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EXTENSIONS OF SOME FIXED POINT THEOREMS
OF RHOADES, CIRIC, MAITI AND PAL

A.C. Babu and B.B. Panda

In a recent paper Rhoades [6] has shown, for a selfmap T of a Banach space
satisfying the contractive definitions of Ciri¢ [1] or of Pal and Maiti [5], that if the
sequence of Mann iterates converges then it converges to a fixed point of T. In
this note we propose to draw the same conclusion in some of these cases even for
subsequential limit points, i. e. every subsequential limit point of the sequence of
Mann iterates will be a fixed point of 7. Further we shall derive the conclusions of
Rhoades in the case of mappings satisfying even weaker conditions. Our final result
will be concerned with the extension of a result of Maiti and Babu [4] to mappings
satisfying conditions similar to those in Rhoades [6, Theorem 3]. This is closed in
spirit to the main result of Diaz and Metcalf [2].

Let T be a selfmapping of a Banach space X. The Mann iterative process
associated with T is defined in the following way. Let xg € X, and set x,4+1 =
(1 —¢n)xn + cnTxy, for n > 0, where {c,} satisfies: (i) co =1, (ii) 0 < ¢, <1
for n > 0, (iii) > ¢, diverges. In this note we place the additional restriction that
(iv) nh_)rréo cn=h>0.

A generalization of a contractive definition of Ciri¢ which has been used by
Rhoades [6] is
(1) d(Tz,Ty) < gmax{cd(z,y),d(z,Tz) + d(y,Ty),d(z,Ty) + (y,Tx)} where
c>0,0<¢g<1.
We shall use, instead, a mapping T satisfying
(2) d(Tz,Ty) < gmax{cd(z,y) + d(z,Tz) + d(y,Ty),cd(z,y) + d(z,Ty)+
+d(y, Tz)}
and show that the results of Rhoades carry over to such mappings.

It is clear that (1) = (2). To see that the reverse implication may not be
true, consider X = {z,y,2}, Te =y, Ty = 2, Tz = z, d(z,y) = 1.7, d(z, z) = 1.8,
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d(y,z) = 1.3, ¢ = 0.28, ¢ = 1. Clearly (X,d) is a metric space and T is a selfmap
satisfying (2), but not (1), because 1.3 = d(y, z) = d(T'z,Ty) and
gmax{d(z,y),d(z,Tz) + d(Y,Ty),d(z, Ty) + d(y, Tz)} =
= 28max{1.7,1.7+ 1.3,1,8 + 0} = 0.84.
We now prove Rhoades’ theorem in the case of mappings satisfying (2). This
we state as our

THEOREM 1. Let X be a closed convex subset of a normed space, T a selfmap-
ping of X satisfying (2) on X, {z,} the sequence of Mann iterates associated with
T, where {c,} satisfies (i), (i4) and (w). If {z,} converges in X, then it converges
to a fized point of T'.

Proof. Let z € X satisfy lim z, = z. Then
n— 00

d(2,Tz) <d(z,n+1) + d(@pnt1,T2) < d(z,Zn+1) + (1 — cp)d(@n, T2) + cnd(Tx,, T2z) <
< d(2z,Zn41) + (1 = cn)d(zn, T2) + cnq - max{cd(zn, z) + d(zn, Trn)+
+d(z,Tz),cd(®n,z) +d(zn, Tz) + d(z,Txn)}.

Using d(xn, Tnt1) = cnd(zn, Tx,) and
d(z,Tx,) < d(z,zp) + d(zn, Txy) = d(2, X)) + d(Tn, Tn1)/cn
and letting n — oo we get
d(z,Tz) < (1 — h)d(2,Tz) + hgmax{d(z,Tz),d(z,Tz)} = (1 — h+ hq)d(z,Tz)

which is absurd since ¢ < 1 unless d(z,Tz) = 0. Thus z = Tz and z is a fixed point
of T.

Pal and Maiti [5] have studied mappings T satisfying (3) For each z,y € X,
at least one of the following conditions holds:

(a) d(z,Tz) +d(y,Ty) < ad(z,y), 1 <a<2,

(b) d(z,Tz)+d(y,Ty) < f{d(z,Ty) + d(y,Tz) + d(z,y)}, 1/2 < 5 < 2/3,

() d(z,Tz)+d(y,Ty) +d(Tz,Ty) < y{d(z,Ty) +d(y,Tx)}, 1 <~y < 3/2,

(d) d(Tz,Ty) < dJmax{d(z,y),d(z,Tz),d(y,Ty),(d(z,Ty) + d(y,T))/2},

0<d<1.

We now improve Theorem 2 of Rhoades [6] by showing that the subsequential
limit points of the sequence of Mann iterates are also fixed points of T'.

THEOREM 2. Let X be a Banach space, T a selfmapping of X satisfying (3).
Let {x,} be the sequence of Mann iterates associated with {c,} satisfying (i), (ii),
and (w). Then the subsequential limit points of {x,} are fized points of T. We
assume that in case T satisfies (3) (¢), v > 1+ h/2 and 6 < h in case T satisfies

3) (d).
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Proof. Let x,, — £ as i — oo. In case T satisfies (3)(a) putting x = z,, and
Y = Tpy1 We get

d(Tn, Txn) +d(xTnt1+Ton+1) < cnd(Tn, Txr), or d(Tnt1, Ton+1) < (acn, —1)d(zn, Txs).

Now 1< a<2and 0< ¢, <1 implies -1 < ac, — 1 < 1. If for some n,
ac, —1 < 0 we shall have d(z,41,T2n41) = 0 or g1 = T2py1. Now zpqp0 =
(1 = cpt1)ZTnt1 + cne1TTpe1 = Tpg1- Proceeding similarly z,41 = @,y for all
i >1and £ = x,41 and £ = TE. Hence we shall assume that for all n, ac, —1 > 0.
Now ac, —1 = ah — 1 as n — oco. Putting Ay = ah — 1 we see that 0 < \; < 1
since a < 2 and h < 1, and so we can find an integer ng; such that for all n > ngq,
ac, —1> (14 A1)/2. In case T satisfies (3)(b), putting = x,, y = T,41 We get

d(@n, Tn) + d(Tnt1, TTnt1) < B{d(@n, TTnt1) + d(@nt1, Tn) + d(Tn, Tnt1)} <
< Bd(@n, xnt1) + d(@nt1, Tont1) + (1 — cn)d(@n, Ton) + cnd(@n, Tan)} =
= ﬂ{cnd(wn,Txn) + d($n+1a T$n+1) + d(wna Twn)}
or,
B(l+cn) =1

d(xn—l—laTxn—i-l) S 1— ﬂ

d(xpn, Txy).

Now,
Jim (8(1+ ¢,) = 1)/(L=8) = (B(1 + ) = 1)/(1 - §)

andis < 1iff B(1+h)—1<1—poriff 8 < 2/(24h) and, since 0 < h < 1, we have
2/3 <2/(2+h) < 1. Since 8 < 2/3 by hypothesis, taking Ao = 8(1+h)—1/(1—0),
we can find ngy such that for n > nga, (B(1+¢n) —1)/(1 = 6) < (1 + A2)/2. Now
consider the case when the mapping T satisfies (3) (¢). Putting z = z,, y = Tpi1,
we get

d(Zn, Txn) + d(Tn+1, TTrnt1) + (T2, TTnt1) < Y{d(Zn, TTnt1) + d(Tnt1, Tzn)} <
<Hd(zn, Tnt1) + d(@nt1, TTns1) + (1 = cn)d(@n, Ton)} =
= Y{cnd(Tn, Txn) + d(Tnt1, TTnt1) + (1 — cn)d(zn, Tzn)} =
=v{end(@nt1,TTnt+1) + d(xn, Tzn)}.
Thus d(Tzp, Txnt1) < (v = 1){d(xn,T2n) + d(@nt1,T2ny1)}. Hence,

d(@nt1,TTny1) — d(@nt1,Txn) < (v — D){d(@n, Txy) + d(@n+1, TTpny1)} or,
A Zpt1,Txny1) — (1 — cp)d(zn, Txy) < (v — D{d(zn, Tzyn) + d(€pnt1, TTns1)} or,
2 —-vd(@ntr1,Tepy1) < (v =141 —cp)d(xn, Txy) = (v — ¢)d(zn, Txy,) or,
d(@nr1,TTnt1) < (v = €n) /(2 =) - d(@n, T2y).

Now, (Y —¢n)/(2=7) = (v = h)/(2 =) and;%: <1lify—h<2—~oriff

2y < 24 hor, iff v < 1+ h/2, which is true. Therefore denoting (v — h)/(2 + )
by As < 1, we can find ng3 such that for n > ngs, (y—¢n)/(2—7) < (1+A3)/2. In
case T satisfies (3) (d), putting & = x,,, ¥y = Tpy1 we get

d(Tpt1, TTny1) < Smax{d(Tn, Tny1), d(Tn, TTn), d(Tny1, TTni1),

1/2 - [d(2n, T2ny1) + d(@ny1, T)]},
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Since d(zy, Tnt1) = cpd(zy, Tx,) and

d(Tn, Txnt1) + d(Tn+1,Txn) < d(Tn, Tnt1) + d(Tnt1, TTn+1) + (1 — cn)d(xn, Tan) =
= cnd(zn, Tzpn) + d(Tnt1, TTnt1) + (1 — cn)d(zn, Txs) =
=d(xn, TTpn) + d(Tn+1, TTn+1)
we have
d(Txn, Trnt1) < dmax{cnd(zn,T2n),d(Tn, TTs), d(Tn+1, TTnt1),1/2[d(zn, Txn)+
+ d(Znt1, Txn+1)]} = dmax{d(zn, TTrn), d(Tnt1, TTnt1),1/2[d(Tn, Tzn)+
+ d(Znt1, Txn+1)]} = d max{d(zn, TTrn),d(Tnt+1, TTnt1)}-

Now

d(Tzn, Tont1) 2 d(@nt1, TTnt1) — d(@n41, T2n) = d(@nt1, TTn41) — (1 — cn)d(@n, Tan).

In case

d(Znt1, Txnt1) — (1 — cp)d(xn, Txy) < 0d(zn, Txn),d(®ny1, Tonyr) <
(1

<
<A+90-cn)d(xn, Tzy),

and in case d(py1,TZny1) — (1 — cp)d(zy, Txy) < 0d(2pi1, TTny1), we get

(1-=0)d(xpy1,Txn) < (1 —cp)d(zn, Tr,) or
d(@nt1, Tnt1) < (1—cn)/(1 = 0) - d(zn, Tan).

Therefore, d(xp+1,TTnt+1) < max(l + 9 + cp, (1 +¢,)/(1 —0) - d(xp, Tzy)). Now
as n — 0o,

max(1+ 0 — ¢, (1 — ) /(1 — 8)) — max(1 + 8 — h, (1 — h)/(1 — 8))

and1+0—h<lifh>dand 1—-h)/(1-06) <1iff 1—h) < (1-90)ie iff 6 <h.
Now max(1+46 — h,(1 + h)/(1 —4§)) = A4 < 1 and so we can find an integer ngq
such that for all n > ngs, max(1+6 — cp, (1 —¢n) /(1 —0)) < (1 4+ A4)/2. Let

max((l—)\l), (1-{-)\2), (1+)\3), (1+)\4)) =2 A< 2andm = max{n01,n02,n03,n04}.

Hence for n > m, d(znt1, TTnt1) < Xd(zp, Txp) < -+ < A 1md(zy,, Txp) — 0
asn — 00. Now d(Tzn,;,§) < d(Txn,,zn;) + d(zn;,&) = 0 as n; — oo. For the
pair z,, and £ at least one of (a), (b), (c) or (d) of (3) is true. Therefore at least
one of these must be true infinitely often for the pair ¢, z,,, ¢ = 1,2,...,. Thus
for a subsequence of {n;}, which, by relabelling we denote by {n;}, only one of the
inequalities (a), (b), (c) or (d) of (3) is true. In the case 3 (a) by putting x = z,,,
y =&, we obtain d(zn,, Txn,) +d(€,TE) < ad(xn,, &) and letting n; — 0o we obtain
d(&,T¢) < 0, whence d(&,T¢) = 0 implying & = TE. In the case 3 (b) we get, by
putting z = 2, y =&,

d(xmaTxm) + d(‘faTg) < ﬂ{d(xn“Tf) + d(&aTmm) + d(xn“f)}
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and letting n; — oo, d(&,T€) < Bd(&,TE), which is true only when d(§,T¢) =0 or
& =TE. In the case 3 (c) we get
d(zp,, Txy,) +d(&,TE) +d(Txy,, TE) < y{d(xn,, TE) + d(€,Txy,)}
and using d(zn;,TE¢) < d(zy,;, Tp,) + d(Txy,, TE) we have,
d(Tp;, TE) +d(§,TE) < y{d(wn;, TE) +d(§, Txn,)}

Letting n; — oo we get, 2d(£,T€) < vd(&,T€), which is impossible unless d(£, T€) =
0 or £ =T¢. In the case 3 (d) we have

d(§,T€) < d(§ zn;) + d(Tn;, Txp,) + d(Tn,, TE) < d(€, Tn,) + d(@n;, TTp,)+
dmax{d(zy,, &), d(Tn;, TTn,), d(§,TE),1/2[d(Tn,, TE) + d(§, Tzn,)]}.
Letting n; — oo, we get, d(¢,T€) < Smax{d(€,T€),1/2d(£,TE)} or,
d(&,TE) < 6d(€,TE), which is impossible unless d(&,T¢) =0 or £ = T€.
Pal and Maiti [5] have given some fixed point theorems for mappings 7' sat-
isfying
(4) For all z,y (z # y) at least one of the following conditions holds:
(a) d(z,Tx) + d(y, Ty) < 2d(z,y),
(c) d(z,Tz) +d(y,Ty) + d(Tz,Ty) < 3/2-{d(=,Ty) + d(y, Tx)}.
(d) d(Tz,Ty) < max{d(z,y),d(z,Tz),d(y, Ty), [d(z, Ty) + d(y, Tz)]/2}.

Our next result will show that the subsequential limit points of the sequence
of Mann iterates in some of the above cases are fixed points of T'.

THEOREM 3. Let X be a Banach space, T a selfmap satisfying (4) (a) or (b).
Let {z,,} be the sequence of Mann iterates of T with {c,} satisfying (i), (#), and
(). Then every subsequential limit point of {x,} is a fized point of T'.

Proof. Let x,,, — £ as n; — oo. In case (4) (a) putting x = z, and y = Tp41,
we get
d(xn, Try) + d(@nt1, TTne1) < 2d(Tn, Tnt1) = 2¢pd(zy, Txy), or,
d(@nt1, Tonr1) < (2¢n — Dd(zp, Txy).
Since left-hand side is to be positive (otherwise z,,41 = Tpy2 =...), ¢, > 1/2 and

therefore 1 > ¢, > 1/2, or, 1 > 2¢, —1 > 0. In case (4)(b) is satisfied, putting
T =2Tp, Y = Tpy1, We get

d(@n, Txn) + d(@Tnt1, TTnt1) < 2/3 - {d(Tn, TTn+1) + d(@nt1,TTn) + d(Tn, Tnt1)} <
<2/3{d(zn,Tn+1) + d(@nt1, TTnt1) + d(Tnt1, Ton) + d(Tn, Tni1)}
Using d(%y, Tny1) = cnd(xn, Txy) and d(zyy1, Txy) = (1—c¢p)d(zy, Tx,) we obtain

d(xp, Txy) + d(@pi1, TTpy1) < 2/3-{(1 + ¢,) d(zy, Txy) + d(2pi1, T2ry1)} o1,
d(@pi1,TTny1) < (2¢, — 1)d(xy, Txy,). As before ¢, > 1/2and 1 > 2¢, — 1 > 0.
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Therefore {d(zn,Tx,)}52; is a monotonically decreasing sequence bounded below
by zero so it converges to a > 0. For the pairs z,,,, £, i =1,2,3,..., at least one of
the inequalities 4 (a) or 4 (b) is true. Hence at least one of these inequalities will be
true for an infinite number of such pairs. In other words we can find a subseuqnce
of {n;}$2, which, for convenience, we relabel as {n;}2, such that either 4 (a) is
true for each pair z,,, £ or 4 (b) is true.

In case 4 (a) is true, we have, by putting = z,,, and y = &, d(zn,, Tzn,) +
d(&,T¢) < 2d(zp,,&). Letting n; — oo, a+ d(§,T€) < 0 whence d(¢,T¢) = 0, or,
& = T&. If the case 4 (b) holds for each pair z,,, £, we have, by putting z = =z,
and y = ¢,

d(@n;, Txp,) + d(§,TE) < 2/3-{d(@n,, TE) + d(§; Tan,) +d(§ @n;)} <
<2/3 - Ad(wn;, TE) + d(§, p;) + d(Tn;, TTn;) + d(&; Tn;) }-

Letting n; — oo, a+d(§,T¢) < 2/3-{d(&,T§)+a}, implying that a = 0 = d(§, T€).
Hence £ = T€.

The structure of the set of subsequential limit points of the sequence of iterates
of the mappings satisfying (4) have been studied by Maiti and Babu [4] who have
proved the following.

THEOREM 4. Let T be a continuous selfmap of a metric space satisfying
(4). Assume further that for x € X, O(z,T) is compact. Than L(x), the set of
subsequential limit points of the sequence of iterates {T™x} is a nonempty, closed,
compact and connected subset of F(T), the set of fized points of T. FEither L(x)
contains exactly one point or it contains uncountably many points. In case L(x)
contains just one point Tr}gnoo T™x exists and belongs to F(T). In case L(x) is

uncountable it is contained in the boundary of F(T).

This theorem is closed in spirit to the main result of Diaz and Metcalf [3]. We
generalize the above theorem along the line of Theorem 3 of Rhoades [5]. Before
that we shall give some definitions. Let S, T be selfmappings of a metric space
X. The (T,S5) orbit of a point v € X is defined as I(u,T,S) = {(TS)"u|n =
0,1,2,...}U{S(TS)"u|n =0,1,2,...}. X is said to be (T,S) orbitally complete
if every Cauchy sequence in I(u, T, S) converges in X for all u € X. I(u, T, S) will
denote the closure of I(u,T,S). F(S,T) will denote the set of common fixed points
of Sand T,i. e, F(S,T) = {z| Sz = Txz}.

THEOREM 5. Let Th and T be continuous selfmaps of (X,d) and p, q fized
positive integers such that for x # y at least one of the following is true:

(a) d(z,T{z) +d(y, TSy) < 2d(z,y),

(b) d(z,TVz) +d(y, Tyy) < 2/3-{d(z, Tyy) + d(y, T{z) + d(z,y)},

(c) d(z,T{z) +d(y, Toy) + d(Tfz, Tjy) < 3/2-{d(z, Tyy) + d(y, T{z)},

(d) d(T{z,Tiy) < max{d(z,y),d(z, T{x),d(y, TSy), [d(z, Tsy) + d(y, T{ x)]/2}.

Assume that for u € X, I(u, Ty, TF) is compact. Let L(z) be the set of sub-
sequential limit points of the sequence {x,}52, where To = u, T2, = (T4TF) "z
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and xap11 = Ty (T{TF)"xo. Then L(x) is a nonempty, closed, compact and con-

nected subset of F(TT,T)). L(z) contains either ezactly one point or uncount-

ably many points. In case L(x) consists of just one point, lim x,, exists and
m—0o0

belongs to F(TF,T]). In case L(z) is uncountable, it is contained in the boundary
of F(TY,T).

Proof. The compactness of I(u, Ty, TF) ensures the existence of subsequential
limit points of {z,} which we shall now show to be common fixed points of 7¥ and
Ty. Let ¢, = d(zpn,Tny1)- If (a) is satisfied then d(xan, Tant1) + d(Tant1, Tanta) <
d(xan, Tan+1) showing cont1 < cap. Putting x = x2, and y = 22,1 we get
Con—1 > Can. In case (b) is satisfied, putting x = xo, and y = Ta,41, we get

d(zan, Zant1) + d(X2n+1 + Tant2) < 2/3 - {d(22n, Tant2) + A(X2n, Tont1)}-

Using d(z2n, Zant+2) < d(@2n, Tont1) + A(Zant1, Tant2) We get cop + Cont1 < 2/3 -
(2¢c2n, + Can+1), whence canq1 < c2,. Putting ¢ = x2, and y = x2,,_1 we can show
as before that co,, < can—1. If case (c) holds, putting ¢ = z2,, y = Tont1, We get

d(zan, Toant1) + d(@2n+1, Tont2) + d(Tont1, Tony2) <
< 3/2-{d(x2n, T2ns2) + d(T2nt1, T2ng1)}-
Since d(Zan, Tant2) < d(@2n, Tant1) + A(T2nt1, Tant2) We get capn + 2¢2p41 < 3/2-
(con + capg1) which gives ¢apq1 < copn. Putting o = x5, and y = z, 1 we can
similarly show that ¢, < co,_1. In case (d) is satisfied putting z = x5, and
Y = T2n+1,
d(T2n41, Tant2) <
< max{d(xzn, $2n+1), d(xzn, $2n+1), d($2n+1, $2n+2), [d(mzn, $2n+2)+
+ d(Z2n+1, Tont1]/2} < max{d(zon, T2n+1), d(T2n+1, Tant2),
[d(z2n, Tont1) + d(T2nt1, Tant2)]/2},
or, Cant1 < max{Can, Cant1, (Con + C2ny1)/2}, so that in all possible cases capt1 <
Can- Putting x = x9,, y = 2,1 we can similarly deduce that ¢;;,, < c25,—1. Thus

Cont+1 < Con < Copp—1 in all possible cases. Hence in all cases {¢,,} is a monotonically
decreasing sequence of reals bounded below by zero and so will converge to a > 0.

The compactness of I(u,Ty,TY) ensures existence of cluster, points so let
Zn, = € as i — oo. Since {n;} is an infinite number of integers we can choose
a subsequence consisting only of odd numbers. By relabelling, if necessary, let us
assume that each n; is odd. Since each n; is odd, we have

a = lim d(wnz ) m'1+na;) = .lim d(mm ’ Tzqwnz) = d(é-: Tzqg)
i—00

i—00
Similarly,
a = hm d(m1+ni ) $2+Tbi) = hm d(T2qmm ) T1pT2q$ﬂz) = d(T2q§a T1pT2q£)
i—00 100
Furthermore

d(&, T T;€) < d(§, T€) + d(Ty €, TYT;€) = 2a.



104 Babu and Panda

Assuming & # TJ¢ and putting z = T4, y = € in (a), (b), (¢) and (d), we get

in (a), d(TJE, TITSE) + d(€, TEE) < 2(TIE,€) or, 20 < 205

in (b), d(T;¢,TYT)€) + d(§, T §) < 2/3{d(T¢, T3€) + d(§, TY T )+
+d(THE,€)} or 2a < 2/3 - 3a = 2q;

in (c), d(T;§,TYTE) +d(&, T;€) + d(TY T, €, Ty'€) < 3/2-{d(T3, T3¢)+
+d(&,TTTHE)}, or 3a < 3/2 — 2a = 3

and, in (d),
d(T7T5E, T3€) < max{d(T;¢,€), d(T5€, TYT5€), d(§, T5€), [d(T5 €, T3€) + d(€, TY'T3)]/2}

or, a < max{a,a,a,1/2-2a} = a.

The contradiction a < a in all cases above shows that our assumption £ #
TJ¢ is wrong. Hence £ = TJ€ and a = d(§,T5¢) = d(THE, TPTHE) = 0. Hence
Ti& =TPTIE, or, d = TFE. Thus € = TPE = TJE showing that € € F(TF,T]).

Let us assume now that there exists an infinite subsequence of even integers
in (n;)$°,. By relabelling, if necessary, we can assume that each n; is even. In this

case
a = lim d(zn;, T14n,) = lim d(xnnTlpxm) = d(¢, Tlpg)

i—00 1—00
and
a = lim d(@14n,, Ta4n,) = lim d(TPz,,, TIT z,,) = d(TPE, TITPE).
71— 00 71— 00

Further d(&, T4TP¢) < d(&,TF€) + d(TFE, THTFE) = 2. Putting x =&,y =TP¢ in
the inequalities (a), (b), (¢) and (d), we can derive that the assumption & # TF¢
leads to a > a proving thereby that & = TP¢. Hence d(TPE, THTPE) = d(TPE,€) =0
and so TP¢ = TJTPE, or, £ = THE. Thus £ = TPE = TE. Hence € € F(TF,T9).

We have shown, therefore, that all cluster points of {z,}32, are common
fixed points of T¥ and Ty. In other words L(z) C F(T?,T]).

Since we have assumed I(zo,T4,TF) to be compact, we have § # L(z) C
F(T?, T4, Since L(z) is a closed subset of I(zg,Ty,T?), which is compact we
conclude that L(z) is compact. Thus L(z) is a closed and compact subset of
F(T?,T)).

To prove that L(x) is connected we assume the contrary. Hence there exists
a pair of nonempty, disjoint, closed subsets S; and Sy of L(z) such that S; U
Sy = L(z). Since S; and Sy are closed subsets of the compact set L(z), they
are themselves compact. Hence d(S1,S2) > 0. We have shown in the course of the
proof that a = lim d(x,, Zn+1) = 0. We now proceed to show that d(x,, L(z)) — 0

71— 00
as n — oo. For, if not, then for some & > 0 there exists a subsequence {n;}2,

such that d(z,,,L(z)) > e > 0. Since I(zo,Ty,TF) is compact, the sequence
{zn;}$2,, has a subsequence {z,;}2, say, converging to £ € L(z). Therefore
d(xm;, L(z)) < d(xm,;,€) — 0 as i — oo, contradicting our hypothesis. Hence
d(xn, L(x)) — 0 as n — oo. Thus we can find an integer M such that for m > M,
A Xpmy Tmy1) < d(S1,S2)/3 and d(zp, L(z)) < d(S1,S52)/3. Given m > M, there
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exists s € L(z) = S U Sy such that d(z,,S1 U S2) = d(xy,,s), since L(x) is
compact. If s € Sy, then d(z,,S51) < d(zm,s) < d(S1,S2)/3. Therefore, for any
m > M, either d(xm,Sl) < d(Sl,Sz)/3, or, d(.’Em,Sz) < d(Sl,Sz)/3 But both
these inequalities cannot hold simultaneously, because in that case d(Si,S2) <
d(S1,2m) + d(zm,S2) < 2/3-d(S1,S2), which is absurd. Next we see that the set
of positive integers m > M for which d(z,,S1) < d(S1,S2)/3 is nonempty since
0 #S1 C L(z). Similarly the set of positive integers m > M for which d(x,,, S2) <
d(S1,S52)/3 is nonempty. Suppose that for miy > M, d(zm,,S1) < d(S1,S52)/3.
Then there exist integers n > m;y such that d(z,, S2) < d(S1,S52)/3. Let k+ 1 be
the smallest of them. Then d(z,S1) < d(S1,S2)/3 and d(zg41,.52) < d(S1,S2)/3.
Now, one has

d(Sl,Sz) < d(Sl,.’L'k) + d(xk,ka) + d(.’L’k+1, 52) <
< d(Sl, 52)/3 + d(Sl, SQ)/?) + d(Sl, 52)/3 = d(Sl, 52)

This is absurd. Therefore the assumption that L(z) = S; U Sz with S; and S
nonempty, disjoint and closed is false. In other words L(z) is connected.

Since L(z) is connected it is either a singleton or is uncountable. In case
L(z) = {¢}, we have d(zm, &) = d(zm, L(z)) = 0, as m — oo, showing that z,, —
€. In case L(z) is uncountable and £ € L(z) is an interior point of F(T?,Ty), then
F(T?,T#) must contain an element z,, in its interior. Hence TPz, = T = T3 T -
Thus %, = Tma1 = Tmy2 = .... This reduces L(x) to a singleton contrary to
hypothesis. Therefore, in this case L(z) is contained in the boundary of F(T?,Ty).

Remark. We can see that similar results hold also for the sequence {z,},
Top = (Tlp, T2q)n.fL'0, $2n+1 = T2q(T1p, Tzq)n.’Eo

The authors are grateful to Professor B. E. Rhoades for going through the
manuscript and for his comments which led to an improvement of this paper.
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