ON THE FUNCTIONAL EQUATION $f\varphi f = f$

Valentina Harizanov

Abstract. In this note we determine the general solution of the equation $f\varphi f = f$, where $f\colon X\to Y$ is a given function and $\varphi\colon Y\to X$ is an unknwn function (X and Y are arbitrary nonempty sets). The general solution of that equation is given by the formula (4), where $\varphi_0\colon Y\to X$ is a particular solution, $k\colon Y\to X$ and $h\colon X\to X$ are arbitrary functions, $F\colon X^3\times Y^3\to X$ is defined by (3).

*

Let X and Y be nonempty sets and f a given function from X to Y. By a generalized inverse of the function f we mean every function φ from Y to X which is a solution of the functional equation

$$(1) f\varphi f = f,$$

i.e. for every $x \in X$, $f(\varphi(f(x))) = f(x)$. The condition that the equation (1) has a solution is equivalent to the axiom of choise, as can be easily shown. In the case that f is a bijection there exists the unique solution of (1) and it is the inverse function of f (defined as usual). The following theorem describes (in a certain way) all the solutions of the functional equation (1), provided that its particular solution is known. We reason in the following way:

Let $f: X \to Y$ be any function. Then the relation \sim on X, defined by $x \sim y \Leftrightarrow f(x) = f(y)$, is an equivalence relation and the corresponding quotient set is $X/\sim=\{C_y\mid y\in f(X)\}$, where $C_y=f^{-1}(y)$. A function $\varphi\colon Y\to X$ is a solution of the equation (1) if and only if the following condition is satisfied

(2)
$$(\forall y \in f(X))(\varphi(y) \in C_y).$$

This implies that for $y \in Y \setminus f(X)$, $\varphi(y)$ can be arbitrarily chosen. In order to fulfill the condition (2) we shall use, beside a particular solution φ_0 of the equation, an arbitrary function h from X to X.

In the construction of the formula which gives the general solution of the equation (1) we shall also use the function $F: X^3 \times Y^3 \to X$, defined by

(3)
$$F(x, y, z; u, v, w) = \begin{cases} x, & \text{if } u \neq w, \\ y, & \text{if } u = w \text{ and } u \neq v, \\ z, & \text{if } u = v = w, \end{cases}$$

where $x, y, z \in X$ and $u, v, w \in Y$. Since the conditions on the right-hand side exclude each other and form a complete system, F is well-defined¹.

THEOREM. If $\varphi_0: Y \to X$ is a particular solution of the functional equation (1), then its general solution is given by

(4)
$$\varphi(x) = F(k(x), \varphi_0(x), h(\varphi_0(x)); f(\varphi_0(x)), f(h(\varphi_0(x))), x)$$
 $(x \in Y),$

where $F: X^3 \times Y^3 \to X$ is a function defined by (3) and $k: Y \to X$, $h: X \to X$ are arbitrary functions.

PROOF. Let $k: Y \to X$ and $h: X \to X$ be arbitrary functions. Then for φ defined by (4) and for every $x \in X$ we have²

$$\begin{split} \varphi f x &= F(kfx, \varphi_0 f x, h \varphi_0 f x; f \varphi_0 f x, f x, f h \varphi_0 f x, f x) \\ &= \left\{ \begin{array}{ll} kfx, & \text{if } f \varphi_0 f x \neq f x, \\ \varphi_0 f x, & \text{if } f \varphi_0 f x = f x \text{ and } f \varphi_0 f x \neq f h \varphi_0 f x, \\ h \varphi_0 f x & \text{if } f \varphi_0 f x = f h \varphi_0 f x = f x. \end{array} \right. \end{split}$$

Since $f\varphi_0 fx = fx$, we get

$$\varphi f x = \left\{ \begin{array}{ll} \varphi_0 \, f x, & \text{if } f x \neq f h \varphi_0 f x, \\ h \varphi_0 f x & \text{if } f x = f h \varphi_0 f x. \end{array} \right.$$

Finally,

$$f\varphi_0 fx = \begin{cases} f\varphi_0 fx, & \text{if } fx \neq fh\varphi_0 fx, \\ fh\varphi_0 fx, & \text{if } fx = fh\varphi_0 fx \end{cases}$$
$$= \begin{cases} fx, & \text{if } fx \neq fh\varphi_0 fx, \\ fx, & \text{if } fx = fh\varphi_0 fx \end{cases}$$
$$= fx,$$

i.e. φ satisfies the equation (1).

Coversely, let $\varphi: Y \to X$ be a solution of (1). We shall show that φ can be written in the form (4). Let $k: Y \to X$ be equal to φ and $h: X \to X$ be defined by

$$hy = \begin{cases} \varphi x, & \text{if } \varphi_0 x = y \text{ and } f \varphi_0 x = x \\ & \text{for some } x \in Y, \\ \text{arbitrary, otherwise,} \end{cases}$$

 $^{^{1}\}mathrm{We}$ can call the function F a resolution function.

² For the sake of simplicity we shal write kh, $h\varphi_0x$ etc. instead of k(x), $h\varphi_0(x)$, ...

where $y \in X$. The function h is well-defined, since hy does not depend on the choise of x. Indeed, assuming that there exist, $x, x' \in Y$ such that $\varphi_0 x = y$, $\varphi_0 x' = y$, $f\varphi_0 x = x$, $f\varphi_0 x' = x'$, we get x = fy = x'.

Then for functions k and h and $x \in Y$ we get

$$F(kx, \varphi_0 x, h\varphi_0 x; f\varphi_0 x, fh\varphi_0 x, x)$$

$$= \begin{cases} \varphi x, & \text{if } f\varphi_0 x \neq x, \\ \varphi_0 x, & \text{if } \varphi_0 x = x \text{ and } f\varphi_0 x \neq fh\varphi_0 x, \\ h\varphi_0 x, & \text{if } f\varphi_0 x = fh\varphi_0 x = x \end{cases}$$

$$(\text{by } k = \varphi)$$

$$= \begin{cases} \varphi x, & f\varphi_0 x \neq x, \\ \varphi_0 x, & \text{if } f\varphi_0 x = x \text{ and } f\varphi_0 x \neq f\varphi x, \\ \varphi x, & \text{if } f\varphi_0 x = f\varphi x = x \end{cases}$$

(Applying the definition of h, from $f\varphi_0x=x$ we obtain $hy=\varphi x$ for $y=\varphi_0x$, i.e. $h\varphi_0x=\varphi x$.)

$$\begin{cases} \varphi x, & \text{if } f\varphi_0 x \neq x, \\ \varphi x, & \text{if } f\varphi_0 x = x \end{cases}$$

(From $f\varphi_0 x = x$ and $f\varphi f = f$ it follows $f\varphi x = f\varphi f\varphi_0 x = f\varphi_0 x$, which contradicts $f\varphi x \neq f\varphi_0 x$.)

$$=\varphi x.$$

This proves the theorem.

In connection with the previous theorem we observe that if the function f is surjective, then $f\varphi_0x = x$ for every $x \in Y$. In that case only one arbitrary function $(h: X \to X)$ occurs in the formula for the general solution of the equation (1):

$$arphi x = F(kx, arphi_0 x, h arphi_0 x; x, f h arphi_0 x, x) \ \left\{ egin{aligned} arphi_0 x, & ext{if } f h arphi_0 x
eq x, \ h arphi_0 x, & ext{if } f h arphi_0 x = x. \end{aligned}
ight.$$

*

I would like to thank Professor S. B. Prešić. He has read this note in manuscript and has made some helpful suggestions.

REFERENCE

- [1] D. Banković, On general and reproductive solutions of arbitrary equations, Publ. Inst. Math. (Beograd) 26 (40), 31-33.
- [2] M. Božić, A note on reproductive solutions, Publ. Inst. Math. (Beograd) 19 (33), 1976, 33-35
- [3] S. B. Prešić, $Ein\ satz\ \ddot{u}ber\ reproductive\ L\"{o}sungen,$ Publ. Inst. Math. (Beograd) 14 (28), 1972, 133–136.
- [4] S. B. Prešić, Une méthode de résolution des équations dont toutes les solutions appartiennent à un ensemble fini donné, C. R. Acad. Sci. Paris Sér. A, t. 272, 1971, 654-657.
- [5] S. B. Prešić, Certaines équations matricielles, Univ. Beograd Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 115-No. 121, (1963) 31-32.
- [6] S. B. Prešić, Une classe d'équations matricielles et l'équation fonctionnelle $f^2 = f$, Publ. Inst. Math. (Beograd) 8 (22), 1968, 143–148.
- [7] S. Rudeanu, On reproductive solutions of Boolean equations, Publ. Inst. Math. (Beograd) 10 (24), 1970, 71–78.
- [8] S. Rudeanu, Boolean Functions and Equations, North-Holland, Amsterdam/London & Elsevier, New York, 1974.
- [9] S. Rudeanu, On reproductive solutions of arbitrary equations, Publ. Inst. Math. (Beograd) 24 (38) 1978, 143-145.

Valentina Harizanov 11000 Beograd Ustanička 141