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NONEXISTENCE OF NONMOLECULAR GENERIC SETS

Donald D. Steiner and Alexander Abian

Abstract. Generic subsets of partially ordered sets play an important role in giving
significant examples of Zermelo-Fraenkel set-theoretical models. The significance of these models
lies in the fact that a generic subset G of a partially ordered set P, in general, does not exist in a
model M in which P exists. Thus, by adjoining G to M an interesting extended model may ensue
which has properties not shared by M. Thus, in considering generic extensions of set-theoretical
models it is quite relevant to know whether or not a generic subset of a partially ordered set P
exists in the same model in which P exists. In this paper, we give a necessary and sufficient
condition for P to have a generic subset in the same model.

Let (P, <) be a partially ordered set. As usual, when no confusion is likely
to arise, we represent (P, <) simply by P. If P has a minimum (i.e., the smallest)
element, we represent it by 0 and we call it the zero element of P.

DEFINITION 1. A subset D of a partially ordered set (P, <) is called a dense
(or, a coinitial) subset of P if and only if for every nonzero element z of P there
exists a nonzero element y of D such that y < z.

It is an interesting fact that, as shown in [1], a partially ordered set P has
either finitely many or else continuum many dense subsets. Clearly, every nonzero
minimal element of P is an element of every dense subsets. Clearly, every nonzero
minimal element of P is an element of every dense subset of P. On the other hand,
if 0 of P exists, 0 need not be an element of every dense subset of P. However, if
D is a dense subset of P then D — {0} as well as D U {0} is a dense subset of P.
Indeed, every superset of a dense subset of P is a dense subset of P.

Based on the notion of a dense subset of a partially ordered set, we introduce
the notion of a generic subset of a partially ordered set as follows:

DEFINITION 2. Let (P, <) be a partially ordered set. A subset G of P is
called a generic subset of P (or, simply generic) if and only if: (1) 0 ¢ G and G
is nonempty; (2) For every element x and y of P if z € G and z < y then y € G}
(3) Every two elements of G have a lower bound in G; (4) G has a nonempty
intersection with every dense subset of P.
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We observe that by (1) and (3) every two elements of G have a nonzero lower
bound in G. Also, we observe that (1), (2) (3) imply that G is a filter. Therefore,
a generic subset G of a partially ordered set P is a filter of P such that G has a
nonempty intersection with every dense subset of P.

As shown below, not every partially ordered set has a generic subset. In fact,
according to Theorem 1 below, a partially ordered set has a generic subset if and
only if it has a molecule. In the literature, a modified notion of a generic subset is
usually considered where (4) is replaced by:

(4a) G has a nonempty intersection with every dense subset of P belonging
to a preassigned collection M of dense subsets of P.

If in Definition 1, condition (4) is replaced by (4a), then G is called generic
over M and is denoted by G/M. It can be readily verified [3], that if M is a
denumerable collection {Dyg, D1, D2, D3, ...} of dense subsets D; of (P, <), then P
always has a generic over M subset G with p € G for any nonzero element p of P.
Indeed, since D;’s are dense in P there exists a nonincreasing sequence:

o <dg<dy <dy <do <p

where d; € D;. But then clearly G = {z | x € P and d; < z for some i} is a generic
over M subset of P.

DEFINITION 3. A nonzero element m of a poset P is called a molecule of P
if and only if every two nonzero elements of P which are less than or equal to m
have a nonzero lower bound.

Clearly, every nonzero element of a simply ordered set S is a molecule of S.

A typical partially ordered set without a molecule is provided with the fol-
lowing example. Let H be the set of all finite sequences of the natural numbers
0,1,2,3,.... Let us consider the partial order (H, <) where p < ¢ if and only if p
is an extension of ¢. Thus, (0,3,5,2,1) < (0,3,5) and (0,3,5,7) < (0,3,5). It can
be readily verified that (H, <) has no molecule.

DEFINITION 4. Let m be a molecule of a partially ordered set (P, <). Then

a subset G(m) of P is called molecular, or generated by the molecule m if and only
if:

() Gm)=A{z| (e P)A@)((y#0)A(ye P)A(y <m)A(y <z))}

Accordingly, G(m) consists of those elements of P each of which is greater
than or equal to some element of P which is less than or equal to m.

From (5) it obviously follows that
(6) m € G(m)

Next, we prove [cf. 4, p. 26].

THEOREM 1. A subset G of a partially ordered set (P, <) is generic if and
only if G is generated by a molecule of P.
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Proof. Let G be a generic subset of P. First, we show that there exists m € G
such that

(7 {y|ye PYANO#y)A(y <m)} CG and m is a molecule of P.

Assume on the contrary that for every m € G there exists a nonempty subset
N(m) of P such that z € N(m) if and only if 2 < m and z € (P — G). But then
clearly, P — GG is a dense subset of P which has an empty intersection with G,
contradicting (4). Thus, the first part of (7) is established. Now, from this and
(3) and the fact that G is generic, it follows that m is nonzero and that every two
nonzero elements of P which are lees than or equal to m have a nonzero lower bound
in G (and a fortiori in P). Thus, m is a molecule of P, according to Definition 3
and the proof of (7) is complete. Next, we show that G = G(m). Let z € G. By
(3), we see that z and m must have a lower bound, say, y in G. Thus, y < z and
y < m. But then, from (5) it follows that z € G(m). But then, from (5) and (7), it
follows that x > y for some y € G which by (2) implies that € G. Hence, indeed
G = G(m).

To complete the proof of the theorem, it remains to show that G(m) as given
by (5) is a generic subset of P.

We observe that (1) follows directly from (5). To establish (2), it is enough
to observe that if z € G(m) then by (5) we see that z > y for some nonzero y < m.
Therefore, if z < z then z < y with y < m, which implies z € G(m). To establish
(3), it is enough to observe that if z; € G(m) and z € G(m), then by (5) we see
that y1 < z7 and y2 < x5 for some nonzero y; < m and nonzero y» < m. But since
m is a molecule, y; and y» have a nonzero lower bound, which by (5) is an element
of G(m). Hence, x; and z2 have a lower bound in G(m). To establish (4), let D be
a dense subset of P. But then D has a nonzero element d such that d < m. From
(5) it follows that d € G(m) and therefore G(m) has a nonempty intersection with
every dense subset of P.

COROLLARY 1. If k is a nonzero minimal element of a partially ordered set
(P, <) then k is a molecule of P and {z | x € P and k < x} is a generic subset of
P.

Proof. Since k has no nonzero predecessors, k is trivially a molecule of P.
But then the conclusion of the corollary follows from (5).

COROLLARY 2. A partially ordered set has a generic subset if and only if it
has a molecule.

This is an immediate consequence of Theorem 1 and (6). Accordingly, the
partial order (H, <) mentioned above, has no generic subset.
Let us recall the following:

DEFINITION 5. A Boolean algebra (A, <) is a complemented distributive
lattice with a minimum 0 and a maximum 1. Moreover, a nonzero element a of A
is called an atom of A if and only if for every x € A it is the case that < a implies
z=0.
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Furthermore, a subset U of A is called an ultrafilter of A if and only if:

(8) 0 € U; (9) For every element z and y of Aif € U and x < y then y € U;
(10) Every two elements of U have a lower bound in U; (11) For every element z
of A either z € U or else ' € U where z' is the complement of z.

The reader is advised to compare (8), (9), (10), (11) with (1), (2), (3), (4).
Clearly, 1 € U by (11) so that U is nonempty.

LEMMA 1. Let (A, <) be a Boolean algebra. An element a of A is an atom of
A if and only if a is a molecule of A.

Proof. Let a be an atom of A. Clearly, a is a nonzero minimal element of
A and therefore by Corollary 1, we see that a is a molecule of A. Conversely, let
a be a molecule of A. To prove that a is an atom of A it is enough to show that
x < a for no nonzero element x of A. Assume on the contrary that z < a for some
nonzero element z of A. But then, since A is a Boolean algebra a — z exists, is
nonzero and (a — z) < a. However, from Definition 3 it follows that z and a — z
must have a nonzero lower bound. But this leads to a contradiction since the only
lower bound of z and a — z in A is 0. Thus, our assumption is false and a is an
atom of A.

Definitions 2 and 5 indicate that an ultrafilter of a Boolean algebra somewhat
resembles a generic subset of it. However, in view of the discrepancies between (4)
and (11), we must not expect that every ultrafilter of a Boolean algebra is also a
generic subset of it. Indeed, in view of Theorem 1 and Lemma 1, we have:

THEOREM 2. A subset G of a Boolean algebra A is generic if and only if G
is generated by an atom of A (i.e., if and only if G is a principal ultrafilter of A).

Proof. By Theorem 1 and Lemma 1, we see that G must be generated by an
atom a of A which in view of (5) implies:

G=Ga)={z|ze€ A and a <z}
But then it is a routine matter to verify that the above equality implies that G(a)

is an ultrafilter of A (as defined by (8), (9), (10), (11)) generated by the atom a of
A.

The following lemmas show some significant properties of dense subsets of a
Boolean algebra.

LEMMA 2. Let A, <) be a Boolean algebra and D a dense subset of A. Then
lubD =1.

Proof. Clearly, 1 is an upper bound of D. To prove the lemma we show that
every upper bound u of D is equal to 1. Assume on the contrary that u is an upper
bound of D and u < 1. But then 1 — u (i.e., the complement u' of u) is a nonzero
element of A. However, no element of D is less than or equal to 1 —u, contradicting
the denseness of D. Hence u = 1, as desired.

LEMMA 3. Let (A,<) be a Boolean algebra and H a subset of A such that
lubH = 1. Then the subset D of A given by

(12) D={z|z€ A and x < h for some h € H}
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is a dense subset of A.

Proof. We must show that for every nonzero element p of A there exists a
nonzero element d of D such that d < p. Since lubH = 1 and since (4,<) is a
Boolean algebra, we see that

(13) p=pA (lubH) Zgleﬂ}){(p/\ h)

Since p # 0, from (13) it follows that (p A h) # 0 for some h € H. Let d = p A h.
Thus, d is nonzero and since d < h, we see by (12) that d € D. Clearly, d < p as
desired.

As mentioned earlier, we called a nonempty subset G of a partially ordered
set a filter if and only if G satisfies (1), (2), (3). Very often, in the literature [2],
condition (3) is replaced by “the greatest lower bound of every two elements of G
ezists and is an element of G”. However, this point is immaterial for our purposes.

THEOREM. Let A be a Boolean algebra. Then a filter G of A is a generic
subset of G if and only if for every family (a;)ice of A it is the case that

(14) 11612 a; =1 implies a; € G for some i € E
(2

Proof. Let G be a generic subset of A. But then by Theorem 2 wee see that
A has an atom a and a € G. Now, let lub;cg a; = 1. Since A is a Boolean algebra,
we have:

(15) a=aA (luba;) =lub(a Aa;) with i € E

However, since a is an atom, a Aa; = 0 or a Aa; = a. But then from (15) it follows
that a A a; = a for some i € E. Hence, a < a; and since a € G and G is a filter,
a; € G by (2). Thus, (14) is established.

Conversely, let G be a filter of A satisfying (14). We show that G is a generic
subset of A. To this end, in view of (4) it is enough to prove that G has a nonempty
intersection with every dense subset of A. Now, let D be a dense subset of A. By
Lemma 2 we see that lubD = 1 and by (14) we derive that d € G for some
d € D. Thus, indeed G has a nonempty intersection with every dense subset of G,
as desired. In view of Theorem 2, clearly G in also a principal ultrafilter of A.
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