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Abstract. We give several characterizations of the Besov space Bj of M-harmonic func-
tions in the open unit ball in C".

1. Introduction and results

In [4] Hahn and Yousffi considered the boundary behavior in the Besov spaces
B, of M-harmonic functions in the open unit ball B in C". In this paper we deal
with several characterizations of the spaces B;. As a consequence we have:

1) If s > n, then By = A;, where A; is the weighted Bergman space.

2) If s = n, the spaces B} are closely related to the Hardy spaces H? of
M-harmonic functions in B.

3) For 0 < s < n, B, are Besov spaces (Bg is the diagonal Besov space).

4) For —p < s < 0 the functions in the space B, have Lipschitz continuity of

order —s/p and thus extend continuously to the closed unit ball (see also Theorem
1.4 of [4]).

5) If s < —p then B ={constants}.
Let B = B, be the open unit ball in C* and S = 0B the unit sphere in

C™. We denote by v the normalized Lebesgue measure on B and by ¢ the rotation
invariant probability measure on S.

Let A be the invariant Laplacian on B. That is, Af(z) = A(f o ¢.)(0),
f € C%(B), where A is the ordinary Laplacian and ¢, the standard automorphism
of B, ¢, € Aut(B), taking 0 to z (see [9]).

The C2-functions f that are anihilated by A are called M-harmonic (f € M).
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Definition 1.1. For 0 < p < o0, and s € R, the weighted Bergman space A;
is defined as the space of M-harmonic functions f on B for which

1/p

1flla; = [ [a-iPri@ra)| <o,

where d\(z) = (1 — |2]?) " 1dv(z) is the measure on B that is invariant under the
group Aut(B).

For f € CY(B), Df = (g—zfl,...,%), denotes the complex gradient of f,
Vf= (%, cee 8—2{}%), 2k = Togp—1 + 1Tk, kK = 1,2,...,n, denotes the real gradient
of f.

For f € C*(B) let Df(2) = D(f 0 ¢:)(0), z € B, and Vf(2) = V(f 0 ¢:)(0),
z € B, be the invariant complex gradient of f and the invariant real gradient of f
respectively.

Definition 1.2. For 0 < p < 00, and s € R, the M-harmonic Dirishlet space
D, is defined as the space of M-harmonic functions f on B for which

[ IF1@Pa - a) < .
B
The (differential) Bergman metric b: B x C"* — R is defined by

(=P (=8 12\
b(zaf) = ( (1 — |z|2)2 ) :

For f € C1(B), define the functional quantity

V£(2) -¢] [{Df(2),6) + (D](2),€)|
Qf(z) = sup ———-= = sup , 2 € B.
|€]=1 b(2,¢) |€]=1 b(2,§)
This quantity is invariant under Aut(B), that is Q(f o ) = Q(f) o ¢, for all
C'-functions f in B and ¢ € Aut(B) (see [5, 6]).
Definition 1.3. For 0 < p < 0o, s € R, let B be the space of M-harmonic
functions f on B such that

1£lps = ( [ @rea- |z|2)8dx(z))l/p < oo

THEOREM 1.4. Let 0 < p< o0, s >n—p/2 and f € M. Then the following
statements are equivalent:

(i) feD; (1) febB, (iif) /B IVf(2)P(1 = [2])**PdA(2) < oo,

(iv) /B(l — 2 *P(IRf (2)] + [Rf (2)))PdA(2) < co.
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no - Of ) o = o
As usual, Rf(z) = Y 45, 18 the radial derivative of f and Rf(z) = ) Zj==—.
=1 0% ' ;

2. Proof of Theorem

Ifo<r<1,weset E.(2) ={w € B : |p,(w)| <r} = ¢,(rB). It is easy to
,r.2n(1 _ |z|2)n+1

see that E.(z) is an ellipsoid and its volume is given by v(E,(z)) = (1 — 7|zt

(see [9, p. 30]). We set |E,(2)| = v(E,(2)).
For the proof of Theorem 1.4 the following lemmas will be needed.

LEMMA 2.1. [7] Let 0 < r < 1. There is a constanat C > 0 such that if
f € M then

(i) TsRf@)] < CO- )™ [ R@IAE), we B,
E,.(w)
(ii) T3 Rf(w)| < C(1 - IWIZ)_I”/ |Rf(2)|d\(2), w € B,
E,.(w)
(ii) T f(w)| < C(1 - |w|2)_1/2/ |f(2)|dA(2), w € B.
E.(w)
H l T--—E~i—2-i T--—z~i—z-— are tangential deriva-
OTe, a5 usual, i = 2 T iy T T Pigg T Figgy g
tives. J J

Here and elsewhere constants are denoted by C which may indicate a different
constant from one occurrence to the next.

LEMMA 2.2. If s > 1, then

1
C
/ i tdt < zZ,w € B.
0 _

(Z,'ZU) |s - |1 - <Z7w> |S_1 ’

LEMMA 2.3. [9, P. 17] If a > 0, then

L e e

It is easy to see that |6f(z)| = Qf(2). Hence, D, = By, for all 0 < p < o0
and s € R

From the inequality Q f(z) > (1—|z|?)|V£(2)| (see [4, p. 221]) it follows that
(il) = (iii).
(ili) = (iv) It is easy to see that if (iii) holds then

[a-prlefne <o i<isn,

B

[a-Epr el ne <c1<i<n
B 9z,

6Zj
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which in turn implies that

/B (1 - |22+ | Rf () PdA(2) < oo

[ @R IR G PaE) < .
B
Thus, (i) = (iv).
(iv) = (i) Assume now that
/B(l = [27)"*P(IRf(2)| + [Rf (2))PdA(2) < oo.
It is easy to check that |2|*|Df(2)|* = |Rf(2)|> + X2, ; |Ti; f(2)|*. Using this
and the equality

IVf(2)]> =2(Df(2)I” + |DF(2))
201 = [)(IDf () = |Rf(2)]* + D (2)]” = |Rf(2)]?)
(see [8]) we find that

PP =
21— |2P) [(1 CLPY(RFP + BFP) + Y T () + 3 m,-?(z)ﬁ] |
i<j i<j

Hence, to show that f € D; it is sufficient to show that
/ (1= 122 (T f(2)IP + | T F(2)P)dA(z) < 00, 1 < < j < .
B

Integration by parts shows that

1

fz)= / [Rf(tz) + Rf(tz) + f(tz)]dt.
0

From this we conclude that it is sufficient to prove that

1 P

/ (1 — |2|?)FP/? (/ |T,~ju(tz)|dt) dA\(z) <00, 1<i<j<m,
B 0

where u is Rf or Rf or Rf or Rf or f.
We will show that, for fixed 1 <i < j <mn,

j /B(1 oy (/01 |T,-J-Rf(tz)|dt>pd/\(z) < 0.

The remaining cases may be treated analogously.
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Using Lemma 2.1, Fubini’s theorem and Lemma 2.2 we find that for any a > 0

|Rf(w)|(1 = |w]*)®
/ |T;; Rf(tz)|dt < C/ (/E i Tt (,0) |n+a+3/2d (w)>dt
|Rf(w)|(1 = |w|*)*dv(w)
<C/ (/ 1=t P )dt
y dt
:C/ IR @I = fwl) ( iy )

]__ Z ’LU |n+a+1/2

Assume now 1 < p < oo. Applying the continuous form of Minkowski’s
inequality we obtain

I<C/ s+p/2 n—1

(UL R teag) o) a) o

By Hélder’s inequality

|Rf (p€)|do(€)
51— A(r¢, p€) Fett/2

(RI(p)Pdo(e) )7 v
(22) << 11— (r¢, p€) |n+a+1/2> (/ 1-— rg,pg |n+a+1/2>

S (0T
= W= P s 1= G, pg) o172

(Here 1/p+1/p' =1).

Now we substitute (2.2) into (2.1) and use Fubini’s theorem and Lemma 2.3
to get

I=c / nrr ( /01 (1- E«lp)_(aﬁ)la/z)/p'
([ e )an0) o)
o [ ([ e
(fmsveraro [ o i) ) o
so o (| ot

' ( /5 |Rf(p€)|”da(£)) wdp)pdr_

1/p
) , by Lemma 2.3.

(2.3)
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A simple observation shows that it is possible to select positive parameters
a,ty,ts,t3,ts4 such that

(i) a=1t; +ts =13+ 14,

. 1 s 3 n+1 s n+1

(i) = <tg—t1<-+5-— , (iii) to >14+—— .
p p 2 p p p

Note that here again we used the assumption that s > n — p/2.
Applying Holder’s inequality on (2.3) and Lemma 2.3 we obtain

I< 0/01(1 — p)stp/2-n-1 [(/01 %)Md
(/ (1_(1;)% ([ 1rrwopas©)ds) |ar
([ msteraste)) ap)ar
o oo [moorsnc) (| 25

< c/ 2P) | RE(2) Pdv(z) < oo.
If p=1, then

r<0 [ -y [ RIGI0 Erd)

1= (e, w) [ i

<c / ([ 1(1—p)a( JLLEG)

(L =gy ez ) i
o[ o2t [am
—c [0~ ( [ rse1an©) ([ Y= ) ay
<c /B (1= [w?)*~" | Rf (w)ldv(w) < oo.

(We may assume that a > max{s —n,0}.)

For the case 0 < p < 1 the following lemma will be needed.

LEMMA 2.4. Let 0 <r <1 and 0 < p < oo. There is a constant C' such that
if f € M then

DRLL Oy et/
E

T dA B
|]‘_<z7w) |I) - T(,w) |1_<Z,€> |p (6)7 Z,’I,UE
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i _Rfw)| \" G I
(u) (|1_<Z,’UJ)|) <C E(w)<|1_(2,§)|> d)‘(é-)a ,w€E B

Note that the constant C is independent of z and w.
We will prove (i). The proof of (ii) is similar. By the formula (1.3) in [1]
Rf(pw(pb) da(&)
1- pga

Multiplying this equality by 2np2" H1-p ) "=1p(p)dp, where his a radial function
which belongs to C*°(B) with compact support in B such that [, h(2)d\(z) =
then integrating from 0 to 1 and using the invariance of the measure A, we get

W = [ MonE e @) = [ e T R @)

by Theorem 2.2.5 [9, p. 28]. By a sultable choice of a function h we obtain

,wEB,0<p< 1.

mﬂwNSCéw)Uﬁ@ﬁﬂ@)weB,hﬁmw0<r<L

Since |1 — (z,w) | ~ |1 — (2,&) |, if £ € E,.(w), we have
BRI _ . RIQ|
=Gl <€ o T G BT

and consequently,

_IRf@)] \* _IRF@L )
(|1_<z,w>|) <¢C E(w)(|1_<z,rf)|> dX(§), z,w € B

(see [8]).

To finish the proof of Theorem 1.4 assume that 0 < p < 1. Applying Theorem
3.2 (iii) [3] to the function

_ Rfw)] "
F(w)—<|1_<z,w>|a+n+1/2) , WEDRB (z € B - fixed)

and replacing p, 7, k, ¢ by 2, 2/p, 2/p, p(a + n + 1) — n respectively and using
Lemma 2.4 we find that

( |Rf(w)|( = Jw]*)*dv(w ) <C/ |RSf (w)P(1 — [w]*)P W*"“""‘ldl/(w)‘
B

1= (a2 0) [P 1=z, w) o172

Thus, assuming that a > s/p —n,

1< [ ([ R0 |w|2)P<a+"-1>—"—1du<w)) D)

1= Gayu0) i1 /9
ety ([ (L= 222 ()
=c [ IRswpa -y ([ SRl avw)

<c/ — w2 RS (w)[PdA(w) < oo.
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This finishes the proof of Theorem 1.4.

10.
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