EMIS ELibM Electronic Journals PUBLICATIONS DE L'INSTITUT MATHÉMATIQUE (BEOGRAD) (N.S.)
Vol. 56(70), pp. 41--53 (1994)

Previous Article

Next Article

Contents of this Issue

Other Issues


ELibM Journals

ELibM Home

EMIS Home

 

Sur l'itere de $\sin x$

Farid Bensherif et Guy Robin

Département d'algèbre, U.S.T.H.B., Alger, Algérie. and LACO, Laboratoire d'arithmétique, de calcul formel $ & $ d'optimisation, URA 1586, Faculté des Sciences, 123, avenue Albert Thomas, 87060 Limoges, France

Abstract: We show that the asymptotic expansion of the sequence $x_n = \sin x_{n-1}$ with $x_0 = x(x\in]0,\pi[)$, as $n$ goes to $+\infty$, uses a family of polynomials (with rational coefficients) which are linked by relations of recurrency. The study applies to a large class of sequences. We finish by a sharp study of the sinus function.

Classification (MSC2000): 10H25; 41A10

Full text of the article:


Electronic fulltext finalized on: 1 Nov 2001. This page was last modified: 16 Nov 2001.

© 2001 Mathematical Institute of the Serbian Academy of Science and Arts
© 2001 ELibM for the EMIS Electronic Edition