PUBLICATIONS DE L'INSTITUT MATHÉMATIQUE (BEOGRAD) (N.S.) Vol. 44(58), pp. 19-- (1988) |
|
RAMIFICATION HYPOTHESIS AGAINDjuro R. KurepaMatematicki institut SANU, Beograd, YugoslaviaAbstract: To the $RH$ (Ramification Hypothesis = Proposition 1 in Kurepa [1935:2,3 p. 130] we join here proposition $P_0'(s. 3:2)$, $P_{18},P_{19},\ldots,P_{45}$, each equivalent to $RH$; we stress in particular $P_{18} := P_s:$ For every branching tree $T$ the width $p_sT^2$ of the cardinal square of $T$ equals $p_sT$. (s. 1:0) and is attained (s. No. 3). Classification (MSC2000): 04A10; 05C38 Full text of the article:
Electronic fulltext finalized on: 2 Nov 2001. This page was last modified: 16 Nov 2001.
© 2001 Mathematical Institute of the Serbian Academy of Science and Arts
|