PUBLICATIONS DE L'INSTITUT MATHÉMATIQUE (BEOGRAD) (N.S.) Vol. 41(55), pp. 119--124 (1987) |
|
ON THE CUT LOCUS AND THE FOCAL LOCUS OF A SUBMANIFOLD IN A RIEMANNIAN MANIFOLD IIHukum SinghPost graduate Departmente of Mathematics, M.L.K. (P.G.) College, Balrampur, Gonda (U.P.), IndiaAbstract: Let $M$ be a compact connected Riemannian manifold and let $L$ be a compact connected submanifold of $M$. We show that if a point $x$ is a closest cut point of $L$ which is not a focal point of $L$, then two different minimizing geodesics meet at an angle of $\pi$ at $x$. We also generalize some of the results of [9]. Classification (MSC2000): 53B21; 53C40 Full text of the article:
Electronic fulltext finalized on: 2 Nov 2001. This page was last modified: 16 Nov 2001.
© 2001 Mathematical Institute of the Serbian Academy of Science and Arts
|