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Abstract. We construct the logic L(V,v,m, R), as a logic with infinitary
predicates, generalized ordinary and probability quantifiers and propositional con-
nectives. An important feature of this logic is that infinitely many variables can
occur in a single formula, but only finitely many quantifiers and connectives. We
prove the weak completeness theorem for this logic.

Let V and Pr be disjoint sets of variables and predicates symbols, respectively,
v a function from the set Pr to the set of all ordinals and let m be a cardinal. In [4]
Keisler introduce a formal system L(V,v,m) which has predicates with infinitely
many argument places and quantifiers over infinite sets of variables, but which has
only finitary propositional connectives and no identity symbol, and whose proofs
are finite. We suppose that V, v, m satisfy the conditions I, IT and III from [4].

Let R be a Lukasiewicz chain {0, %, ey "T_l, 1} together with the operations
r@®y=min{z+y,1} and —z=1-—u.

In [3] Keisler introduced several probability logics and developed model the-
ory for them together with Hoover (see [2]). The notion of probability logic is
designed to permit a logical and model-theoretic approach to probability theory.
We construct similar weak probability logic with infinitary predicates L(V, v, m, R)
(briefly L) by adding probability quantifiers Pz > r, where r € R and z € V% is
a sequence of different variables of the length o, @ < m. The set R is taken to be
finite in order to preserve the finiteness of proofs. The set F' of all formulas of L
is the set of all expressions that are built from atomic formulas p(z) (p € Pr and
z € V), ysing negation —, finite disjunction V, quantifier (Vz) and probability
quantifier (Pz > r) (z € V*,@ < m). The formula (Pz > r)®(z) means that the
set {z : &(x) } has probability greater than or equal to r.
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Weak Probability Logic with Infinitary Predicates 9

The notions of set V(&) of free variables and set V3(®) of bound variables of
& € F are defined as usual, with the quantifiers (Vz) and (Pz > r) binding all the
variables in the sequence z.

For each 7 € V'V the substitution S(7)® of each variable v in a formula & by
7(v) is defined as usual (see [4]), with S(7)(Vz)® = (V10z)S(7)P,

S(1)(Pz > r)® = (Proz >1)S(1)®,
in the quantifier case. Similarly, the substitution S¢(7)® of free variables is defined
by:

St(r)(Vz)® = (Vz)S;(0)®,

Sy(r)(Pz > 1)@ = (Px >71)5¢(0)¥,
where o € VY and o(v) = { 7(v), v€V\ranges

v, v € rangex.

We can write o = (7| (V \ rangez)) [V where | is defined as in [4].
IfreVW, WcV,let S(r)® = S(rV)® and S;(1)® = S;(r|V)&.

Abbreviations A, =, ¢, 3, L, T, Pz <r, Px > r and Pz < r are introduced
as usual.

The rules of inference for L are those from [4].
The axioms for L are:

A;  The axioms of propositional logic,

Ay (Vz)(@ - W) = (P — (Vz)¥), rangex CV \ Vi(P),

Az (Vz)® — Sp(1)®, 7 :rangex =V \ V4(P),

Ay (Vx)® < (V1ox)P, where 7 :rangex 1%1 range

As (Pz>0)9,

A¢ (Pz>s)®— (Px>r)d, fors>r,

A7 (Pz>35) APz >rW A(Pz>1)(—PV V) (Px>sdr)(PVY),
As (Pz <s)PA(Pr<r)¥ = (Pr<s®dr)(PVVP),

Ay (Pz <s)®— (Pr < 5)P,

A (Pxz > $)® = (Pz >r)®, fors>r,

A1y (Pz > s5)® — (Pz > sT)®, wherest =s® i,

A (VSIS)@ — (P:C > ].)Sp,

where ¢, ¥ € F, s,r € Rand x € V* is the sequence of different variables, for
a<m.

A weak probability structure of type v is
2 = (Aa Rpa ua)pEPr,EZ?’

where A is a nonempty set, R, C Av®) | ., is a finitely additive probability measure
on A%* with range R, such that the set {bozx |F=qo @[], b[ (V \ rangez) = a |
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(V \ rangex), b € AV} is p, measurable, for each sequence of variables z € V2,
any a € AV and any formula & € F, where the satisfiability relation is defined as
usual (see [4]), with:

Ea (Vz)®|a] if for each b € AV such that b | (V \rangez) = a [ (V \rangez),
we have =y @[b],

Ea (Pz > r)®a] if po{box |Fa ®[b] and b | (V \rangez) = a | (V' \
rangez)} > r.

Theorem 1. Let I' C F, &,W € I', A is a structure of type v, a € AV.
Then:

(i) If7: V(®) 3 V, then =g S(7)®a] iff =g Blao (T V)]

(ii) If 7 : Vi (@) — V \ Vi(D), then |=o S;(7)P[a] iff o Plac(T]V)].
(iii) If ¢ is a theorem in L, then & is valid.

(iv) If the set of formulas I is satisfiable, then I" is consistent in L.

Let V* be a set of symbols such that V* D V and V*NPr = (. Let
L* = L(V*,v,m, R) and let F™* be a set of formula of L*.

A formula @ is a V-formula in L* if & € F* and V4(®) C V. A formula & is
V-sentence in L* if & € F*, V3($) CV and Vy(F) CV*\ V.

Assume that V* # V and I is a maximal consistent set of V-sentences in L*.
Let (I, V) be a structure defined as follows:

A=V"\V,

R, = {x € A"V | p(z) € I'}, for each p € Pr,

paf{box | Sp(b)® € Ib[ (V \rangez) = a|(V \rangez)} =
max{r | Sy(a)(Px >r)® € I'},

for each V-formula @, each a € AV and for each sequence of variables x € V2.

Lemma 1. Suppose that

(i) I' is a maximal consistent set of V-sentences in L*,

(ii) for any V -sentence (Vz)¥ there exists a 7 : rangex — V* \ V such that
Si(r)¥ = (V)P T

Then

(a) A(I,V) is a weak probability structure of type v,

(b) for each V-formula  in L* and each function b € (V* \ V)V we have

o B[b[V*] iff S;(b)® € T

Proof. (a) First, we shall prove that p, is a well defined finitely additive
measure on A%, for any ordinal o, @ < V.
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(1) pqo is a well defined function.

We shall show that the measure of any subset of A* does not depend on the
defining formula of that subset. Let

{boz | S¢(b)® € I, b[(V \rangez) = a[(V \rangez)} =
{boz | Sy(b)¥ € I, b[(V \rangez) = a|(V \rangez)}.

Then, for every b € AY such that b[(V \rangez) = a|(V \ rangez), we have
Sr(b)(® — W) eI

By (ii), for V-sentence (Vz)S¢(al(V \rangez))(® — ¥) there exists a 7 € A™"8e?
such that

S7(r)Ss(al (V \ range))(# — %) = (Vx)Sg(al (V \ range))(& — ¥) € .
This means that for b= 7 Ua[(V \ rangez) we have
Sp(b)(® — ¥) — (V2)Ss(a | (V \ rangez))(® — @) € I
By using Ry (see [4]) and Ays, it follows
(Pz > 1)S;(al(V \ rangez))(® — ¥) € I
By assuming

po{box | Sy(b)® € I, b1 (V \rangez) = a[(V \rangez)} #
to{box | Sy()¥ € I, b[(V \rangez) = a[(V \ rangez)},

we obtain the existence of an s € R such that
(Pz > 5)S¢(al(V \rangez))® € I and (Pz > 5)Sf(al(V \rangez))¥ ¢ I.

Thus

(Pz >1)S¢(al(V \rangez))(—-® V¥) € I.

(Pz > 5)S¢(al(V \rangez))® A =(Px > 5)S¢(al(V \ rangez))PA

But, by Asg

(Pz < =s)St(al(V \rangex))—® A (Pz < 5)S¢(al(V \ rangez))#A
—(Pz <1)S¢(al(V \rangex))(~$ Vv ¥) ¢ I

A contradiction.
(2) pa(A%) =1 and pa(0) = 0.
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Since A* = {box | Sy(®V ) € I, b[(V \rangez) = a[(V \rangez)}, for
any a € AY and & € F, we have

to(AY) = max{r | Sy(a)(Px > 7)(®V —-P) € I'}.

It follows from Sy(a)(Pz > 1)(®V —®) € I that pu(A*) = 1.
Now, we shall prove that u,(#) = 0. Obviously,

0 = {box | Sy(b)(PA—-P) € I, b](V \rangez) = a|(V \ range z)}.
Assuming that there exists r > 0 such that S¢(a)(Pz > r)(® A —~®) € I' we obtain
(Pz > —r)Sf(a[(V \rangez))PV -Sr(al(V \rangez))d ¢ I

It follows from Ag and A;o that
(Pz >1)St(al(V \rangez))® V ~Ss(al(V \rangex))d ¢ I

Hence, we have Sy(a)(Pz > 1)(#V —P) ¢ I', which contradicts the first part of (1).
(3) It follows from Az and (7.3) that u, is a nonnegative function.

(4) po(A*\ B) = —pq(B), for every set B of the form B = {box | Sf(b)® € I',
b[(V \rangez) =a[(V \rangez)}.
If B is of the above form, then

A%\ B = {box | S§(b)=® € I, b[(V \rangez) = a[(V \ rangez)}.
Let po(B) =s,0 < s < 1. Then max{r | Sy(a)(Pz > r)® € I'} = s and hence
(Pz > 3)Ss(al(V \rangex))® € I' and (Px > s1)Ss(a|(V \rangex))d ¢ I
It follows from A;; that
—(Px > 5)S¢(al(V \rangez))® € I.

So,
S¢(a)(Px > —s)—® € I.

It means that pu,(A® \ B) > —s. Assuming that there exists a ¢ > —s such that
S¢(a)(Pz > t)~® € I' and by using Ao we obtain
(Pz > —s)—Sf(al(V \rangez))® € I,

which contradicts pe(B) = s.
Now, let p1o(B) =0 and po(A* \ B) # 1. Then S¢(a)(Pz > 1)-$ ¢ I', and
hence
(Pz > 0)Ss(al(V \rangex))® € I.



Weak Probability Logic with Infinitary Predicates 13

It follows from A;; that
(Pz >07)S¢(al(V \rangez))® € T,

contradicting our assumption pe(B) = 0. Similarly, for pq(B) = 1.

(5) po is an increasing function.

Let C = {box | Sy(b)® € I, b [ (V \rangez) = a [ (V \ rangez)},
D = {box | Sfy(b)¥ € I, b | (V \rangez) = a [ (V \ rangez)} and C C D.
Then, as in (1),

(Pz > 1)(Sy(al(V \ rangez))d — Sy (a] (V \ rangez))¥) € I
Putting p1a(C) = s, o (D) = t and < s, we have
(Pz < ~8)~S;(a[(V \ range))® € I' and (Pz < 5)S;(a [ (V \ rangez))¥ € I
It follows from A that
(Pz < 1)(=S;(a| (V \ rangez))V S;(a | (V \ rangez))¥) € I

A contradiction.

(6) pq is a finitely additive function.

Let C = {bozx | Sy(b)® € I, b [ (V \rangez) = a | (V \ rangez)},D
{boz | Sy(b)¥ € I', b| (V \rangez) = a | (V \rangez)},CND = 0, u,(C)
sand po (D) = t. Then

(Pz > 5)Sp(al(V \ rangez))® € I" and (Pz > t)Sy(a|(V \ rangez))¥ € I'
From C' N D = { it follows
(Pz > 1)~(S;(a(V \ rangez))® A Sy (a[ (V \ rangez))¥) € I.

By A7, we have

(Pz > s ®t)(S(al (V \ rangez))® V Sy (al (V \ rangez))¥) € I
Since C' C A%\ D, we have, by (5), ia(C) < —t, and hence s + ¢ < 1. So,

(Pz > s+ t)(Sp(a] (V \ rangez)) V Sy (a] (V \ rangez))¥) € I
Now, we prove that

(Pz > (s +)7)(Sp(al(V \ rangex))® V Sy(al (V \ rangez))?) ¢ I

From (Pz > s*)Sy(a](V \ rangex))® ¢ T, by Ay;, we obtain

(Pz < 5)Sf(al(V \rangez))®d € I
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From this and
(Pz < t1)Ss(al(V \rangez))¥ € I,

by Ag, we have

(7 (Pz < s®tt)(Sg(al(V \rangez))® V Sf(al(V \ rangez))¥) € I.
Suppose s < —t. Then tt < —s, and thus s ® t+ = s + t+. It follows that
(Pz < s+t1)(Ss(al (V \rangez))® V Sy(a(V \rangez))¥) € T, ie.,

St(a)(Pz > s+tT)(PV W) ¢ I.

We complete the proof in this case because (s + )t = s+t
In the case s =1 — ¢, we have s ® t+ = 1. It follows from (7) that

(Pz < 1)(Sp(al(V \ rangex))® V S(a| (V \ rangez))®) € I
On the other hand, since t + s = 1, from
(Pz > t+5)(Sf(al (V \ rangez))d V Sy(al (V \ rangex))¥) € I
we have
(Pz > 1)(S;(al (V \ rangez))® V S;(a[ (V \ rangez))¥) € I

A contradiction.
(b) By induction on the complexity of the formula & we shall prove

o BBIVY] iff S;(b)P el

From this fact, the definition of u, and the finiteness of R it will follow that the set
{aoz | a](V* \ rangezx) = b[(V* \ rangez), o Pla]} is po-measurable, for each
V-formula &, each b € AV" and every sequence of variables x € V. It will mean
that 20(I, V) is a weak probability structure.

Let & = p(z),b€ AV, z € V*®) . Then

Eap(z)[bIV*]iff b[V*ox € R,, by definition of the satisfiability relation,
iff box € R,
iff p(box) € I', by definition of R,
iff Sy(b)p(z) € I', by definition of Sy.

The steps @ =¥ V O and & = ¥ are easy.

Let & = (Vz)¥ and =g (V2)@[b]V*]. Then for each a € AV", such that a |
(V*\rangezx) = b[(V*\rangex) we have =y ¥[a]. We must show S;(b)(Vz)¥ € I.
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The formula (Vz)Sy (b V \rangex)¥ is a V-sentence, and hence, by (ii), there exists
aT € (V*\V)range gych that

S¢(1)Sp(b]V \ rangex)¥ — (Va)Sp(b[V \rangex)¥ € I.

Let d = 7Ub | (V*\rangez). Then d € (V*\ V)Y and d [ (V*\rangez) =
b[(V*\ rangez). So, =g ¥[d]. By induction hypothesis,

S;dIV)¥ eT.

Since

SpdIV)¥ = Sp(1)Ss (b1(V \ rangex)) ¥,
it follows from R; that
(Va)Sf(b[(V \rangez)¥ € I

Conversely, suppose that
S¢(b)(Vz)¥ € T, ie.,

(Vz)Sy (b1 (V \rangez)) ¥ € I.
Let ¢ € (V*\ V)V be such that ¢|(V* \ rangex) = b[ (V* \ range ). Then
S¢(c)¥ = Sy(c|rangex)Sy (b](V*\ rangez)) ¥.
By As, we have
(Vz)S; (b1 (V \ rangex)) — Sy(c|rangex)Sy (b] (V* \ rangez)) ¥ € I.

It follows from R; that
Sf (C)W el.

By induction hypothesis, we have
Ea P[d.
Finally, by the definition of the satisfiability relation, we have
o (Y2)P[ V7).
Now, let & = (Pz > r)¥. Then
—a (Pa > )bV
iff po{cox | ¢|(V \rangez) = b[(V \rangez), =g ¥[c[V*],c€ AV} >r
iff pig{coz | c[(V \rangez) = b[(V \rangez),Ss(c)¥ € I'ce AV} >r

iff max{s| Sy(b)(Px>s)Wel}>r
iff Sy(b)(Px>r)¥ €I

The proof is complete.
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Theorem 2. If I' is a consistent set of formulas in L, then I' is satisfiable
in some weak probability structure 2 of type v.

Moreover, if n is a cardinal and we have
F <n,

and

for each p € Pr, n= nm,
then 2 may be taken to be of power n.
The proof may be found in [4].

Corollary 1. Let I'CF. Then, I is satisfiable iff every finite subset of I" is
satisfiable.
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