EMIS ELibM Electronic Journals PUBLICATIONS DE L'INSTITUT MATHÉMATIQUE (BEOGRAD) (N.S.)
Vol. 36(50), pp. 67--78 (1984)

Previous Article

Next Article

Contents of this Issue

Other Issues


ELibM Journals

ELibM Home

EMIS Home

 

ASYMPTOTIC PROPERTIES OF CONVOLUTION PRODUCTS OF SEQUENCES

E. Omey

Economische Hogeschool Sint-Aloysius Broekstraat 113, 1000 Brussel, Belgium

Abstract: Suppose three sequences $\{a_n\}_{\bold N}$, $\{b_n\}_{\boldN}$ and $\{c_n\}_{\bold N}$ are related by the equation $c_n=\sum^n_{k=0}a_{n-k}b_k$. In this paper we examine the asymptotic behavior of $c_n/a_n$ under various conditions on $\{a_n\}_{\bold N}$ and $\{b_n\}_{\bold N}$. If $\sum^\infty_{k=0}|b_k|<\infty$ we discuss conditions under which $c_n/a_n\to\sum^n_{k=0}b_k$ and give sharp rate of convergence results. From our results we obtain asymptotic expansions of the form $$ c_n = a_n \sum^\infty_{k=0} b_k + (a_n - a_{n-1}) \sum^\infty_{k=1} k b_k + O (|a_n - a_{n-1}|/n). $$

Classification (MSC2000): 40A05, 40A25

Full text of the article:


Electronic fulltext finalized on: 3 Nov 2001. This page was last modified: 16 Nov 2001.

© 2001 Mathematical Institute of the Serbian Academy of Science and Arts
© 2001 ELibM for the EMIS Electronic Edition