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1. Introduction.

In this paper, we shall study Hammerstein operator equations of the form
x—KFzx=f (1.1)

where K is linear and F' is a nonlinear map. We first study Eq. (1.1) in the oper-
ator form using the (pseudo) A-proper mapping approach and the Brouwer degree
theory. Then we apply the obtained results to Hammerstein integral equations.
There is an extensive literature on Hammerstein equations and we refer to [Kr],
[KZ] and [V].

2. Some preliminries on A-proper maps.

Let {X,} and {Y},} be finite dimensional subspaces of Banach spaces X and Y
respectively such that dim X,, = dimY;, for each n and dist(z, X,,) = 0 as n = o
foreachz € X. Let P, : X - Y, and @, : Y — Y, be linear projections onto X,
and Y, respectively such that P,z — z for each z € X and 0 = max||Q,|| < oo.
Then I' = {X,,, Pp; Y, @Qn} is a projection scheme for (X,Y).

Definition 2.1. AmapT : D C X — Y is said to be approzimation-proper (A-
proper for short) with respect to I if (i) @,T : DN X,, — Y, is semicontinuous for
each n and (ii) whenever {z,, € DNX,,} is bounded and ||Qn,T%n, —Qn, f|| = 0
for some f € Y, then a subsequence z, ,, = = and Tz = f. T is said to be pseudo
A-proper w.r.t. T if in (ii) above we do not require that a subsequence of {z,,}
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converges to z for which f € T'z. If f is given in advance, we say that T is (pseudo)
A-proper at f.

For the developments of the (pseudo) A-proper mapping theory and appli-
cations to differential equations, we refer to [Mi-5,8] and [P]. To demonstrate the
generality and the unifying nature of the (pseudo) A-proper mapping theory, we
state now a number of examples of A-proper and pseudo A-proper maps.

To look at ¢-condensing maps, we recall that the set measure of noncompact-
ness of a bounded set D C X is defined as v(D) = inf{d > 0 : D has a finite
covering by sets of diameter less than d}. The ball-measure of noncompactness of
D is defined as x(D) = inf{r > 0|D C U, B(z;,r), x € X, n € N}. Let ¢ denote
either the set or the ball-measure of noncompactness. Thenamap N : D C X - X
is said to be k — ¢ contractive (¢-condensing) if ¢(N(Q)) < kd(Q) (respectively
P(N(Q)) < ¢(Q)) whenever Q C D (with ¢(Q) # 0).

Recall that N : X — Y is K-monotone for some K : X — Y* if (Nz —
Ny,K(z —y)) > 0 for all z, y € X. It is said to be generalized pseudo-K-
monotone (of type (KM)) if whenever z, — z and limsup(Nzy, K(z, — z)) <0
then (Nzp, K(zp —z)) — 0 and Nz,, = Nz (then Nz, — Nz). Recall that N
is said to be of type (KSy) if z, — z and limsup(Nz,, K(z, — z)) < 0 imply
that z, — z. If x, — x implies that limsup(Nz, ,K(x, — x)) > 0, N is said
to be of type (KP). If Y = X* and K is the identity map, then these maps are
called monotone, generalized pseudo monotone, of type (M) and (S ) respectively.
If Y = X and K = J the duality map, then J-monotone maps are called accretive.
It is known that bounded monotone maps are of type (M). We say that N is
demicontinuous if z, = = in X implies that Nz, — Nz. It is well known that
I—N is A-proper if N is ball-condensing and that K-monotone like maps are pseudo
A-proper under some conditions on N and K. Moreover, their perturbations by
Fredholm or hyperbolic like maps are A-proper or pseudo A-proper. (see [Mi-5,7].

The following result states that ball-condensing perturbations of stable A-
proper maps are also A-proper.

THEOREM 2.1. [Mi-1] Let D C X be closed, T : X — Y be continuous and
A-proper w.r.t. a projectional scheme T' and a-stable, i.e., for some ¢ > 0 and ng

||QnTx_QnTy|| 2 C||.’L’—y|| forw,y € X, andn > Mo

and F : D =Y be continuous. Then T + F : D — Y is A-proper w.r.t. T if F is
k-ball contrctive with ké < ¢, or it is ball-condensing if § =c = 1.

Remark 2.1. The A-properness of T" in Theorem 2.2 is equivalent to T" being
surjective. In particular, as 7" we can take a c¢-strongly K- monotone map for a
suitable K : X — Y*, ie., (Tz — Ty, K(z —y)) > c||z — y||* for all z,y € X.
In particular, since ¢-strongly accretive maps are surjective, we have the following
important special case [Mi-1].

COROLLARY 2.1. Let X be a m space, D C X be closed, T : X — X be
continuwous and c-strongly accretive and F : D — X be continuous and either k-ball
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contractive with k < ¢, or it is ball-condensing if c =1. ThenT + F : D — X is
A-proper w.r.t. T.

To study error estimates of approximate solutions for nondifferentiable maps,
we need a notion of a multivalued derivative. Let U C X be an open set and
T :U = Y. A positively homogeneous map A : X — 2Y, with Az closed and
convex for each 2 € X, is said to be a multivalued derivative of T at xg € U if there
is a map R = R(zo) : U — 29 — 2Y such that ||y||/||z — zo|| = 0 as 2 — z, for
each y € R(z — xo) and

Tz — Tz € A(x — x9) + R(z — z9) for z near zo.

A map A: X — 2" is m-bounded if there is m > 0 such that ||y|| < m||z|| for each
y € Az, z € X. Tt is c-coercive if ||y|| > c||z|| for each y € Az, z € X.

The following result from [Mi-5] will be needed below.

THEOREM 2.2. Let T : U C X = Y be A-proper w.r.t. T and zq be a solution

of Tx = f. Suppose that A is an odd multivalued derivative of T at xo and there
exist constants co > 0 and ng > 1 such that

[|Qru|| > col|z|| for x € X, u€ Az, n > ng. (2.1)

(a) If xo is an isolated solution, then the equation Tx = f is strongly approzimation
solvable in B, (xo) for some r > 0.

(b) If, in addition, A is c1-coercive for some ¢y > 0, then xq is an isolated solution,
the conclusion of (a) holds and, for € € (0,¢o), approzimate solutions x,, satisfy

[|Zn — 2o|| < (co — €) 7 ||Txn — || for n>ni > no. (2.2)
(¢) If xo is an isolated solution in B,(xg), A is ca-bounded for some ca and
Tr—Tye A(x —y) + R(z —y) whenever z—y € B, (2.3)

and z/||z —y|| = 0 as & = zo and y = o for each z € R(x —y), then the equation
Tx = f is uniquely approzimation solvable in B.(x¢) and the unique solutions
Ty, € Br(z0) N Xn of QuTz = Qnf satisfy

[|zn — zo|| < k|| Pazo — zo|| < cdist(zo, Xp), (2.4)

where k depends on cg, c2, € and § and ¢ = 2kdy, 61 = sup || P|-

3. Hammerstein operator equations

We shall consider (1.1) in a general setting between two Banach spaces. To
that end, we shall use two approaches. One is based on applying the Brouwer
degree theory directly to the finite dimensional approximations of the map I — K F,
and the other one is based on splitting first the map K as a product of two suitable
maps and then use the Brouwer degree.

A. A direct method. In this section, we shall prove a number of solvability
results of (1.1) imposing various types of conditions on K and F'.
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THEOREM 3.1. Let X and Y be Banach spaces, K :' Y — X be linear and
continuwous and N : X — 'Y be nonlinear and such that [ — KF : X — X 1is pseudo
A-proper w.r.t. T = {X,,, P,}. Suppose that there are some constants a and b such
that da||K|| < 1, 6 = max||P,||, and

[|Fz|| < al|lz|| +b for oll||z|| > R.

Then Eq. (1.1) is solvable for each f € X.

Proof. Consider the homotopy H(t,z) = x — tK Fx — tf. Then our assump-
tions imply that for each f € X there is an r > R and ng > 1 such that

P,H(t,z) # tP,f for allt € [0,1], z € 8B(0,r) N X,,, n > ng.

By the Brouwer degree properties and the pseudo A-properness of I — KF', there
isan x € X such that t — KFzx = f. O

We say that a map T satisfies condition (+) if whenever T'z,, — f in Y then
{zn} is bounded in X. T satisfies condition (++) if whenever {z,} is bounded and
Tx, — f, then Tx = f for some z € X.

Let o(K) denote the spectrum of K. Our next result involves a suitable
Leray-Schauder type of condition.

THEOREM 3.2. Let K : X — X be a continuous linear map, A\"* ¢ o(K),
F:X — X be nonlinear, T, =pl — (I - AK) 'K(F-X): X - X forp>1,Tq
satisfy condition (+) and either F is odd or, for some R > 0,

K(F =Dz # t(I — XK)z for ||z|| > R, t > 1. (3.1)

a) If Ty is A-proper w.r.t. T, then Eq. (1.1) is approximation solvable for each
feX.

b) If T, is A-proper w.r.t. T for each p > 1 and Ty satisfies condition (++), then
Eq. (1.1) is solvable for each f € X.

Proof. Eq. (1.1) is equivalent to
Az — Nz =f (3.2)
where A =1 — AK and N = K(F — AI). It is easy to see that (3.1) implies that
Nz # tAx for ||z|| > R,t > 1.

Hence, the conclusion follows from Theorem 3.1 in [Mi-2]. O

COROLLARY 3.1. Let K : X — X be a continuous linear map, \=' ¢ o(K),
F: X — X be nonlinear, T, =pIl — (I - AK) 'K(F—X): X - X forp>1, and

limsup ||Fz — Az||/||z]| < ||(I — AK) K[|t (3.3)

[|z][—o0

a) If Ty is A-proper w.r.t. T, then Eq. (1.1) is approximation solvable for each
feX.
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b) If T, is A-proper w.r.t. T for each p > 1 and Ty satisfies condition (++), then
Eq. (1.1) is solvable for each f € X.

COROLLARY 3.2. Let X be a uniformly convex space with a scheme T' =
{Xn, Pn}, max||P,|| =1, K : X = X be a continuous linear map, \=' ¢ o(K)
and F : X — X be nonlinear such that (I — AK)'K(F — X) : X — X is
nonexpensive and (3.3) hold. Then Eq. (1.1) is solvable for each f € X.

Let us now look at some special cases.

THEOREM 3.3. Let K : X — X be a continuous linear map, \™1 ¢ o(K),
d=||I-XK)K||7! and F : X — X be nonlinear and continuous.
a) Let, for some k € (0,d)

[|Fz — Ax — (Fy — \y)|| < kl|lz —y|| for allz,y € H. (3.4)

Then Eq. (1.1) is uniquely solvable for each f € X and the solution is the limit of
the iteration process

Tp — AKzp = KF2p_ 1 — AKzyy 1 + f. (3.5)

b) If, in addition, either K is compact or § = max||P,|| =1 and k||(I — AK)™!||x
[|K|| <1, then Eq. (1.1) is approzimation solvable w.r.t. T for each f € X and the
approzimate solutions {x, € Xp} of t — P,KFx = P, f satisfy

||zn, — || < c||xn — KFxz, — f|| for somec and all large n. (3.6)

and
[|zn — z|| < ¢||Pnz — z|| < ¢ dist(z, X,,). (3.7)

¢) If condition (3.4) holds with k = d, X is a uniformly convexr space with § = 1
and
[|Fx — Az|| < a|lz|| + b for somea < k,b> 0,z € X. (3.8)

then Eq. (1.1) is solvable for each f € X.

Proof. Eq. (1.1) is equivalent to (3.2) with A =T —AK and N = K(F — AI).
Hence, it is easy to show that A~'N is k; = k||A~!K||-contractive with k; < 1.
Thus, part a) follows from the contractive fixed point principle and c) follows from
Corollary 3.2. Regarding part b), we need only to show that condition (2.1) of
Theorem 2.2 holds. Assume first that K is compact. Then I — KF' is A-proper
w.r.t. I, Set Biz = {K(y—Az) | |[y—Az|| < k||z||} and Bx = Ax— Bz forz € X.
Then B is homogeneous with Bz convex for each € X and A(x—y)—(Nx—Ny) €
B(xz — y) for each z,y € X. Moreover, if 0 € Bz, then Az = K (y — Az) for some y
and

llzl] < [JAT'K]] |y = Azl| < [|2]|-

Hence, x = 0. Since B; is upper semicontinuous and compact, B = A — B; is
A-proper w.r.t. I' and satisfies (2.1) by Lemma 2.2 in [Mi-2]. Since also Nz — Ny €
B;(z —y), the conclusions follow from Theorem 2.2.
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Next, let 6 = 1 and k||(I — AK)!|| ||K]|| < 1. Then I — KF is A-proper
wrt. ' ={X,, P,}. Indeed, let {z,, € X,,} be bounded and z,, — P,KFz, — f.
Set y, = (I — AK)z,,. Then y,, — P,K(F — XI)(I — AK) 'y, — f and the map
F, = (F = A)(I — AK)~! is an l-contraction with [ < 1. Hence, I — F; is A-
proper w.r.t. I' and therefore, a subsequence y,, — y and y — Fiy = f. Hence,
r— KFz = f with 2 = (I — AK) ™1y, proving that I — K F is A-proper.

Now, let y € P,(Ax — Byx) for some x € X,,. Then y = P,(Az — Kv) =
Az — P, Kwv for some v with ||v|| < k||z|| and z = A~ P,(y + Kv). Hence,

[zl < SIATHIlyll + Kl K] []]])

and
(1 —E[JAY KDl < [1A7H] |yl

which implies that A is c-coercive. Thus, Theorem 2.2 applies. O

Let us now specialize this to a Hilbert spase H setting. Let 3(K) be the set
of characteristic values of K, i.e., 8(K) = {p | 1/p € o(K)}.

THEOREM 3.4. Let K : H — H be a selfadjoint map, A ¢ ¥(K), F: H - H
be nonlinear and continuous and T, = pI — (I — AK) " *K(F —XI) : H — H for
p > 1. Suppose that for some k with ké < d = dist(\, 2(K))

limsup ||Fz — Az||/||z|| < k.

llz||=o0

a) If Ty is A-proper w.r.t. T, then Eq. (1.1) is approximation solvable for each
fEH.

b) If T, is A-proper w.r.t. T for each p > 1 and Ty satisfies condition (++), then
Eq. (1.1) is solvable for each f € H.

Proof. Eq. (1.1) is equivalent to z = (I — AK) ' K(F — ANz + (I — AK)~'f.
Since (I —AK)7'K = —1/A+1/A(I-AK)™!, we have that ([K]) ||[(I-AK)"1K]|| =
SUP,eo iy | — 1/A + 1/A1 = M) Y| = sup,e, i) (0 — A) 7| = d~'. Then the
concluions follow from Corollary 3.1 O

Let p* = inf{p | p € T(K) N (0,00)}. For ¢ € T(K) N (—o0, u*], define
d,; = dist(c, 2(K) N (—o0,¢)).

THEOREM 3.5. Let K : H — H be a selfadjoint map, F : H — H be
nonlinear and continuous and
(i) (Fz — Fy,x —y) > allz —y|* for all z,y € H,
(ii) ||Fz — Fy|| < Bl|lz — y| for all z,y € H.
(a) If (i)-(ii) hold and B? < ad_; + c(d; — ¢ — 2a) for some ¢ < p*, then Eq. (1.1)
is uniquely approzimation solvable for each f € H and (3.6)—(3.7) hold.
(b) If 32 < ad; + c¢(d; — ¢ —2a) and, for somea <A =c—d; /2 and b >0,

[|Fx — Az|| < allz|| +b for allz € H

then Eq. (1.1) is solvable for each f € H.
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Proof. Let A =c¢—d_ /2. Then A ¢ ¥(K) and d = dist(A, £(K)) > 0 with
d~!' = ||(I = AK)~1K||. Using conditions (i)—(ii), we get

|1Fz + Az — (Fy + M)l < (87 + A% + 2a0) ||z — y]|.
By our choice of A and the condition on 3, we get
B2+ X2+ 20X = 8%+ ad] +c(d] —c—2a) + (d /2)? < (d7 /2)? = d°.
Hence, the conclusions follow from Theorem 3.3. O

THEOREM 3.6. Let K : H — H be selfadjoint, F : H — H be a gradient map
and B* : H — H be selfadjoint maps such that
(i) (B~ (z—y),z—y) < (Fz — Fy,x —y) < (B*(z —y),z —y) for allz,y € H.
(ii) 8||B* — M|| < d =min{|p| | p € o(I — AK)1K}.
(a) If the inequality is strict in (i), then Eq. (1.1) is uniquely approzimation solvable
w.r.t. T for H for each f € H and the approzimate solutions satisfy (3.6)—(3.7).
(b) If, in addition, there are 0 < a < d and b > 0 such that

[|Fz — Az|| < allz|| +b for allz € H

then Eq. (1.1) is solvable for each f € H.
Proof. Since C' is a gradient of the functional z — (Cz,z)/2, N — C is a
gradient map and
—|IB™ = M| [lz —y|* < (B™ = M)(z —y),z —y),
(BY =AD)(z —y),z —y) <[|BY = M| ||z —y]*.

Hence, by Lemma 1 in [Mi-3],
[|Fz — Az — (Ny — A\y)|| < k||lz —y|| for all z,y € H

where k = max(||B~ — M||,||B* — M||). Since d = ||(I — AK)71K]||7! ([K]), the
conclusions follow from Theorem 3.3. O

For ¢ € £(K) N (u*,00), define df = dist(c, X(K) N (¢,0)). We have the
following sharper version of Theorem 3.5.

THEOREM 3.7. Let K : H — H be selfadjoint, F : H — H be a gradient map
and a, B € R be such that

allz — y||2 <(Fz—Fy,x—vy) < Bz — y||2 for z,ye H.

(a) If either ¢ € Z(K)N(—o0, p*] and —c < a < f < —c+d, orc € T(K)N(p*, 00)
and —c —d} < a < B < —c, then Eq. (1.1) is uniquely approzimation solvable for
each f € H and (3.6)—(3.7) hold.

(b) If the conditions in (a) hold with each “<” sign replaced by “<” and, for some
a<AwithA=c—d;/2ifc<p* and \=c+d} /2 ifc>p*, and b> 0,

[|Fz — Az|| < allz|| +b for allz € H
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then Eq. (1.1) is solvable for each f € H.
Proof. As above, we have that
||[Fz + Az — Fy — Ay|| < max(Ja + A[, |8+ Az — yl|-

By our choice of A as given in b), we conclude that |a + A| < d = dist(\, X(K)) =
d¥/2 and |3 + A| < d with the inequalities being strict in part a). Hence, Theorem
3.3 is applicable. O

B. A splitting method. In this section, we shall study Eq. (1.1) by using a
suitable splitting of K. We shall look at Hammerstein equtions with asymptotically
linear and {B, Bz }-quasilinear nonlinerities F.

B1l. Hammerstein equations with asymptotically linear nonlinear-
ities. Recall that a Banach space X is embeddable if there is a Hilbert space H
such that X ¢ H C X* with each inclusion being dense and (y,z) = (y,z)n for
each y € H and z € X, where (-) is the duality pairing of X and X*.

For asymptotically linear nonlinearity F', we have the following basic result.

THEOREM 3.8. Let X be a reflexive embeddable Banach space (X C H C
X*), K : X* - X be a positive definite bounded selfadjoint map and C = K}{/Z,
where Ky is the resrtiction of K to H, and T : X* — H be a bounded linear
extension of K}Iﬂ. Suppose that F : X — X* and F, : X — X™ is a linear map
such that
(i) the homotopy H, = I — (1 — t)TFC —tTFC : H — H is A-proper w.r.t.
I'={H,,P,} for each t € [0,1]

(i) there are positive constants a, b and R such that
|Fz — Fooz|| < allz|| + b for|lz|]| = R
(iii) 1 ¢ 0(KFy) and a||K|| < ||(I = TFC)7 |7,

Then Eq. (1.1) is solvable in X for each f € C(H) C X.

Proof. We know that the positive square root K}{ﬂ can be extended to a
bounded linear map T : X* — H such that K = T*T, where the adjoint of T is
T = K}J/z =C:H — X and C* =T (cf. [V]). Hence, we can write K = CT.
Define the homotopy H(t,z) = ¢ — (1 — t)TFooCx — tTFCz on [0,1) x H. Let
feC(H)C X, f=Ch,be fixed. Then there is an r > R such that

H(t,z) # th for z € 0B(0,r), t € [0,1].
If not, then there would exist z,, € H, t,, € [0,1] such that ||z,|| = oo and
Tn —TFCxp =t,(TFCxyy — TFCxy + h).
But I-TF,C is invertible if and only if I — K F, is invertible and so (I —T F,C) ™!
exists by (ii). Then
(I = TFO) M| Hlzal| < | = TFooC)znl|
<||IT(F = Foo)Cnl| + IR < IT]] (al|Cl] [|2al| + b) + ||A]]-
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Since ||T|| = ||C|| = || K||'/?, we get that
I = TF<C)7H|I7" < all K[+ (b + [[Al])/[]@nl]-

Passing to the limit, we get that ||[(I — TF,C) !||"! < a||K]||, a cotradiction.
Hence, H(t,z) # tf on [0,1] x 9B(0,r) for some r > R. Since H(t,z) is A-proper,
there is an ng > 0 such that

P,H(t,z) # tP,h for x € dB(0,r) N Hy,, t € [0,1], n > ng.
Hence
deg(I — P, TFC,B(0,r) N Hy, P,h) = deg(I — P,TF5C,B(0,7) N H,,0) #0

for all n > ng. This and the A-properness of I —TF'C imply that y—TFCy = h for
some y € H. Applying C and using the fact that K = CT, we get that e— KFz = f
withz=Cye X. O

B2. Hammerstein equtions with {B;, By }-quasilinear nonlinearities.
In this section we shall study Eq. (1.1) with {B;, By }-quasilinear nonlinearities N,
where By, By : H — H are selfadjoint maps with By < Bs, i.e. (Biz,z) < (B2, 1)
for z € H. A fixed point theory for such maps has been developed by Perov [Pe] and
Krasnoselskii-Zabreiko (cf. [KZ]) assuming that {Bj, Ba} is a regular pair. These
maps have been studied extensively in the context of semilinear equations by the
author [Mi-1,5,6,7].

Definition 3.1. a) A map K : H — H is {B;, By }-quasilinear on a set S C H
if for each x € S there exists a selfadjoint map B : H — H such that B; < B < Bs
and Br = Kz; b) A map N : H — H is said to be asymptotically {B, Bs}-
quasilinear if there is a {B;, By }-quasilinear outside some ball map K such that

|N — K| :limsupM < 0o.
[|2||—o0 |||

This class of maps is rather large. For example, let N : H — H have a self-
adjoint weak Gateaux derivative N'(z) on H. Assume that B; < N (z) < B,
for each z and some selfadjoint maps B; and B;. Then N is asymptotically
{B1, Ba}-quasilinear with |N — K| = 0 (cf. [Mi-4,5]). In the nondifferentiable case,
if Nz = B(z)x + Mz for some nonlinear map M with the quasinorm |M| < co and
selfadjoint maps B(z) : H — H with B; < B(z) < B, for each z € H, then N is
asymptotically { B, Bz }-quasilinear.

The pair {B;, B>} is said to be regular if 1 is not in the spectrum o(By) U
0(Bs), o(B1)N(1,00) = {1, .., Ak}, 0(B2) N (1,00) = {p1, -, tm }, where the A;’s
and the p;’s are eigenvalues of B, and B, respectively of finite multiplicities and
the sum of the multiplicities of the A;’s is equal to the sum of multiplicities of the
pj’s. It has been shown in [KZ] that if {B;, By} is a regular pair, then there is a
constant ¢ > 0 such that for each selfadjoint map C' with B; < C < B, we have
that

||z — Cz|| > ¢||z|| for all z € H.
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Using this fact, we have proved in [Mi-4] the following extension of the fixed point
theorem of Perov [P] and its extension in [KZ] for compact maps.

THEOREM 3.9. Let {B1, B2} be a regular pair, M,N : H — H be bounded
and N be asymptotically {B1, B2}~ quasilinear with |[M + N — K| < c¢. Suppose
that for some selfadjoint map Cy : H — H with By < Cy < By, the map Hy = I—
(1-t)Co—t(M + N) is A-proper w.r.t. I = {X,, P,} for each t € [0,1) and H; is
either pseudo A-proper w.r.t. T or satisfies condition (++). Then (I-M—N)(H) =
H.

If Co and N are compact maps, M = 0 and |N — K| = 0, we obtain the result
of Perov [P] and [KZ]. If N is k-ball contractive, M is ¢;-strongly monotone and
Cy is a kp-ball contractive with &k + k1 < ¢, then Hy is A-proper for each t € [0, 1]
and Theorem 3.9 is applicable. Or, we can take N and Cj to be compact and M
such that (Mz — My,z —y) > —||lz — y||*.

Next, we shall apply Theorem 3.9 to Hammerstein equations with TFC
asymptotically { B, B }-quasilinear.

THEOREM 3.10. Let X be a reflexive embeddable Banach space (X C H C
X*), {B1, B2} be a regular pair of selfadjoint maps in H, K : X* — X be a positive
definite bounded selfadjoint map and C = Kllq/z, where Kg is the resrtiction of K

to H, and T : X* — H be a bounded linear extension of K}J/z. Suppose that
F : X — X* is such that TFC is asymptotically {B1, B2} -quasilinear and, for
some selfadjoint map Co with By < Co < Ba, the homotopy Hy = [—(1—t)TCoC —
tT'FC : H — H is A-proper w.rt. I’ = {H,,P,} for each t € [0,1) and H; is
pseudo A-proper w.r.t. T. Then Eq. (1.1) is solvable in X for each f € C(H) C X.

Proof. As before, we can write K = CT. Let f € C(H) C X, f = Ch, be
fixed. Then, by Theorem 3.9, there is an y € H such that y —TFCy = h. Applying
C and using the fact that K = CT, weget that t— K Fzx = f withx =Cy € X. O

Next, we shall look at the case when K is not positive definite. Let X be an
embeddable reflexive Banach space (X C H C X*) and K : X* — X be a bounded
linear map whose restriction Ky to H is a selfadjoint map in H. Define

K =1/2(Ku| + Ku), Kg=1/2(Ku| - Kp)

A= (K2 +(Kp)'?, C=(KHY? — (Kp)'?

where |Ky| is the absolute value of Kz and (.)1/2 is the positive square root of the

corresponding positive selfadjoint map in H. C is known as the principal square
root of K.

Recall that K is said to be regular if K} and K} have bounded extensions
Kt and K~ from X* to X. Note that if Ky is quasinegative, i.e., the subspace
H; C H, determined by the positive part of the spectrum of Kp, has positive finite
dimension, then K is a regular map.

It is known that [V] if X is an embeddable reflexive Banach space and K :
X* — X is a regular bounded linear map, then K can be represented in the
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form K = V*W = W*V, where V and W are bounded extensions of A and C,
respectively, from X* to H, V* = A and W* = C.

THEOREM 3.11. Let X be an embeddable reflexive Banach space (X C H C
X*) and K : X* — X be a regular bounded selfadjoint map and F : X — X* be
such that VF A is a bounded asymptotically {B1, B2 }-quasilinear map. Let P be the
projection from H onto the subspace Hi C H determined by the positive spectrum
of K, Q@ = I— P and the pair {B; — 2P, B, —2P} be regular. Suppose that Cy is a
selfadjoint map with B1 —2P < Cy < Bo—2P, Hy =I1—(1—-t)Co—t(VFA—2P) is
A-proper w.r.t. T = {H,, P,} for H for each t € [0,1) and H; is pseudo A-proper
w.r.t. T. Then Eq. (1.1) is solvable in X for each f = Ah with h € H.

Proof. The map VFA—2P is asymptotically { By — 2P, B —2P}- quasilinear.
Then, for each f = Ah with h € H, the equation u — 2Pu + VFAu = Qh is
solvable in H by Theorem 3.9. Since P— @ =2P —T and (P—-Q)A=C [V],
we have that (P — Q)V = W. Applying 2P — I to the above equation, we get
u— WFAu = h. Applying V* = A to this equation and setting x = Au, we get
that t — KFez=f. O

4. Hammerstein integral equations

Let @ C R™ be a bounded domain, k(t,s) : @ X Q@ — R be measurable and
f(s,u) : @ x R = R is a Caratheodory function. We consider the problem of a
solution u € L3(Q) of the Hammerstein integral equation

u(t):/Qk(t,s)f(s,u(s))dwg(t) (4.1)

where g is a measurable function. There is a vast literature on the solvability of
(4.1) and we just mention the books by Krasnoselskii [K] and Vainberg [V]. Define
the linear map

Ku(t) = / k(t,s)u(s)ds
Q
in H = L»(Q). Define Fu = f(s,u(s)) and note that Eq. (4.1) can be written in
the form v — KFu = g.

THEOREM 4.1. Let K : H — H be compact and selfadjoint, L(K) =
{X| A7! € 0(K)} and assume that either one of the following conditions holds
(i) Let A ¢ £(K) and a < dist(\, X(K)) be such that for some h € L2(Q)

|f(s,u) — Au| < a|u| + h(s) for alls € Q, u € R,

(i) There are M\, € L(K) such that M, p) NE(K) =0 and A < a < B < p and
€ > 0 such that for s € Q)

Qe < £ () = liminf(/(s,)/u) < £1(s) = limsup(f(s,u) /1) < =

|u]—o00

Then Eq. (4.1) is solvable in Lo for each g € Lo.
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Proof. We shall show first that (ii) implies (i). From (ii), we get that there is
R > 0 such that

a< f(s)—e< f(s,u)/u< fi(s)+e<f, foralse@ and|u| > R.

Hence, for each s € Q,

@—#‘ Smin(f.,.(s)-{-e—)\#,)\;—u— _(8)+€)
gmin(ﬂ—/\;—u,HTu—l—a) —a< "T—)‘ — dist (izu,E(K)).

Thus, (i) holds and the conclusion holds by Theorem 3.4. O

THEOREM 4.2. Let K : H — H be continuous, A\ ¢ L(K) and d~! =
dist(\, X(K)). Let § = max ||P,|| and for some k € (0,d/k),

|f(s,u) — Au — (f(s,v) — Av)| < k|lu —v| fors € Q, u,v € R.
Then Eq. (4.1) is uniquely solvable for each g € Ly and (3.6)-(3.7) hold.
Proof. Tt follows from Theorem 3.3. O
THEOREM 4.3. Let K : H — H be selfadjoint and for some a, 8 € R,

alu —v> < (f(s,u) — f(s,0))(u—v) < Blu—v* fors€Q, u,v € R

(1) If —c < a < B < —c+df for some c € L(K)N (—oo,u*) or —c—df < a<
B < —c for some ¢ € L(K) N (u*,00), then Eq. (5.1) is uniquely solvable for each
g € Lo.

(i) If < is replaced by < in (i) and if, for some a < X\ with A=c—d_ /2 if ¢ < p*
and A\ =c+d}f /2 if c > p*, and some b € La, we assume

|f(s,u) — Au| < alu| +b(s) forse @, u€eR
then Eq. (4.1) is solvable for each g € Ly and (3.6)—(3.7) hold.

Proof. Tt follows from Theorem 3.7. O

Part (i) of this theorem extends a result of Dolph [Do]. For asymptotically
linear nonlinearities F', we have

THEOREM 4.4. Let K : Ly(Q) — L2(Q) be compact, selfadjoint and positive
definite and also acts from L, (Q) into L,(Q) with2 <p < oo and p' =p/(p—1).
Assume that f(s,u) is a Caratheodory function and
(i) There are a(s) € Ly (Q) and b > 0 such that

|f(s,u)| < a(s) +blulP~™ forse€Q, u€R.
(ii) There are functions foo(s) € Lp—2(Q), b(s) € Ly (Q) and a > 0 such that
|f(s,u) — foo(s)u| < b(s) + alu| fors € Q, u € R.
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(i13) For the linear map Foou(s) = foo(s)u(s) in L2(Q) and the decomposition
K = CT, assume that

1¢0(KFy) anda||K|| < ||(I - TFC)*||7".
Then Eq. (4.1) is solvable in Ly(Q) for each g € C(L2(Q)) C Lp(Q).

Proof. By our assumptions on K, it can be written in the form (see [K])

K = CT, where C = K}{/Q is the selfadjoint positive definite square root of K,
C =T*:LyQ) = Ly(Q) and T = C* acting from L, (Q) to L2(Q). Since C is
compact ([K]), it follows that I — (1 — t)TFoC — tTFC : Ly(Q) — L2(Q) is A-
proper w.r.t. to any scheme I' = {H,, P,} for L2(Q). Hence, the theorem follows
from Theorem 3.8. O
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