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CONVERGENCE STRUCTURES AND S-ASYMPTOTIC
BEHAVIOUR OF FOURIER HYPERFUNCTIONS

B. Stankovié

Communicated by Stevan Pilipovié

Abstract. Some structural theorems for the convergence in the space of
Fourier hyperfunctions are proved and applied to the S-asymptotic behaviour of
elements in this space.

Preliminaries

We denote by D™ the compactification of R”, D™ = R"US%! and supply it
with the usual topology. The sheaves O and Q on D" + iR™ are defined as follows
(cf. [4], [5]). For any open set U C D™ +iR", and § >0 O %(U)(O°(U) = O(U))
consists of those elements of O(U N C™) which satisfy |F(z)| < Cy, exp(—(d — €)
x | Re z|) uniformly for any open set V C C™, V C U, and for every £ > 0. Hence,
O|cn = O. The derived sheaf HP.. (O), denoted by Q, is called the sheaf of Fourier
hyperfunctions. It is a flabby sheaf on D™ [5]. We need only the space of global
sections Q(D").

Let Iy, k = 1,... be open intervals, neighbourhoods of 0 € R, let I = I; x
- -+ x I, be a convex neighbourhood of 0 € R" and U; = {(D" +4I) N{Im z; # 0}},
Jj=1,...,n. The family {D"+iI, U;; j =1,...,n} gives a relative Leray covering
for the pair {D™ 4 iI, (D™ 4 iI)\ D"} relative to the sheaf @. Thus

Q(D") = (D" +iD#D™) [ 3~ O((D" +i)#;D",
j=1
where (D™ +{I)#D" =U; N---NU, and
(D"+i1)#jD" = Ulﬂ-'-ﬂUj_l ﬂUj.H N---NU,.
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Similarly Q=% § > 0, is defined using O~ instead of O (cf. Definition 8.2.5. in
[4])-

We shall use the notation A for the set of n-vectors with entry {—1,1}; the
corresponding open orthants in R" will be denoted by T',, 0 € A. By T we denote
a convex cone in R™.

A global section f = [F] € Q(D") is defined by F € O((D" + iI)#D");
F = (F,), where F, € O(D™ +il,), D" + il, is an infinitesimal wedge of type
R"+il',0,0 € A, I, =INT,. F is the defining function for f.

Recall the topological structure of Q(D™). Let f = [F] € Q(D") and
F € O((D™ 4+ iI)#D"). Then, a family of semi-norms is defined by Pk (F) =
sup |F(z)exp(—¢|Rez|)|,e >0, K cC I\{0}; O((D™+iI)#D™) is a Fréchet
2ER" K
and Montel space, as well as Q(D™).

Let f = [F] € Q(D™). Then we associate to f, f(z) = Y sgnoF,(z +
gEA

iT',0), F, € O(D™ +il,) (cf. [4, Theorem 8.5.3 and Definition 8.3.1]).

The Fourier transform of Q(D") is defined by the use of functions x, =
Xo1 -+ Xon, Where o, = +1, k=1,...,n, 0 = (01,...,0,) and x1(t) = e*/(1+¢€?),

x-1(t) =1/(1+et),t € R. Letu(z) = Y U, (z+il,0) = > 3 (xsU,)(x+il,0),
oc€EA oEA GEA
where x;U, € Q(D™ + il,), 0,6 € A and decreases exponentially along the real

axis outside the closed &-th orthant.

The Fourier transform of u is defined by

Fu) =Y > FlxsUs) (€ —il50)

o€A GEA

> / e (xzUs)(2)dz, y° € I,, ¢ =¢+in,

ocEAN GEA Im 2=y

where F(x5U,) € O(D™ —il;) and | F(xsU,)(2)| = O(e~*/#]) for a suitable w > 0
along the real axis outside the closed o-orthant. F is an automorphism of Q(D™).

A continuous function v defined on R" is of infra-exponential growth if for
every € > 0 there exists C. > 0 such that |v(z)| < C.e?*l, z € R". By ||v||. =

sup e~¢%l|u(z)|, € > 0 we define a family of seminorms in the space of functions
zER"™
of infra-exponential growth. By fv we denote the Fourier hyperfunction defined by

v.
An infinite-order differential operator J(D) = 3" b, D with lim /[|a[]|ba|!
la]>0 loj =00
= 0 is called a local operator. J(D) acts on Q as a sheaf homomorphism and
continuously on Q(D").

We shall use the following proposition proved in [7] and [8].
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PRrOPOSITION 1. Let I be a convex neighbourhood of 0 € R™ and I, = INT,,

o € A. Let {fn; h € T} be a family in Q(D™) such that fr, = > Gp.(x +il,0),
ogEA

where G, € O(D™ +il,), heT, o € A.

A necessary and sufficient condition that fn converges in Q(D™) to f =

> Go(z +i0,0) as ||b|| = oo, h € T is the existence of families {Fp,;h € T'}
o€EA

C O(D" +il,), o € A, such that
1) F, = (Fhs) belongs to the same class as Gy, = (Gr,o), h € T

2) For every o € A, Fy,, converges to F, in O(D"+il,) as ||h|| = oo, h € T,
where F' = (F,) belongs to the same class as G = (G;).

Convergence structure for Fourier hyperfunctions

We shall prove some structural theorems for the convergence in the space of
Fourier hyperfunctions Q(D"™). First we shall give a modified form to Theorem 1.3
in [3]. We give the complete proof of it although we shall use the same method of
the proof as in the theorem mentioned above.

Let B[K] be the set of hyperfunctions with supports in the compact set K C
R"™.

PROPOSITION 2. Let K' be a compact set in R"™ and K the convex hull of
K'. Then for every u = [U] € B[K] there exist an elliptic local operator Jo(D) and
a function v € C*® NL? with the properties:

a) [v(z)] < Ce= (192l 5 € R™, for every ¢ > 0 and v € Q~1(D")

b) v(z) = (u*Lg)(z), where the function g has the same property a) as the
function v.

c) u = Jo(D)v.

Proof. The Fourier transform 4 of u is an entire function and satisfies the
following growth condition

(O] < Cexp (el + Hicim ).

where ¢(r) is a monotone increasing function of » > 0 and satisfies: ¢(0) = 1,
o(r) = oo when r — oo; Hg(n) = sup zn. (cf. Lemma 1.1 in [3]). We take
z€EK

an elliptic local operator J(D) which corresponds to the chosen ¢ as it is done in
Lemma 1.2 in [3]. Now we can consider 4 as a Fourier hyperfunction with defining
function U = (4((),0,...,0). The corresponding function to J(D), J(¢) is an
entire function, |J(¢)| < C.el¢l for every € > 0. Also, for any prescribed positive
constants A, C, we have

J(¢) = Cexp(A[C]/([¢])) for [n <1
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or

[T72(Q] < G exp(=24[¢|/¢([¢])), In| < 1.

We can take without loss of generality that ||/¢(|¢]) > ¢|¢]” with some ¢ > 0
and 0 < v < 1. We have now the following estimate:

4(¢)/J*(¢)] < Cexp(—c[¢]"), In| < 1. (1)

Let V = 4/J?, then 4 = J?V and u = J?(D)F~1(V). Since 4 is also an
entire function, 4/J? belongs to O(D™ + i{|n| < 1}). By Theorem 8.2.6 in [4],
F~HV) e 9~ 1(D"). Consequently, v = F~ (V) € 9~ 1(D").

Now we prove that v is rapidly decreasing. For V we know that V = 4/J? =

(@(¢)/7*(¢),0,---,)- Then
~ Y FY (O/T2(Q) =D F 1 (V)o(z —iT,0)

ocEA oEA

Consider F~1(V),(2) forac € A and z € R" —il, :

- 1 zi Q)
FrV)o(2)| = | [ € Xo (€) d§
‘ ‘ (2m) R[ J2(C) ‘
1 2| (<) e
< (2m)n RZ et vt 72(0) XU(C))| ¢, (=¢&+in
uniformly for |n| < (1 —¢€) for every € > 0. Thus we can write n = —(1 — €)z/|z|
and
- e—(1—9)|z|
P )] < e / o€t ik (0| e

where the integral is convergent since y € —I,. It follows that F~*(V),(z + iy),
y € —I,, 0 € A, can be extended to real axis and that v(x) is rapidly decreasing.

Furthermore we can give another analytic form to fv. For the holomorphic
function J=2(¢), |n| < 1, we can take

[T72(Q] < Cexp(=[¢["), 0 <y <1, n| < 1. (2)
By Theorem 8.2.6 in [4], J=2(() is the Fourier transform of a ¢ € Q~1(D"). By
the same reasons as for v we have |g(z)| < Ce=(1=9)I2l for every ¢ > 0, z € R™.

By the Paley—Wiener—Ehrenpreis theorem, 4((¢) is an entire function of ¢ and for
any € > 0 and any |n| <4, § > 0, there exists C. s such that:

a(Q)| < Ce5el, n < 6. 3)
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Consequently, 4(¢) is a slowly increasing analytic function and (cf. Theorem 8.4.3
in [4]), Fluxg) =a-J 2

Since (4 - J=2)(€) € L2, then (u * g)(z) € L2, as well. We know that B[K] C
Q 1(D"), then by Theorem 8.2.8 in [4], ux g € Q@ }(D").

Now we have in correspondence to [3]:

1) fv € Q }(D") is defined by the function v belonging L2 N C* (cf. [3]).

2) v(z) = (u * Lg)(x), where £g € Q~1(D"), |g(z)| < Ce= (=212l  for every
e>0, zeR".

3) |v(z)| < Ce=(=9)2l for every ¢ > 0, where C > 0. O

COROLLARIES OF PROPOSITION 2. 1) If we take in Proposition 2, u = ¢,
and v = q, then

where Jy and q have the following properties:

Jo(D) = J(D)J(D), J(D) is an elliptic local operator constructed by any
monotone increasing function p(r), of r > 0 with the properties: p(0) =1, p(r) —
oo (see Lemma 1.2 in [3]).

lg € Q7 (D"), ¢ € L2N C™ and |¢(z)| < Ce~ =9zl 2 € R", for every
e >0. Also F(q)(¢) = J2(¢),

Proof. In the proof of Proposition 2 we have only to take F(u) = F(d) = 1.
Then (1) is satisfied for every J, we constructed using the function ¢ mentioned
above, because of (2).

2) If f € Q(D™), then there exist an elliptic local operator Jo(D) and a
function v € C* which is of “infra exponential” growth such that f = Jo(D)v, fv €
Q(D™).

Assertion 2) was first proved in [3] but without the property of v to be of
“infra exponential” growth. The complete assertion 2) was proved in [2]. We shall
show how it can be proved using 1).

Proof. By (4), by properties of ¢ and Proposition 8.4.8 in [4]

f=(Jo(D)g) * f = Jo(D)(€q * f).

It remains only to show that (fq = f) is a function v with the required properties.
Because of 1) we can choose for J the same function as it is done in [2].

Let (4g * f) = v. By Proposition 8.4.3 in [4]

Fltgx £)(Q) =8(¢) = T 2(OF (N = Y I 2F(xeF,)(w - il'50).

o,6EA

or F~1 F(lg * f) = v.
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Let n € I;. We consider

Im{=n

Then for every o, &

W) (2)] < Ce®n / eve < |ClPdC, 2 € R +il,, p=0,1,...
o

This implies that v(p) 5(2), z €e R"+1il,, p=20,1,... and 0,6 € A, is

continuable to a continuous function v(p ) ) (z) up to real axis and |vy,5(z)| < Ceesl®!
for every € > 0. The function v(z) = E vs,5 () has the required properties. O

o,06€EA

THEOREM 1. Let I be a convexr neighbourhood of 0 € R™ and I, = INT,,
o € A. Let {fr; h € T} be a family in Q(D™) such that

fn 2> Fop(z +iT,0), F,p € O(D" +il), heT, o € A. ()
oc€EA

A necessary and sufficient condition that fn converges in Q(D"™) when h € T,
[|h|| = o0, is that fr*g converges in Q(D™), h € T, ||h|| = oo, for every g = [G] €
Q~9(D™) and for every § > 0. More precisely:

a) If frh. > u=[U]in QD"™), h € T, ||h|]| = oo, then fnxg = uxg in
Q(D"), heT, ||| = o0; g € Q79(D™), § > 0.

b) If fox g = vy in Q(D"), h €T, ||h|| = oo, for every g € Q-1 (D"), then
there exists an elliptic local operator Jo(D) such that fr, — Jo(D)v, in Q(D"),
heT, ||h|| = oo.

Proof. a) By Proposition 1 we can suppose that {Fp;h € T} is such that
F, - Fe[U]lin O(D™ +il) # D"), h €T, ||h|| = oo. By Proposition 8.4.3 in
[4] there exists fn x g, fn*xg € Q(D™), h €T, and

(fnxg)(z /fhib"— Q)d¢ = ZFahx+zF 0) *x G (z +iA;0)

o,0EA

where

Fyn(z +iT50) * G (2 + A50) = / Fyn(z — € —ins)Ga(E +ins)dé. (6

15 € Iz, Az is also an open & orthant in R™ and z be in R"™ + (1, + I3).
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Let us consider only (6) for a fixed o, & € A. We will prove that
lim Fo,h(.fll' + iFUO) * G&(.TL‘ + ZA&O) =
RET,| k|00
= F,(z +1iT,0) * G5(x + iAz0). in O(D™ +il,).

Let ¢ < 6, K, be a compact set in I, and let 7; be chosen such that y—nz € I,
when y € K,. Suppose that for w > 0 we have chosen hg so that Pk, . (Fy,p—Fy) <
w, |h| > |ho|, h € T. Then

sup e ?

zeR"+iK,

/ Fy (2~ E— i) Gia (€ 415 ) dE— / Fy (2=~ i3) G (€+ins ) dE
R” R

< / sup e clzl—ell ‘Fg,h(z —¢&—in) — Fy(x — & —ins) eslél |G(£ + ina)|d§

zeD"+iK,
Rn

<w /e—“—sﬂﬁ‘dg, |h| > |ho|, he€T.

Rn
b) By Corollary 1) of Proposition 2 there exists a go € Q~1(D") such that
6= Jo(D)go, go € Q (D"

Consequently
fr = (Jo(D)go) * fr = Jo(D)(go * fn)-
Since Jy(D) acts continuously on @(D"), fr, = Jo(D)v, in Q(D™), h € T, |h| — oc.

Applications. S-Asymptotics of Fourier hyperfunctions

We shall apply the convergence structures that we proved to the asymptotic
behaviour of Fourier hyperfunctions. There are many definitions of asymptotic
behaviour of generalized functions. We mention two of them, which are most used:
the quasi-asymptotics and S-asymptotics.

S-asymptotics was defined for distributions [14] for ultradistributions [9, 10]
and for some other generalized functions [17]. It was applied in the quantum
field theory [1], for Abelian and Tauberian type theorems, for solutions of partial
differential equations,... [11]-[14]. It is easy to extend it to Fourier hyperfunctions
[18].

In fact, the S-asymptotics of Fourier hyperfunctions extends the S-asymptotics
of tempered distributions, because we have the continuous inclusion S’ — Q(D")
(see [3])-

Definition 1. Suppose that ¢ is a positive continuous function defined on R"
and f € Q(D"). f is said to have the S-asymptotics related to ¢ in the cone
I' € R" if there exists

. J(-+h)
heF1,1|g|1—>oo c(h)

=u in 9(D™), wu#0.
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For short, f(z + h) ~ c¢(h) - u(z), h € T, |h| = oo, in Q(D™). We shall prove
two simple properties of the S-asymptotics.

PROPOSITION 3. a) Let P(D) be a local operator and f € Q(D™). If f(x+h)
R c(h)-u(zx), h € T, |h| = oo in Q(D"), then P(D)f(x + h) ~ c(h) - P(D)u(z),
heT, |h = oo in Q(D"), as well.

b) Let supp f C K, where K is a compact set in R™. Then f € Q(D") and
f(x+h) X c(h)-0, h €T, |h| = oo in Q(D") for every positive function ¢ and
every cone I'.

Proof. a) This property follows from the property of a local operator; P(D)
maps Q(D™) into Q(D") and this mapping is continuous.

b) Let supp f C K, where K C R" is a compact set. We take o large
enough and such that h+ K C R" \ K, |h| > 7o. By definition of the support of a
hyperfunction, f(z + h) =0, |h| > . O

The next examples show that Definition 1 is not a trivial extension of the
S-asymptotics of distributions. Let P(D) be a local operator

>~ baD?, by #0.

la|>0

The Fourier hyperfunction f = 1+ P(D)d has the S-asymptotics related to ¢ = 1
in any cone I' and with the limit ¥« = 1 but f is not a distribution. For the
S-asymptotics of f it is enough to prove that

lim P(D)d(x+h)=0 in Q(D™).

her,|h|— o0

Since P(D) maps continuously Q(D") into Q(D"™), by Proposition 3. b) the
above limit follows.

Since P(D)d = ). baD%¢ is a distribution if and only if b, # 0 for a finite

|| >0

number of «, the Fourier hyperfunction 1 + P(D)J is not a distribution, but it has
the S-asymptotics related to ¢ = 1.

We can also find the coefficients b, of the local operator P(D) such that
f =1+ P(D)é is not defined by an ultradistribution belonging to DM»)" or DM}’
(Beurling or Roumieu type) when M, = (p!)®, s > 1 (see [18]). For ultradistribu-
tions see [6].

A direct consequence of Theorem 1 is

THEOREM 2. A necessary and sufficient condition that f = [F] € Q(D") has
the S-asymptotics in Q(D™) related to ¢ in the cone ' is that f * g has the same
property, for every g = [G] € Q~%(D™), § > 0. More precisely:

a) If f(x+h) X c(h)-u(z), h €T, |h| = oo, in Q(D™), then (f xg)(x+h) <
c(h) - (u*g)(z), h €T, |h| = oo, in Q(D") for every g € Q~°(D"), § > 0.
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b) If (f xg)(x +h) %~ c(h)-vy(z), h € T, |h| = oo, in Q(D") for every

g € Q 1(D™), then there exists an elliptic local operator Jo(D) such that f(z+h) ~
c(h) - Jo(D)vg, h € T, |h| = oo, in Q(D").
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