊕𝐶∗(𝑉;𝐴) 𝐶∗(𝑈 ∩ 𝑉;𝐴) 0.

An element 𝜙 ∈ �̌�𝑝(𝐾 ∩ 𝐿;𝐴) will already be represented by some element
𝑓 ∈ 𝐶𝑝(𝑈 ∩ 𝑉;𝐴) for some 𝑈 and 𝑉 as above. We can extend 𝑓 to an element
𝑓 ∈ 𝐶𝑝(𝑀;𝐴) by

𝑓(𝜎) = {
𝑓(𝜎) if Im𝜎 ⊆ 𝑈 ∩ 𝑉
0 else.

Note that 𝑓 ∈ 𝐶𝑝(𝑀;𝐴) since 𝑝−1(𝑈∩𝑉) is an equivariant subspace and hence
𝑓 is equivariant. If we consider 𝑓 as an element in 𝐶𝑝(𝑈;𝐴) then the cohomol-
ogy class 𝛿(𝜙) is represented by the cochain ℎ ∈ 𝐶𝑝+1(𝑈 ∪𝑉;𝐴)which is given
by

ℎ(𝜎) = {
𝛿(𝑓)(𝜎) if Im𝜎 ⊆ 𝑈
0 else.

Since 𝜙 is a cocycle we have 𝛿(𝑓)(𝜎) = 0 for 𝜎 ∈ 𝐶∗(𝑈 ∩ 𝑉;𝐴). It follows in
particular that if 𝜎 is a simplex whose image is completely contained in𝑉, then
ℎ(𝜎) = 0. We can represent our orientation class 𝜃 ∈ 𝐻𝑛(𝑀,𝑀 ⧵ (𝐾 ∪ 𝐿)) by a
cycle

𝑎 = 𝑏 + 𝑐 + 𝑑 + 𝑒 with 𝑏 ∈ 𝐶𝑛(𝑈 ∩ 𝑉;ℤtriv)

𝑐 ∈ 𝐶𝑛(𝑈 ⧵ (𝑈 ∩ 𝐿);ℤtriv)

𝑑 ∈ 𝐶𝑛(𝑉 ⧵ (𝑉 ∩ 𝐾);ℤtriv),

𝑒 ∈ 𝐶𝑛(𝑀 ⧵ (𝐾 ∪ 𝐿);ℤtriv).

Obviously 𝑒 does not play a role since we kill it in the end. With these repre-
sentatives one computes that 𝛿(𝜙)(𝜃) is represented by

ℎ X (𝑏 + 𝑐 + 𝑑) = 𝛿(𝑓) ∩ 𝑐 + ℎ X 𝑑 + 𝛿(𝑓) ∩ 𝑏 = 𝛿(𝑓) ∩ 𝑐.

The pairing of ℎ with 𝑏 is zero since 𝑓 was a cocycle in 𝐶∗(𝑈 ∩ 𝑉;𝐴) and the
pairing of ℎ with 𝑑 is zero since 𝑑 consists of simplices with image in 𝑉.
The lower sequence comes from the short exact sequence:

0 𝐶∗(𝑀,𝑀 ⧵ (𝐾 ∪ 𝐿);𝐴)
𝐶∗(𝑀,𝑀 ⧵ 𝐾;𝐴)

⊕
𝐶∗(𝑀,𝑀 ⧵ 𝐿);𝐴)

𝐶∗(𝑀,𝑀 ⧵ (𝐾 ∩ 𝐿);𝐴) 0.
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Before we compute the other side 𝜕(𝜙 X ex𝑈∩𝑉(𝜃)) we want to recall that the
cap product is natural on the chain complex level i.e. the following diagram
commutes:

𝐶𝑝(𝑈;𝐴) × 𝐶𝑛(𝑈,𝑈 ⧵ 𝐾;ℤtriv) 𝐶∗(𝑈,𝑈 ⧵ 𝐾;𝐴)

𝐶𝑝(𝑀;𝐴) × 𝐶𝑛(𝑀,𝑀 ⧵ 𝐾;ℤtriv) 𝐶∗(𝑀,𝑀 ⧵ 𝐾;𝐴).

Therefore we use the representatives from above. To construct the boundary
map 𝜕, we take as the preimage of 𝑓 X 𝑎 ∈ 𝐶∗(𝑀,𝑀 ⧵ (𝐾 ∩ 𝐿);𝐴) the element
(𝑓X𝑎, 0) ∈ 𝐶∗(𝑀,𝑀⧵𝐾;𝐴)⊕𝐶∗(𝑀,𝑀⧵𝐿;𝐴). Then one computes in𝐶∗(𝑀,𝑀⧵
𝐾;𝐴)

𝜕(𝑓 X 𝑎) = (−1)𝑝+1 ⋅ 𝛿(𝑓) X 𝑎 ± 𝑓 X 𝜕𝑎 (by Lemma A.13)

= (−1)𝑝+1 ⋅ 𝛿(𝑓) X 𝑎 (since 𝑓 X 𝜕𝑎 ∈ 𝐶𝑛−𝑝−1(𝑀 ⧵ (𝐾 ∪ 𝐿);𝐴))

= (−1)𝑝+1 ⋅ 𝛿(𝑓) X 𝑏 + 𝑐 + 𝑑 + 𝑒

= (−1)𝑝+1 ⋅ 𝛿(𝑓) X (𝑐 + 𝑑) (same reason as above)

= (−1)𝑝+1 ⋅ 𝛿(𝑓) X 𝑐 (since 𝑑 ∈ 𝐶𝑛−𝑝(𝑉 ⧵ (𝐾 ∩ 𝑉);𝐴))

Therefore the element 𝜕(𝜙Xex𝑈∩𝑉(𝜃)) is also represented by (−1)𝑝+1⋅𝛿(𝑓)X𝑐 ∈
𝐶𝑛−𝑝−1(𝑀,𝑀 ⧵ (𝐾 ∪ 𝐿);𝐴). □

Proof of Theorem A.20. Let 𝑃𝑀(𝐾) be the statement that the map PD𝐾 is an
isomorphism. Then it is sufficient to verify condition (1), (2) and (3) of the
bootstrap lemma. We start by verifying (1). In the case that 𝐾 = {𝑥} is just a
point we have already seen in Lemma A.22 that the statement holds true. For
a general compact 𝐾 with the property of (1) the statement follows from the
following commutative diagram:

�̌�𝑝(𝐾;𝐴) 𝐻𝑛−𝑝(𝑀,𝑀 ⧵ 𝐾;𝐴)

�̌�𝑝({𝑥} ;𝐴) 𝐻𝑛−𝑝(𝑀,𝑀 ⧵ {𝑥} ;𝐴),

≃ ≃

≃

where the vertical maps are isomorphisms by the homotopy invariance and the
bottom row by the observation above. Hence condition (1) is verified.
Condition (2) follows immediately from the five lemma and Lemma A.23.
Let𝐾𝑖 be a sequence of compact subsets such that 𝑃𝑀(𝐾𝑖) holds for all 𝑖 ∈ ℕ.

We set 𝐾 =
⋂

𝑖∈ℕ 𝐾𝑖. It is an exercise in point set topology of manifolds that
each 𝐾𝑖 has a fundamental system𝑈𝑖,𝑗 of open neighbourhoods. Fundamental
system means that 𝑈𝑖,𝑗 ⊆ 𝑈𝑖,𝑘 if 𝑗 < 𝑘 and that for each open set 𝑈 containing
𝐾𝑖 there is a 𝑗 such that 𝑈𝑖,𝑗 ⊆ 𝑈. Another exercise in the point set topology
of manifolds shows that one can construct these sets such that 𝑈1,𝑗 ⊇ 𝑈2,𝑗 ⊇
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𝑈3,𝑗 ⊇ … for all 𝑗 ∈ ℕ. Then 𝑈𝑖,𝑗 is a fundamental system of open neighbour-
hoods of 𝐾 with the order (𝑖, 𝑗) ≤ (𝑘, 𝑙) ⇔ 𝑖 ≤ 𝑘 ∧ 𝑗 ≤ 𝑙. One has the natural
isomorphism [15, Appendix D5]:

lim,,→
𝑖∈ℕ

�̌�𝑝(𝐾𝑖;𝐴) = lim,,→
𝑖∈ℕ

lim,,→
𝑗∈ℕ

𝐻𝑝(𝑈𝑖,𝑗;𝐴)
≃
,,,→ lim,,→

𝑖,𝑗∈ℕ
𝐻𝑝(𝑈𝑖,𝑗;𝐴) ≅ �̌�𝑝(𝐾;𝐴).

Hence the theorem follows from the commutativity of the diagram:

lim,,→𝑖∈ℕ
�̌�𝑝(𝐾𝑖;𝐴) lim,,→𝑖∈ℕ

𝐻𝑛−𝑝(𝑀,𝑀 ⧵ 𝐾𝑖;𝐴)

�̌�𝑝(𝐾;𝐴) 𝐻𝑛−𝑝(𝑀,𝑀 ⧵ 𝐾;𝐴).

□

A.6. Proof of theTwistedPoincaréDualityTheorem. For the reader’s con-
venience we recall the main theorem from the last section. Here, as above, 𝑅 is
a ring and 𝐴 is an (𝑅,ℤ[𝜋])-bimodule.

Theorem A.20. Let𝑀 be a compact, oriented, connected 𝑛-dimensional mani-
fold. The map PD𝐾 ∶ �̌�𝑝(𝐾;𝐴) → 𝐻𝑛−𝑝(𝑀,𝑀 ⧵ 𝐾;𝐴) is an isomorphism of left
𝑅-modules for all compact subsets 𝐾 ⊆ 𝑀 and al 𝑝 ∈ ℕ0.

Furthermore, we also recall that we need to prove the following theorem.

Theorem A.15. Let𝑀 a compact, oriented, connected 𝑛-dimensional manifold.
Let 𝑆 and 𝑇 be codimension 0 compact submanifolds of 𝜕𝑀 such that 𝜕𝑆 = 𝜕𝑇 =
𝑆 ∩ 𝑇 and 𝜕𝑀 = 𝑆 ∪ 𝑇. Let [𝑀] ∈ 𝐻𝑛(𝑀, 𝜕𝑀;ℤ) be the fundamental class of𝑀.
The map

− X [𝑀]∶ 𝐻𝑘(𝑀, 𝑆;𝐴) → 𝐻𝑛−𝑘(𝑀,𝑇;𝐴)

defined by Lemma A.13 is an isomorphism of left 𝑅-modules.

In the remainder of this appendix we will explain how to deduce Theorem
A.15 from Theorem A.20. First note that if𝑀 is a closed manifold, then we can
set 𝐾 = 𝑀 in Theorem A.20. Evidently we have �̌�𝑝(𝑀;𝐴) = 𝐻(𝑀;𝐴). Thus
we obtain precisely the statement of Theorem A.15 in the closed case.
Next let𝑀 be a compact oriented manifold with nonempty boundary. First

we consider the case 𝑅 = ∅ and 𝑆 = 𝜕𝑀. By the Collar Neighbourhood The-
orem 2.16 there exists a collar 𝜕𝑀 × [0, 2] ⊆ 𝑀 of the boundary such that
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𝜕𝑀 = 𝜕𝑀 × {0}. We obtain the following chain of isomorphisms:
𝐻𝑝(𝑀;𝐴) ≅ 𝐻𝑝(𝑀 ⧵ (𝜕𝑀 × [0, 1));𝐴) (homotopy)

≅ �̌�𝑝(𝑀 ⧵ (𝜕𝑀 × [0, 1));𝐴) (follows from considering the open

neighbourhoods𝑀 ⧵ (𝜕𝑀 × [0, 1 − 1
𝑛
]))

≅ 𝐻𝑛−𝑝(𝑀 ⧵ 𝜕𝑀, 𝜕𝑀 × (0, 1);𝐴) (duality 𝐾 = 𝑀 ⧵ (𝜕𝑀 × [0, 1)))
≅ 𝐻𝑛−𝑝(𝑀, 𝜕𝑀 × [0, 1);𝐴) (excision 𝑈 = 𝜕𝑀)
≅ 𝐻𝑛−𝑝(𝑀, 𝜕𝑀;𝐴),

It follows from the definition of the dualisingmap and naturality of cap product
that these isomorphisms are given by capping with a generator

[𝑀] ∈ 𝐻𝑛(𝑀, 𝜕𝑀;ℤtriv) ≅ 𝐻𝑛(𝑀, 𝜕𝑀;ℤ)
as in the classical case.
The proof of the general case of TheoremA.15 relies on the following lemma.

LemmaA.24. Let𝑀 be a compact, oriented, connected𝑛-dimensionalmanifold.
Let 𝑅 and 𝑆 be compact codimension 0 submanifolds of 𝜕𝑀 such that 𝜕𝑅 = 𝜕𝑆 =
𝑅 ∩ 𝑆 and 𝜕𝑀 = 𝑅 ∪ 𝑆. For each 𝑝 ∈ ℕ0 the following diagram commutes up to
a sign:

… 𝐻𝑝(𝑀, 𝜕𝑀;𝐴) 𝐻𝑝(𝑀,𝑅;𝐴) 𝐻𝑝(𝜕𝑀, 𝑅;𝐴) 𝐻𝑝+1(𝑀, 𝜕𝑀;𝐴) …

𝐻𝑛−𝑝−1(𝑆, 𝜕𝑆;𝐴)

… 𝐻𝑛−𝑝(𝑀;𝐴) 𝐻𝑛−𝑝(𝑀, 𝑆;𝐴) 𝐻𝑛−𝑝−1(𝑆;𝐴) 𝐻𝑛−𝑝−1(𝑀;𝐴) …

X[𝑀] X[𝑀]

𝛿

Theorem 𝐴.17(2)

X[𝑀]

X[𝑅]
𝜕

Proof. The commutativity is a more or less direct consequence of LemmaA.13
and the observation that 𝜕∗[𝑀] = [𝜕𝑀]. More precisely, the proof in the un-
twisted case is given in detail in [52, p. 2892]. The proof in the twisted case is
basically the same. □

The proof of the general case of Theorem A.15 follows from the previous

Poincaré Duality isomorphisms X[𝑀]∶ 𝐻𝑝(𝑀;𝐴)
≅
,→ 𝐻𝑛−𝑝(𝑀, 𝜕𝑀;𝐴), and

X[𝑅]∶ 𝐻𝑝+1(𝑅,𝐴)
≅
,→ 𝐻𝑛−𝑝−1(𝑅, 𝜕𝑅;𝐴) together with Lemma A.24 and the

five lemma.
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