PUBLICATIONS DE L'INSTITUT MATHÉMATIQUE (BEOGRAD) (N.S.) Vol. 66(80), pp. 3--15 (1999) |
|
The generalized Baues problem for cyclic polytopes IIChristios A. Athanasiadis, Jörg Rambau and Francisco SantosDepartment of Mathematics, University of Pennsylvania, Philadelphia, PA 19104, USA and Konrad-Zuse-Zentrum für Informationstechnik Takustrasse 7, D-14195 Berlin, Germany and Departamento de Matemáticas, Estadística y Computación Universidad de Cantabria Santander, E-39071, SpainAbstract: Given an affine surjection of polytopes $\pi: P \to Q$, the Generalized Baues Problem asks whether the poset of all proper polyhedral subdivisions of $Q$ which are induced by the map $\pi$ has the homotopy type of a sphere. We extend earlier work of the last two authors on subdivisions of cyclic polytopes to give an affirmative answer to the problem for the natural surjections between cyclic polytopes $\pi:C(n,d')\to C(n,d)$ for all $1\leq d Full text of the article: Electronic fulltext finalized on: 1 Nov 2001.
This page was last modified: 7 Dec 2001.
© 2001 Mathematical Institute of the Serbian Academy of Science and Arts
|