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SOME SPECIAL CASES OF PARALLEL DISPLACEMENTS
IN RECURRENT FINSLER SPACES

Irena Comié

Abstract. Some special cycles of line elements in the recurrent Finsler space F; are con-
sidered. If the vector is parallely transported along one of the cycles of lineelements the difference
between the original vector and the one obtained after parallel transportation is expressed by
some of the curvature tensor. The method used here is the generalisation of that, used by Varga
[1], for the non-recurrent Finsler space.

1. Introduction. Let us consider Finsler space Fj, in which the metric
function is F(z,z) and the metric tensor is defined by

gag(l', .Z') = 2715(16.51‘—'2 (.’L’, .Z')

Definition 1.1. The Finsler space is called recurrent and is denoted by F,
when there exist vector fields A, (z, %) and . (z, &) homogeneous of degree zero in
% such that [2]

(1.1) ga,@l’y = 0y gap — Fa.é 9ap F:f(ys - ;67 963 — FE‘S»Y 9as = Ay Gap

(1.2) 9oply = FOs gap (65 =A%) — A% gap — Ay 955 = iy Gap
(1.3) D gap = gaplydaz” + gaply DI
(1.4) DI =dlI" + I} dz® + A4 DI,

where D denotes the absolute differential which corresponds to the change of the
lineelement from (z, ) to (z + dz, & + di) and ”o” means the contracton by [. The
connection coefficients I'™* and A are determined under conditions

(1.5) wpy = Dypa
(1.6) Aapy = Ayga.
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From (1.1) and (1.5) I};5, may be determined in the unique way and similarly
(1.2) and (1.6) determine A,p,. The connection coefficients obtained in this way
are generalisations of the Cartan connections in the case of a non recurrent Finsler
space (when Ay = 0 and pu, = 0).

Using the notation {T,qg} + {728} = Tyap + Tapy — Taya we have [3]

(L.7) 2135, = {0, 9ap — FO5 gap 15", — Ay 9ap} + {128}
(1.8) 2Fo*ﬁ’y =2%py 1" = Fé& gﬁvpjdo = (Mg + Xogsy — Asly)
(19) 2Fo*ﬁo = 2’70 Bo — (2/\olﬂ - AB):

where 7,3+ is the Christoffel symbol. Further we obtain

(1.10) 2 Aapy = {FOa gor — FO5 gy A o — Ha 952} + {aB7}
(1.11) 2 Aopy = —F05 gy Ao — (195 + il — psly)
(1.12) 2 Ao go = —(2u0lp — 1p)

We shall suppose that in F, all vector and tensor fields are homogeneous of
degree zero in .

LEMMA 1.1. If in F.£% 5 and £%| are defined by

(1.13) £% 5 = 95€” — Fos¢® F:6ﬂ +F6*ag€6
(1.14) %5 = FOs £*(85 — A0 5) + A5,
then

(115) §a|,3 = 8g§a - Faa §a Fo*aﬁ - F;6,8£6
(116) gal,@ = Fats €a(‘5g - Aoéﬁ) - Aaéﬂ&s

Proof. From £, |5 = (gaafd)m = gaémg‘s + ga5§|‘5ﬁ by using (1.13) (1,1) and
90s0pE° = 0pta — £2059890s
(1-17) gaééxé-é = 6.)(&1 - 566')(9046
we obtain (1.15). From

£alp = (9a5€°) 18 = Gasl g€’ + 9a5E°| 5
by using (1.16) (1.2) and (1.17) we have (1.16).
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Using the notations of (1.13)—(1.16) we have
DE* = £% gda” +£%|DI°, Dy = &apda” + €4 gDIP.

LEMMA 1.2. In F" vector dz is normal to A iff p+ 21 is normal to DI i.e.

Ay de" =0¢ (uy, +21,) DI" = 0.

Proof. From gopl%1° = 1 we get Dgapl®l’ + gopsl®DIP = 0.
Using (1.3), (1.1) and (1.2) we have

(1.18) Aydz?” =04 (puy+21,) DI" = 0.
from which the statement follows.
An obvious consequence of (1.18) is:

LEMMA 1.3. If the vector | is parallely transported from (x,z) to (x +dz, & +
dz) i.e. DI" =0 then Ay dz” =0, which means that dx is normal to .

For any vector field £%*(z, %) we have

(1.19) D™ = de* + wi (d)€P
where
(1.20) w§(d) = [3*,da” + Ay® DU

From (1.4) we obtain
) *

(1.21) DUI = dI" + I')",ds”,
where I = 6] —A7s.

Let us suppose that [I]] is a regular matrix whose inverse is [J?]
(1.22) Je =6

From (1.21) it follows DI? = (dIX + I3, da”)JY.

Further from [X = F~1iX and
(1.23) dixX = (0, F~'dz" — F21,di")zX + F~'3X
we have

DI? = JO(I2X, — F~HX0, F)da™ + (8% — 1,1X)da"].

2. Connection coefficients I" and C. w§(d) appearing in (1.19) and (1.20)
may be written in the form

(2.1) wg(d) = I5% da" + C° di".
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The connection coefficients I'™ and A from (1.20) are uniquelly determined
under conditions (1.1), (1.2), (1.5) and (1.6). They are given by (1.7)—(1.12). We
are going to obtain relations between I', C and I'* and A. For that reason we shall
equate the right hand side of (1.20) and (2.1) and use the relations (1.18), (1.23)
and obtain

Iy® da? + CF,di" = T5%dz” + Ag® D7 + 0§[\ydz” + (uy + 217) DI]
or
22) I,% da" + Cf,di" = (I5X + 65\, )dz”
[AG + 05 (o + 219)|JL[(I2X, — F~H X0, F)da” + F~(8X — 1,1%)di"],

where 65 = 07 (z, ) is any tensor homogeneous of degree zero in #. By equating
the coefficients becide dx”? and di” we obtain

(2.3) T§ =752+ 050, + [A% + 05 (uo + 209)]JE (10X, — F11X0,F),

(2.4) Cy®, = [Ag%p + 05 (1o + 21)]J)F 1 (8X — 1,1Y)

LEMMA 2.1. The relation
(2.5) Cs,8" =FC3, =0
is valid for any 6F.

The proof is obvious from (2.4).
For 05 = 0, (2.3) and (2.4) become [4]

(2.6) Iy, = T5%, + Agg JUI0X, — F71IX0,F)
(2.7) Cg, = A3g JIF ™1 (&Y — 1,1X)

Formulae (2.6) and (2.7) are not practical for calculation because they contain
the term J¢, for which all we know is the relation (1.22).

From (1.21) we obtain

(2.8) di" = F(6) — A,"))DI’ — FI" da® — 3" FdF ™"
Substituting (2.8) into (2.2) we have

(2.9) Ig, — FC§sTy, = T3, + 03,

(2.10) FC35(85 — A%) = A, + 6051y +21,)

In the case of non recurrent Finsler space where A, = 0, u, = 0, AO‘S.Y =0
the equations (2.9) and (2.10) have the from

a a *§ _ o
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o (o3 [¢3
(2.12) FC,@‘Y = A/@,Y + 295 y

For 65 = 0 (2.12) takes the well known form FC§ = Aj . In the further
calculation we shall use the formulae [4]

F., =0,F — FO;FT}’, =27'F)\,.
3. Parallel displacenxent of vector along the cycle of lineelements.

Let us consider the cycle of lineelements as they are presented on the picture

P, (x+06x, %+ 0%)
P =P+ dP,=(x+dx+dx+ddx, £+ 6x+dx+dix)

P=P+6P =(x+dx+bx+8dx, i+dx+8%1+84d%)

P, (x+dx, &+ d%)

P(x, %)

Let us fix the point P with the local coordinates z® in F,. By T, (P) we
shall denote the set of all £ in P which form a tangent space. In T,,(P) we can
construct a basis which containes the tangent vectors r,, (@ = 1,2,...,n) on the
coordinate curves z° = C%, 3 =1,2,...,a — 1,a+1,...,n. Let us consider two
infinitesimal vectors PP; and PP, which respectivly have the form PP, = dz%r,,
PPy = 6x%ry. If the vector PP, is parallely transported along PP, we get the point
P; and if PP, is parallely moved along PP; we get P;. In this case the lineelement
are not parallel, only the basic vectors are. The coordinates of the point P; are
z® +dz® + 6z + ddz?, where ddz? = —wg (8)dz® and the coordinates of the point
Pj are z® + §z® + dz® + déz® where diz* = —wg(d)émﬁ. In the general case P3
and P} are not the same points and the vector P3P} is the torsion vector in F,,. It
has the coordinates

Q% = déz” — ddz® = w§(6)dz® — w(d)da”
In F,, with the connection coefficients I'* and A we obtain
Q0% = AG (dzP Al" — 62° D).

If DI" = 0 and Al" = 0, then Q% = 0 and the points P; and Pj have the
same coordinates. In that case we have an infinitesimal parallelogram PP, P> Ps.

Let us consider how the basic vectors change if they are parallely transported
along PP, P; and PP, P;P;.

By the parallel transportation of r, from P(x,3&
obtain in Piry + dra, where Dr, = dro, — wo (d)rg =

) to Pi(z + dz, 4 + di) we
0.
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By the parallel transportation of r, from P(z, %) to Pa(z + 6z, & + 6%) in Py
we get 7o + 01y, where Ary, = 61y — woP(d)rg = 0.

If the vector r, + dr, at Py is parallely transported to Ps(z + dz + 6z +
ddz, & + dz + 62 + ddi) at Pz we have the vector ro + dry + 0(r + dry), where

8dra = dwy (d)rg + wy® (d)wsP (8)rs.

If the vector ro + 0ry at P» is parallely transported to Pi(z + dz + dz +
doz, & + 0% + di + doz) at Pi we get the vector ro4 + 07y + d(ro + 6r4) where

ddre = dwoP (0)rs + wo” (8)ws? (d)rs.

If the vector rq + drq + dro + ddr, at Pj is parallely transported to P; we
obtain in P the vector rq + 61y +dry +ddr, + Vr, where Vr, describes the change
of r, along PiP; and has the form

Vra = I,” rs(dd — d8)z" + C,°. rg(dd — d8)i".

The difference between vectors which are obtained by parallel transportation
of ro along PP,P;P; and PP,P; is denoted by Dr,. Then we have

(3.1) Dro = — (8d — dd)re + Vra =
— (8d — dd)ro + I,° rg(dd — dd)a” + C,.° rg(dd — do)i.
The vector Dr, can be expressed by the curvature tensors. We have Dr, =
dro —we” (d)rg and
ADry =6(Dry) —wa’(8) Drs = §dry — (5wa5(d)rg—
wo” (d) 515 — wo° (8) [drs — ws® (d) rp).
From the above equation we get

(3.2) (AD — DA)r, = (3d — dd)re — QuPrs,

waﬁ = [wa5w5ﬁ] — (wa’g)l
[waéwéﬂ] = waé(d)wéﬁ (6) - waé(d)wéﬁ(d)
(woP) = dwe® (d) — dwyP (6).
After some calculation we obtain
(3.3) 0.7 = A.° + B.”,
where [5]

(3.4) AP =27'K, P 5[deP5x7 ] + (PLP s — AP0sT3Y) + 271 8,P 5[ DIT Al°]



B-connections and their conformal invariants on conformally Kaehler . .. 137

(3.5) B,P = Aaﬁﬁ,((SD — dA)Y + I8 (6d — do)a”
—1 Jéi _ *3 *L *1 0
2 Ka 75 — 8[ | |’Y 6 F F] a[’)‘ﬂblé]'
(3.6) PP s =FOI3P, (05 — Aos) — ADys | + AL#X0; I

2718275 =FO, AP 1,(65 — Atyya) + Aa' 1AL g)-

On the other hand from (1.4) and (2.8) using the homogenity of I';* = F I+
(first degree) and A, (zero degree) we obtain

(3.7) (0¥ — A,X)(0D — dA)I° = BX + B

where —
B* =F (8T = 017X Iyl [da” 52° 1+

(053X — ,I*X Agts — 0y Ao's + 0, AXs I3 ")[dz” Al°]+
F6[5A‘ d Fo [,YA|O‘L5] + [DlwAlé]

o ] T
(3.8) BX = F~Y(6d — d6)iX + iX(0d — d§)F~* + F_IF;‘X((Sd —dé)z”
It is known that % g, so from the above equation and (3.4) we obtain

(3.9) 27 KX = P (0T — DI} I3Y)

Substituting (2.10) into (3.5) we get
(3.10) Bo” = Bo (1) + Bo5)
where according to (3.7) we have

BoP 1y = I32(6d — d)a” + FCoPBX — 0,° (6 + 215)(6D — dA) 1°,

(3.11) B, (9 = FC,’ BX
From (1.18) we get

210 A (8d — d8) 2 + (pty + 21,) (8D — dAY LY + (6), dz” — d, 627 )+
(3.12) 8(tty + 21,) DI7 — d (puy + 21,)) Al = 0
and using (3.18) and (2.5) we have
(3.13) Bo 1y =38 + CoP\ T3X + 6,° \y) (8d — db) =7

Co1(6d — d8) &7 + Bo 1y,

(3.14) B 1y =0,° [\, dz” — d\., 627
O(py +21y) DI" —d(py + 21,) Al™].
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Substituting I,”,, from (2.9) into (3.13) we have
BoP 1y =T3P, (0d — do) 27 + CoP.,(6d — dd) &7 + Bo” (1)
Using (3.9) and the relation

(3.15) OIX (85 — Ao's) — 0y AXs + O, AT =
PXys — AX 05Tt + TyX + 27 AN\,

o
the formula (3.11) has the form
(3.16) Bo” () =FC.2 {27 KX 5[da” Al°]+
(PyXs — AX 055" + IX + 271 AXs ) ) [da” Al ]+
2718, AX 1, (0% — Ajo) 1) [ Dz AL]}.

THEOREM 3.1. In the recurrent Finsler space F,Dr, and the curvature ten-
sors are connected by:
(317)  (AD — DA)ro = —Dro — ra{27  [KoP s + FC.P KX 5][da” §2°)+
[PLP46 — AP BT + FCoP 3 (PX s — AXDsT5" + T;X + 271 AXs My )[da” Al’]+
2780”55 + F?Ca” 3.4 1, (81 — Aol 's)][Dz” Al’] — 3B’ 1y

Proof. Substituting (3.16), (3.13), (3.14) into (3.10), further (3.10) and (3.4)
into (3.3), (3.4) into (3.2) by using (3.1) we obtain (3.17).

In the non recurrent Finsler space (where A, = 0 and p, = 0 we have

BoP{yy = 20, (81, DI — dl, Al").

If we have not only Ay, = 0, 1, = 0 but the condition 0,° = 0, then the
connection coefficients 4,”. and I'%;?,, are the Cartans connection coefficients and
AP, = FC,P.. In this case from (1.11), (1.12) it follows A,X, = 0 the left hand
side of (3.15) reduces to the 351",}'“ and (3.17) has the form

(AD — DA)ry =
—Dr, — {27 RoP ,5[dx?62°] + PLP. 5[dz" Al°] + 271 8,° 5[ DI Al’]}.

a

(3.18)

When the vector r, is parallely transported along PP, P; and PP, P} P; then
Dry, =0, Ar, = 0 and in this case from (3.18) we have

—Dro = —1{27 ' Ro” 15[dz"62°] + PLP.,5[dz" Al°] + 271547 5[ DIT AI°]}.

In_ the case of a recurrent Finsler space F,, when Dr, = 0 and Ar, = 0 from
(3.17) Dr,, has more complicated form.
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4. Special cases- Case 1. Let us consider the case when in F,,, dz” = 0
and 6z7 = 0 i. e. when the lineelements P, P, and P, have the common center z.

Then we have

P(z,%), Pi(z, &+ di), Po(z,% + 0%)

P; =P + 6P, = (z,% + di + d& + ddz),
In this case we have

Dry, = dro, — Aa'quﬂDna Arg = 6ry — AaﬁvrﬂAlw

(A= DA)ro =(6d — dd) 1o — 27" 13[FO,Aa” 1,05 — Ajol's))+

4.1
“ Ao'1541) P, )[DI A) — AP yrp(6D — dA) 1.

Substituting A,”., from (2.10) and using (3.12) where (6d — dd)z” = 0 we
have

~ A, 15 (6D — dA)IX = — FC,P, 15 (8, — Ao'y) (0D — dA) I¥

(4.2) — 0,°rs[0(1uy + 21,) DI — d(p, + 21.,) AD].
As in this case
(6 — Aot y)DIX = dl*, (63 — Ao'y)AIX =6l
using the homogenity condition we obtain
ws) (6% — Ao'y)(6D — dA)IX :FTl(éd — do)i + i*(6d — d§)F '+
FO, Aot (8F — AX) (DI AI° — A A).

Substituting (4.3) into (4.2) and then (4.2) into (4.1) we get
(AD — DA)rg = —Dro — 15[27 S0 15 + F2Co” 0, AcX (0 — Ajo) ][DIT AI°)—
0" r3[0(py + 21,) DIY — d (puy + 21.,) Al"]
where from (3.1) in this case Dr, has the form
Dr, = —(0d — dd)ro + CoP rs(6d — db)3”

In the non-recurrent Finsler space F,, where we take 6,7 = 0, p, = 0 =
AP, =FC,P, = AP, =0 we have

(4.4) (AD — DA)r, = —Dr, — 27 'r3S,5,5[DI7 Al°].
In the case when Dr, =0, Ar, =0 (4.4) gives
Dro, = —27'755,° [ DI” Al°]
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Case 2. Let us consider the lineelements
P(z, i)
P (x+dz,z +06z) with DI=0
Py(z,% + 0&) with 6z =0
P; =P + 6P, = (z+dx, &+ di + 6% + ddi), (dz = 0),
Py =P, +dP, = (z + dz, & + 6% + di + doz).
From DI° = 0 we have

(4.5) di® = —Fi’dF ' — I™%da’.

From dz° = 0 we get
(4.6) (68 — AL ) AlY =61° = F7163° + 3% F 1 =
0i® = (62 — A°,) Al — F®sF~ 1.
In this case we have

(4.7) a) Dro = dro — IiPrgéa”  b) Arg = orq — AP rg Al

From 6z = 0 = déz = 0 and Dr, has the form
(4.8) —Dro = —(6d — dd)ry + TP rdx” — CoPors(6d — db)3”
From (4.7) we obtain
(AD = DA)ro = rg [FOTLP (05 — Ao's) — 0, Ad"s + 0. A" 5T
(4.9) —Ant 5P, + APsTE ] da? Al°+
(6d — dd)ro — TP raddz™ + AP radAlY.
From (2.10) using (4.6) and C,”,&* = 0 we get
APy g dAD = [FCoP 1g (84 — Ao"y) — 02 (1uy + 21,)]d A7
From (3.12) in case 2 it follows
B = (py + 21,)d A" = A\, 6 dx” + 0Aydx” — d(p + 21,) Al”.
From Lemma 1.3 it follows that in case
DI" =0= A\dz" =0= 0\ de” + N\, ddz” =0
and B reduces to the form B = —d(u, + 2l,) Al”. Then
Aol dAI = FC.P 15 (040X — 0. AXsTAY) da” Al°—

4.10
(+.10) 0.° 5B + FCoPsrs (dF 63° + F'déi® + di®F ).
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We can add and substract ddi’, to the last term of (4.10), where from (4.5) we

have
8di® = —§Fi°dF~! — F§i%dF~" — Fi°6dF 1 —

AT [F(D, — Ao'y) AIY — Fi'§F~')daX — T*2 6daX.

Using the homogenity condition of I';® in & (first degree) and the relation C,”53° =
0 (4.10) has the form

APy rgdAIT = —FCoP rg [0T2X(05 — Ao*s)—
(4.11) By AoXs + 0, AXsT2 1 dz” A’ — CoPsrg (6d — db) 30—
CoPyrgTiX 6dz” — 6,° rg B.
Substituting (4.11) into (4.9) using (3.6), (3.15), (4.8) and (2.9) we obtain
(AD — DA)ro = —Drq — g [PiPs — As” 052 +

(4.12) .
FCoP(PyX 5 = AX\05T5! + 5%y + 27 A XM da” Al° — 6,7 B.

In the non recurrent Finsler space F,, when 6,7 = 0 (4.12) reduces to the

form
(AD — DA)ro = —Dry —rg PLP., 5 dz" AI°.

When Dr, =0, Ar, = 0 from (4.13) it is easy to see that

Dro = —rg P.P 5 dz" Al°.

[e%

Case 3. Let us consider the cycle of lintlements

P(z, %),
(4.14) Pi(¢ + dx,& +di), DI*=0=di® =¢*F 'dF — I'"§dz”,
(4.15) Py(z + 62, & + 62), Al* =0= 6i® = *F'6F — '*582°,

Py =P +0P = ($+d.’£+5$+(5d$,$+d$+(5.’ll+(5d.’l:),
P, =P, +dP, = (z + 6z + dx + déz, & + 6% + di + doz).
From Dr, = dr, — T3P, rgdz? it follows
(4.16) (AD — DA)ry = (6d — dd) ro — TP 1., (6d — d)aY — 271K, P 5[dx™ §2°).
From (4.14), (4.15) and C,”, &7 = 0 it follows
(4.17)  CoP(6d — db)i" = CoPgI3%(6d — db)aP — 27 FC.P 9 K, 5, [da 527).
From (4.17) and (2.9) we obtain

TP, (6d — dd) 7 = (To°., — 85 \,) (6d — d&) 7+

4.18
(4.18) C2P,(8d — do) &7 + 2 'FCL,P4K,’ 5, [dxP 627].
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Substituting (4.18) into (4.16) and using (3.1) we get
(AD—DA)ro = —Dro—2 (Ko 16+FCoP Ky r5) [d? §2°)4+0,° X, (3d—dd) =7

For the case of a non recurrent Finsler space (when A, = 0, u, = 0) and
0.,° =0 Faﬂ,, and Aa57 = FCaﬂA, are the Cartans connection coefficients. In this
case for Dr,, =0 and Ar, = 0 we obtain.

Dro = —27'R,". 575 [da” 62°)
where Ry 5 = Koy + AaPx Ky 6.
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