EMIS ELibM Electronic Journals PUBLICATIONS DE L'INSTITUT MATHÉMATIQUE (BEOGRAD) (N.S.)
Vol. 68(82), pp. 108--116 (2000)

Previous Article

Next Article

Contents of this Issue

Other Issues


ELibM Journals

ELibM Home

EMIS Home

 

Bonne position au sens de Levitin--Polyak dans le cadre de la minimisation des fonctionnelles intégrales

D. Mentagui

Département de Mathématiques Laboratoire d'Analyse Convexe et Variationnelle-Systèmes Dynamiques et Processus Stochastiques Faculté des Sciences, BP 133, Kénitra, Maroc

Abstract: We investigate the relationship between the Levitin--Polyak well-posedness of the problem of minimization of the integral functional \[ I:x\in L^1(T)\to \int_Tf(t,x(t))\,dt \] on the set $U=\left\{ x:T\subset R^k\to R^m: x\in L^1(T);\ x(t)\in K(t)\text{ for a.e. }t\in T\right\}$ of integrable selections of a multifunction $K:t\in T\to K(t)\subset R^m$ and well-posedness of the minimization problem of $f(t,.)$ on $K(t)$. We show that well-posedness of problem $\inf(I,U)$ implies that of $\inf(f(t,.),K(t))$ for a.e.\ $t\in T$. The converse holds under another assumptions.

Classification (MSC2000): 49K40; 41A50, 49J15, 90C31

Full text of the article:


Electronic fulltext finalized on: 1 Nov 2001. This page was last modified: 6 Feb 2002.

© 2001 Mathematical Institute of the Serbian Academy of Science and Arts
© 2001--2002 ELibM for the EMIS Electronic Edition