PUBLICATIONS DE L'INSTITUT MATHÉMATIQUE (BEOGRAD) (N.S.) Vol. 67(81), pp. 31--43 (2000) |
|
Regularly varying sequences and entire functions of finite orderSlavko Simi\'cMatematicki institut SANU, Beograd, YugoslaviaAbstract: We present a method for estimating the asymptotic behavior of: $$ f^\alpha(x):=\sum_{n=1}^\infty n^\alpha l_n a_n x^n,\ \ x\to \infty,\ \ \alpha \in R, $$ related to a given entire function $f(x):=\sum_{n=1}^\infty a_n x^n$ of finite order $\rho$, $0<\rho<+\infty$, $a_n\ge 0$, $n\in N$; where $(l_n)$, $n\in N$, are slowly varying sequences in Karamata's sense. Classification (MSC2000): 30D20; 26A12 Full text of the article:
Electronic fulltext finalized on: 21 Dec 2000. This page was last modified: 16 Nov 2001.
© 2000 Mathematical Institute of the Serbian Academy of Science and Arts
|