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Communicated by Žarko Mijajlović

Abstract. The notion of proof-net category defined in this paper is closely
related to graphs implicit in proof nets for the multiplicative fragment without
constant propositions of linear logic. Analogous graphs occur in Kelly’s and
Mac Lane’s coherence theorem for symmetric monoidal closed categories. A
coherence theorem with respect to these graphs is proved for proof-net cat-
egories. Such a coherence theorem is also proved in the presence of arrows
corresponding to the mix principle of linear logic. The notion of proof-net cat-
egory catches the unit free fragment of the notion of star-autonomous category,
a special kind of symmetric monoidal closed category.

1. Introduction

In this paper we introduce the notion of proof-net category, for which we will
show that it is closely related to graphs implicit in proof nets for the multiplicative
fragment without constant propositions of linear logic (see [14] and [7] for the
notion of proof net). Analogous graphs occur in Kelly’s and Mac Lane’s coherence
theorem for symmetric monoidal closed categories of [17].

The notion of proof-net category is based on the notion of symmetric net cat-
egory of [11, Section 7.6]; these are categories with two multiplications, ∧ and ∨,
associative and commutative up to isomorphism, which have moreover arrows of the
dissociativity type A ∧ (B ∨ C) → (A ∧B) ∨ C (called linear or weak distribution
in [6]). The symmetric net category freely generated by a set of objects is called
DS. To obtain proof-net categories we add to symmetric net categories an opera-
tion on objects corresponding to negation, which is involutive up to isomorphism.
With these operations come appropriate arrows. A number of equations between
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arrows, of the kind called coherence conditions in category theory, are satisfied in
proof-net categories.

A notion amounting to the notion of star-autonomous category of [2] is obtained
in a similar manner in [6]. Star-autonomous categories, which stem from [1], are
a special kind of symmetric monoidal closed categories. In contradistinction to
symmetric net and proof-net categories they involve unit objects.

We introduce next a category Br whose arrows are called Brauerian split equiv-
alences of finite ordinals. These equivalence relations, which stem from results in
representation theory of [3], amount to the graphs used by Kelly and Mac Lane
for their coherence theorem of symmetric monoidal categories mentioned above.
Brauerian split equivalences express generality of proofs in linear logic (see [9],
[10]).

For proof-net categories we prove a coherence theorem that says that there is
a faithful functor from the proof-net category PN¬ freely generated by a set of
objects into Br. The coherence theorem for PN¬ yields an elementary decision
procedure for verifying whether a diagram of arrows commutes in PN¬, and hence
also in every proof-net category. This is a very useful result, which enables us in
[12] to obtain other coherence results with respect to Br, in particular a coherence
result for star-autonomous categories, involving the units. It is also shown in [12]
with the help of coherence for PN¬ that the notion of proof-net category catches
the unit-free fragment of star-autonomous categories. (A different attempt to catch
this fragment is made in [18] and [15].)

The coherence theorem for PN¬ is proved by finding a category PN, equiva-
lent to PN¬, in which negation can be applied only to the generating objects, and
coherence is first established for PN by relying on coherence for symmetric net
categories, previously established in [11, Chapter 7], and on an additional normal-
ization procedure involving negation.

In the last two sections of the paper we consider proof-net categories that have
mix arrows of the type A ∧B ` A ∨B. We prove coherence with respect to Br
for the appropriate notion of proof-net category with these arrows, which we call
mix-proof-net category.

2. The category DS

The objects of the category DS are the formulae of the propositional language
L∧,∨, generated from a set P of propositional letters, which we call simply letters,
with the binary connectives ∧ and ∨. We use p, q, r, . . . , sometimes with indices,
for letters, and A,B, C, . . . , sometimes with indices, for formulae. As usual, we
omit the outermost parentheses of formulae and other expressions later on.

To define the arrows of DS, we define first inductively a set of expressions
called the arrow terms of DS. Every arrow term of DS will have a type, which is
an ordered pair of formulae of L∧,∨. We write f : A ` B when the arrow term f
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is of type (A,B). (We use the turnstile ` instead of the more usual →, which we
reserve for a connective and a biendofunctor.) We use f, g, h, . . . , sometimes with
indices, for arrow terms.

For all formulae A, B and C of L∧,∨ the following primitive arrow terms:

1A : A ` A,
∧
b→A,B,C : A ∧ (B ∧ C) ` (A ∧B) ∧ C,

∨
b→A,B,C : A ∨ (B ∨ C) ` (A ∨B) ∨ C,

∧
b←A,B,C : (A ∧B) ∧ C ` A ∧ (B ∧ C),

∨
b←A,B,C : (A ∨B) ∨ C ` A ∨ (B ∨ C),

∧
cA,B : A ∧B ` B ∧A, ∨

cA,B : B ∨A ` A ∨B,

dA,B,C : A ∧ (B ∨ C) ` (A ∧B) ∨ C

are arrow terms of DS. If g : A ` B and f : B ` C are arrow terms of DS, then
f ◦ g : A ` C is an arrow term of DS; and if f : A ` D and g : B ` E are arrow
terms of DS, then f ξ g : A ξ B ` D ξ E, for ξ ∈ {∧,∨}, is an arrow term of DS.
This concludes the definition of the arrow terms of DS.

Next we define inductively the set of equations of DS, which are expressions of
the form f = g, where f and g are arrow terms of DS of the same type. We stipulate
first that all instances of f = f and of the following equations are equations of DS:

(cat 1) f ◦1A = 1B ◦ f = f : A ` B,

(cat 2) h ◦ (g ◦ f) = (h ◦ g) ◦ f ,

for ξ ∈ {∧,∨},
(ξ 1) 1A ξ 1B = 1AξB ,

(ξ 2) (g1 ◦ f1) ξ (g2 ◦ f2) = (g1 ξ g2) ◦ (f1 ξ f2),

for f : A ` D, g : B ` E and h : C ` F ,

(
ξ

b→ nat) ((f ξ g) ξ h) ◦
ξ

b→A,B,C =
ξ

b→D,E,F
◦ (f ξ (g ξ h)),

(∧c nat) (g ∧ f) ◦ ∧
cA,B = ∧

cD,E ◦ (f ∧ g),

(∨c nat) (g ∨ f) ◦ ∨
cB,A = ∨

cE,D ◦ (f ∨ g),

(d nat) ((f ∧ g) ∨ h) ◦ dA,B,C = dD,E,F ◦ (f ∧ (g ∨ h)),

(
ξ

b
ξ

b)
ξ

b←A,B,C
◦

ξ

b→A,B,C = 1Aξ(BξC),
ξ

b→A,B,C
◦

ξ

b←A,B,C = 1(AξB)ξC ,

(
ξ

b 5)
ξ

b←A,B,CξD
◦

ξ

b←AξB,C,D = (1A ξ
ξ

b←B,C,D) ◦
ξ

b←A,BξC,D
◦ (

ξ

b←A,B,C ξ 1D),

(∧c ∧c) ∧
cB,A ◦ ∧

cA,B = 1A∧B ,

(∨c ∨c) ∨
cA,B ◦ ∨

cB,A = 1A∨B ,
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(
∧
b
∧
c) (1B ∧ ∧

cC,A) ◦
∧
b←B,C,A

◦ ∧
cA,B∧C ◦

∧
b←A,B,C

◦ (∧cB,A ∧ 1C) =
∧
b←B,A,C ,

(
∨
b
∨
c) (1B ∨ ∨

cA,C) ◦
∨
b←B,C,A

◦ ∨
cB∨C,A ◦

∨
b←A,B,C

◦ (∨cA,B ∨ 1C) =
∨
b←B,A,C ,

(d∧) (
∧
b←A,B,C ∨ 1D) ◦ dA∧B,C,D = dA,B∧C,D ◦ (1A ∧ dB,C,D) ◦

∧
b←A,B,C∨D,

(d∨) dD,C,B∨A ◦ (1D ∧ ∨
b←C,B,A) =

∨
b←D∧C,B,A

◦ (dD,C,B ∨ 1A) ◦ dD,C∨B,A,

for dR
C,B,A =df

∨
cC,B∧A ◦ (∧cA,B ∨ 1C) ◦ dA,B,C ◦ (1A ∧ ∨

cB,C) ◦ ∧
cC∨B,A:

(C ∨B) ∧A ` C ∨ (B ∧A),

(d
∧
b) dR

A∧B,C,D
◦ (dA,B,C ∧ 1D) = dA,B,C∧D ◦ (1A ∧ dR

B,C,D) ◦
∧
b←A,B∨C,D,

(d
∨
b) (1D ∨ dC,B,A) ◦ dR

D,C,B∨A =
∨
b←D,C∧B,A

◦ (dR
D,C,B ∨ 1A) ◦ dD∨C,B,A.

The set of equations of DS is closed under symmetry and transitivity of equality
and under the rules

(cong ξ)
f = f1 g = g1

f ξ g = f1 ξ g1

where ξ ∈ { ◦ ,∧,∨}, and if ξ is ◦ , then f ◦ g is defined (namely, f and g have
appropriate, composable, types).

On the arrow terms of DS we impose the equations of DS. This means that
an arrow of DS is an equivalence class of arrow terms of DS defined with respect
to the smallest equivalence relation such that the equations of DS are satisfied (see
[11, Section 2.3]).

The equations (ξ 1) and (ξ 2) are called bifunctorial equations. They say that
∧ and ∨ are biendofunctors (i.e. 2-endofunctors in the terminology of [11, Section
2.4]).

It is easy to show that for DS we have the equations

(
ξ

b← nat) (f ξ (g ξ h)) ◦
ξ

b←A,B,C =
ξ

b←D,E,F
◦ ((f ξ g) ξ h),

(dR nat) (h ∨ (g ∧ f)) ◦ dR
C,B,A = dR

F,E,D
◦ ((h ∨ g) ∧ f).

We call these equations and other equations with “nat” in their names, like those

in the list above, naturality equations. Such equations say that
∧
b→,

∧
b←, ∧c , etc. are

natural transformations.
The equations (d∧), (d∨), (d

∧
b) and (d

∨
b) stem from [6, Section 2.1] (see [5,

Section 2.1] for an announcement). The equation (d
∨
b) of [11, Section 7.2] amounts

with (
∨
b
∨
b) to the present one.

3. The category PN¬

The category PN¬ is defined as DS save that we make the following changes
and additions. Instead of L∧,∨, we have the propositional language L¬,∧,∨, which
has in addition to what we have for L∧,∨ the unary connective ¬.
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To define the arrow terms of PN¬, in the inductive definition we had for the
arrow terms of DS we assume in addition that for all formulae A and B of L¬,∧,∨
the following primitive arrow terms:

∧
∆B,A: A ` A ∧ (¬B ∨B),
∨
ΣB,A: (B ∧ ¬B) ∨A ` A,

are arrow terms of PN¬. We call the index B, of
∧
∆B,A and

∨
ΣB,A the crown

index, and A the stem index. The crown of
∧
∆B,A ic the right conjunct ¬B ∨B in

the target of
∧
∆B,A: A ` A ∧ (¬B ∨B), and the crown of

∨
ΣB,A is the left disjunct

B ∧ ¬B in the source of
∨
ΣB,A: (B ∧ ¬B) ∨A ` A. We have analogous definitions

of crown and stem indices, and crowns for
∧
Σ,

∧
∆
′
,
∧
Σ
′
,
∨
∆,

∨
Σ
′

and
∨
∆
′
, which will be

defined below. (The symbol ∆ should be associated with the Latin dexter, because

in
∧
∆B,A,

∧
∆
′
B,A,

∨
∆B,A and

∨
∆
′
B,A the crown is on the right-hand side of the stem;

analogously, Σ should be associated with sinister.)
To define the arrows of PN¬, we assume in the inductive definition we had

for the equations of DS the following additional equations, which we call the PN
equations (and not PN¬ equations):

(
∧
∆ nat) (f ∧ 1¬B∨B) ◦

∧
∆B,A =

∧
∆B,D ◦ f ,

(
∨
Σ nat) f ◦

∨
ΣB,A =

∨
ΣB,D ◦ (1B∧¬B ∨ f),

(
∧
b
∧
∆)

∧
b←A,B,¬C∨C

◦
∧
∆C,A∧B = 1A ∧

∧
∆C,B ,

(
∨
b
∨
Σ)

∨
ΣC,B∨A ◦

∨
b←C∧¬C,B,A =

∨
ΣC,B ∨ 1A,

for
∧
ΣB,A =df

∧
cA,¬B∨B ◦

∧
∆B,A : A ` (¬B ∨B) ∧A,

(d
∧
Σ) d¬A∨A,B,C ◦

∧
ΣA,B∨C =

∧
ΣA,B ∨ 1C ,

for
∨
∆B,A =df

∨
ΣB,A ◦ ∨

cB∧¬B,A : A ∨ (B ∧ ¬B) ` A,

(d
∨
∆)

∨
∆A,C∧B ◦ dC,B,A∧¬A = 1C ∧

∨
∆A,B ,

(
∨
Σ
∧
∆)

∨
ΣA,A ◦ dA,¬A,A ◦

∧
∆A,A = 1A,

for
∧
∆
′
B,A =df (1A ∧ ∨

cB,¬B) ◦
∧
∆B,A : A ` A ∧ (B ∨ ¬B) and

∨
Σ
′
B,A =df

∨
ΣB,A ◦ (∧c¬B,B ∨ 1A) : (¬B ∧B) ∨A ` A,

(
∨
Σ
′ ∧
∆
′
)

∨
Σ
′
A,¬A

◦ d¬A,A,¬A ◦
∧
∆
′
A,¬A = 1¬A.

It is easy to show that for PN¬ we have the equations
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(
∧
Σ nat) (1¬B∨B ∧ f) ◦

∧
ΣB,A =

∧
ΣB,D ◦ f ,

(
∨
∆ nat) f ◦

∨
∆B,A =

∨
∆B,D ◦ (f ∨ 1B∧¬B).

The naturality equations (
∧
∆ nat) and (

∨
Σ nat) together with these say that

∧
∆,

∨
Σ,

∧
Σ

and
∨
∆ are natural transformations in the stem index only, i.e. in the second index.
We also have the following abbreviations:

∧
Σ
′
B,A =df

∧
cA,B∨¬B ◦

∧
∆
′
B,A : A ` (B ∨ ¬B) ∧A,

∨
∆
′
B,A =df

∨
Σ
′
B,A

◦ ∨
c¬B∧B,A : A ∨ (¬B ∧B) ` A.

If Ξ stands for either ∆ or Σ and ξ ∈ {∧,∨}, then for every (
ξ

Ξ nat) equation we

have in PN¬ the equation (
ξ

Ξ
′
nat), which differs from (

ξ

Ξ nat) by replacing
ξ

Ξ by
ξ

Ξ
′
, and the index of 1 by the appropriate index. For example, we have

(
∧
∆
′
nat) (f ∧ 1B∨¬B) ◦

∧
∆
′
B,A =

∧
∆
′
B,D

◦ f .

As alternative primitive arrow terms for defining PN¬ we could take one of
∧
Ξ or

∧
Ξ
′
and one of

∨
Ξ or

∨
Ξ
′
.

We can also derive for PN¬ the following equations:

(
∧
b
∧
∆
∧
Σ)

∧
b←A,¬B∨B,C

◦ (
∧
∆B,A ∧ 1C) = 1A ∧

∧
ΣB,C ,

(
∧
b
∧
Σ)

∧
b→¬C∨C,B,A

◦
∧
ΣC,B∧A =

∧
ΣC,B ∧ 1A.

For the first equation, with indices omitted, we have
∧
b← ◦ (

∧
∆ ∧ 1) =

∧
b← ◦ ∧

c ◦ (1 ∧ ∧
∆) ◦ ∧

c , by (∧c ∧c) and (∧c nat),

=
∧
b← ◦ ∧

c ◦
∧
b← ◦

∧
∆ ◦ ∧

c , by (
∧
b
∧
∆),

= (1 ∧ ∧
c) ◦

∧
b← ◦

∧
∆, with (

∧
∆ nat) and (

∧
b
∧
c),

= 1 ∧ ∧
Σ, by (

∧
b
∧
∆),

and for the second equation we have
∧
b→ ◦

∧
Σ =

∧
b→ ◦ ∧

c ◦
∧
b→ ◦ (1 ∧ ∧

∆), with (
∧
b
∧
∆),

= (∧c ∧ 1) ◦
∧
b→ ◦ (1 ∧ ∧

c) ◦ (1 ∧ ∧
∆), by (

∧
b
∧
c),

=
∧
Σ ∧ 1, with (

∧
b
∧
∆
∧
Σ).

We derive analogously with the help of (
∨
b
∨
Σ) the equations

(
∨
b
∨
∆
∨
Σ) (

∨
∆B,A ∨ 1C) ◦

∨
b→A,B∧¬B,C = 1A ∨

∨
ΣB,C ,

(
∨
b
∨
∆)

∨
∆C,A∨B ◦

∨
b→A,B,C∧¬C = 1A ∨

∨
∆C,B .

The arrows
∧
∆B,A: A ` A ∧ (¬B ∨B) and

∧
ΣB,A: A ` (¬B ∨ B) ∧ A are analo-

gous to the arrows of types A ` A ∧ > and A ` > ∧A that one finds in monoidal
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categories. However,
∧
∆B,A and

∧
ΣB,A do not have inverses in PN¬. The equations

(
∧
b
∧
∆), (

∧
b
∧
∆
∧
Σ), (

∧
b
∧
Σ) are analogous to equations that hold in monoidal categories

(see [19, Section VII.1], [11, Section 4.6]). An analogous remark can be made for
∨
ΣB,A and

∨
∆B,A.

We can also derive for PN¬ the following equations by using essentially (d
∧
Σ)

and (d
∨
∆):

(dR
∧
∆) dR

C,B,¬A∨A
◦
∧
∆A,C∨B = 1C ∨

∧
∆A,B ,

(dR
∨
Σ)

∨
ΣA,B∧C ◦ dR

A∧¬A,B,C =
∨
ΣA,B ∧ 1C .

These two equations could replace (d
∧
Σ) and (d

∨
∆) for defining PN¬. The ana-

logues of the equations (d
∧
Σ), (d

∨
∆), (dR

∧
∆) and (dR

∨
Σ) may be found in [6, Section

2.1], where they are assumed for linearly (alias weakly) distributive categories with
negation (cf. [11, Section 7.9]).

It is easy to infer that in PN¬ we have analogues of the equations (
∧
b
∧
∆), (

∧
b
∧
∆
∧
Σ),

(
∧
b
∧
Σ), (

∨
b
∨
Σ), (

∨
b
∨
∆
∨
Σ), (

∨
b
∨
∆), (d

∧
Σ), (d

∨
∆), (dR

∧
∆) and (dR

∨
Σ) obtained by replacing

ξ

Ξ

by
ξ

Ξ
′
, and the indices of the form ¬B ∨B and B ∧ ¬B by B ∨ ¬B and ¬B ∧B

respectively. For example, we have

(
∧
b
∧
∆
′
)

∧
b←A,B,C∨¬C

◦
∧
∆
′
C,A∧B = 1A ∧

∧
∆
′
C,B .

We can also derive for PN¬ the following equations by using essentially (
∨
Σ
∧
∆)

and (
∨
Σ
′ ∧
∆
′
):

(
∨
∆
′ ∧
Σ
′
)

∨
∆
′
A,A

◦ dR
A,¬A,A

◦
∧
Σ
′
A,A = 1A,

(
∨
∆
∧
Σ)

∨
∆A,¬A ◦ dR

¬A,A,¬A
◦
∧
ΣA,¬A = 1¬A.

These two equations could replace (
∨
Σ
∧
∆) and (

∨
Σ
′ ∧
∆
′
) for defining PN¬. The equa-

tions (
∨
Σ
∧
∆), (

∨
Σ
′ ∧
∆
′
), (

∨
∆
′ ∧
Σ
′
) and (

∨
∆
∧
Σ) are related to the triangular equations of

an adjunction (see [19, Section IV.1]; see also the next section). The analogues of
these equations may be found in [6, Section 4].

A proof-net category is a category with two biendofunctors ∧ and ∨, a unary

operation ¬ on objects, and the natural transformations
∧
b→,

∧
b←,

∨
b→,

∨
b←, ∧c , ∨c , d,

∧
∆ and

∨
Σ that satisfy the equations (

ξ

b 5), (
ξ

b
ξ

b), . . . , (
∨
Σ
′ ∧
∆
′
) of PN¬. The category

PN¬ is up to isomorphism the free proof-net category generated by the set of
letters P (the set P may be understood as a discrete category).

If β is a primitive arrow term of PN¬ except 1B , then we call β-terms of PN¬

the set of arrow terms defined inductively as follows: β is a β-term; if f is a β-
term, then for every A in L∧,∨ we have that 1A ξ f and f ξ 1A, where ξ ∈ {∧,∨},
are β-terms.
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In a β-term the subterm β is called the head of this β-term. For example, the

head of the
∧
b→B,C,D-term 1A ∧ (

∧
b→B,C,D ∨ 1E) is

∧
b→B,C,D.

We define 1-terms as β-terms by replacing β in the definition above by 1B . So
1-terms are headless.

An arrow term of the form fn ◦ . . . ◦ f1, where n > 1, with parentheses tied
to ◦ associated arbitrarily, such that for every i ∈ {1, . . . , n} we have that fi is
composition-free is called factorized. In a factorized arrow term fn ◦ . . . ◦ f1 the
arrow terms fi are called factors. A factor that is a β-term for some β is called a
headed factor. A factorized arrow term is called headed when each of its factors is
either headed or a 1-term. A factorized arrow term fn ◦ . . . ◦ f1 is called developed
when f1 is a 1-term and if n > 1, then every factor of fn ◦ . . . ◦ f2 is headed. It is
sometimes useful to write the factors of a headed arrow term one above the other,
as it is done for example in Figure 1 at the end of §6.

By using the categorial equations (cat 1) and (cat 2) and bifunctorial equations
we can easily prove by induction on the length of f the following lemma.

Development Lemma. For every arrow term f there is a developed arrow
term f ′ such that f = f ′ in PN¬.

Analogous definitions of β-term and developed arrow term can be given for
DS, and an analogous Development Lemma can be proved for DS.

4. The category Br

We are now going to introduce a category called Br, which will serve to prove
our main coherence result for proof-net categories. We will show that there is
a faithful functor from PN¬ to Br. The name of the category Br comes from
“Brauerian”. The arrows of this category correspond to graphs, or diagrams, that
were introduced in [3] in connection with Brauer algebras. Analogous graphs were
investigated in [13], and in [17] Kelly and Mac Lane relied on them to prove their
coherence result for symmetric monoidal closed categories.

Let M be a set whose subsets are denoted by X, Y , Z, . . . For i ∈ {s, t}
(where s stands for “source” and t for “target”), let Mi be a set in one-to-one
correspondence with M, and let i : M→Mi be a bijection. Let Xi be the subset
of Mi that is the image of the subset X of M under i. If u ∈M, then we use ui

as an abbreviation for i(u). We assume also that M, Ms and Mt are mutually
disjoint.

For X,Y ⊆M, let a split relation of M be a triple 〈R, X, Y 〉 such that R ⊆
(Xs ∪ Y t)2. The set Xs ∪ Y t may be conceived as the disjoint union of X and Y .
We denote a split relation 〈R, X, Y 〉 more suggestively by R : X ` Y .

A split relation R : X ` Y is a split equivalence when R is an equivalence re-
lation. We denote by part(R) the partition of Xs ∪ Yt corresponding to the split
equivalence R : X ` Y .
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A split equivalence R : X ` Y is Brauerian when every member of part(R) is
a two-element set. For R : X ` Y a Brauerian split equivalence, every member of
part(R) is either of the form {us, vt}, in which case it is called a transversal, or of
the form {us, vs}, in which case it is called a cup, or, finally, of the form {ut, vt},
in which case it is called a cap.

For X,Y, Z ∈M, we want to define the composition P ∗R : X ` Z of the split
relations R : X ` Y and P : Y ` Z of M. For that we need some auxiliary notions.

For X, Y ⊆M, let the function ϕs : X ∪ Y t → Xs ∪ Y t be defined by

ϕs(u) =
{

us if u ∈ X
u if u ∈ Y t,

and let the function ϕt : Xs ∪ Y → Xs ∪ Y t be defined by

ϕt(u) =
{

u if u ∈ Xs

ut if u ∈ Y.

For a split relation R : X ` Y , let the two relations R−s ⊆ (X ∪ Y t)2 and
R−t ⊆ (Xs ∪ Y )2 be defined by

(u, v) ∈ R−i iff (ϕi(u), ϕi(v)) ∈ R

for i ∈ {s, t}. Finally, for an arbitrary binary relation R, let Tr(R) be the transitive
closure of R.

Then we define P ∗R by

P ∗R =df Tr(R−t ∪ P−s) ∩ (Xs ∪ Zt)2.

It is easy to conclude that P ∗R : X ` Z is a split relation of M, and that if
R : X ` Y and P : Y ` Z are (Brauerian) split equivalences, then P ∗R is a (Braue-
rian) split equivalence.

We now define the category Br. The objects of Br are the members of the set
of finite ordinals N . (We have 0 = ∅ and n+1 = n ∪ {n}, while N is the ordinal
ω.) The arrows of Br are the Brauerian split equivalences R : m ` n of N . The
identity arrow 1n : n ` n of Br is the Brauerian split equivalence such that

part(1n) = {{ms,mt} | m < n}.
Composition in Br is the operation ∗ defined above.

That Br is indeed a category (i.e. that ∗ is associative and that 1n is an
identity arrow) is proved in [9] and [10]. This proof is obtained via an isomorphic
representation of Br in the category Rel, whose objects are the finite ordinals
and whose arrows are all the relations between these objects. Composition in Rel
is the ordinary composition of relations. A direct formal proof would be more
involved, though what we have to prove is rather clear if we represent Brauerian
split equivalences geometrically (as this is done in [3], [13], and also in categories
of tangles; see [16, Chapter 12] and references therein).

For example, for R ⊆ (3s ∪ 9t)2 and P ⊆ (9s ∪ 1t)2 such that
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part(R) = {{0s, 0t}, {1s, 3t}, {2s, 6t}} ∪ {{nt, (n+1)t} | n ∈ {1, 4, 7}},
part(P ) = {{2s, 0t}} ∪ {{ns, (n+1)s} | n ∈ {0, 3, 5, 7}},

the composition P ∗R ⊆ (3s ∪ 1t)2, for which we have

part(P ∗R) = {{0s, 0t}, {1s, 2s}},
is obtained from the following diagram:

¡
¡

¡¡

@
@

@@

HHHHHHHH

q

q q q q q q q q q

q q q

µ´

¶³

µ´µ´

¶³

µ´

¶³

0

0 1 2 3 4 5 6 7 8

0 1 2

R

P

Every bijection f from Xs to Y t corresponds to a Brauerian split equivalence
R : X ` Y such that the members of part(R) are of the form {u, f(u)}. The compo-
sition of such Brauerian split equivalences, which correspond to bijections, is then
a simple matter: it amounts to composition of these bijections. If in Br we keep
as arrows only such Brauerian split equivalences, then we obtain a subcategory
of Br isomorphic to the category Bij whose objects are again the finite ordinals
and whose arrows are the bijections between these objects. The category Bij is a
subcategory of the category Rel (which played an important role in [11]), whose
objects are the finite ordinals and whose arrows are all the relations between these
objects. Composition in Bij and Rel is the ordinary composition of relations. The
category Rel (which played an important role in [11]) is isomorphic to a subcate-
gory of the category whose arrows are split relations of finite ordinals, of whom Br
is also a subcategory.

We define a functor G from PN¬ to Br in the following way. On objects,
we stipulate that GA is the number of occurrences of letters in A. (If A has
n = {0, 1, . . . , n−1} occurrences of letters, then the first occurrence corresponds to
0, the second to 1, etc.) On arrows, we have first that Gα is an identity arrow of

Br for α being 1A,
ξ

b→A,B,C ,
ξ

b←A,B,C and dA,B,C , where ξ ∈ {∧,∨}.
Next, for i, j ∈ {s, t}, we have that {mi, nj} belongs to part(G ∧

cA,B) iff {ni,mj}
belongs to part(G ∨

cA,B), iff i is s and j is t, while m,n < GA+GB and

(m−n−GA)(m−n+GB) = 0.

In the following example, we have G(p ∨ q) = 2 = {0, 1} and G((q ∨ ¬r) ∨ q)= 3 =
{0, 1, 2}, and we have the diagrams
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­
­

­
­

­
­­

­
­

­
­

­
­­

­
­

­
­

­
­­

@
@

@
@

@
@

@
@

@
@

@
@

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

J
J

J
J

J
JJ

J
J

J
J

J
JJ

J
J

J
J

J
JJ

q q q q q q q q q q

q q q q q q q q q q

0 1 2 3 4 0 1 2 3 4

0 1 2 3 4 0 1 2 3 4

G
∧
cp∨q,(q∨¬r)∨q G

∨
cp∨q,(q∨¬r)∨q

(p ∨ q) ∧ ((q ∨ ¬r) ∨ q)

((q ∨ ¬r) ∨ q) ∧ (p ∨ q)

((q ∨ ¬r) ∨ q) ∨ (p ∨ q)

(p ∨ q) ∨ ((q ∨ ¬r) ∨ q)

We have that {mi, nj} belongs to part(G
∧
∆B,A) iff either

i is s and j is t, while m,n < GA and m = n, or

i and j are both t, while m, n ∈ {GA, . . . , GA+2GB−1} and
|m−n| = GB.

In the following example, for A being (q ∨ ¬r) ∨ q and B being p ∨ q, we have

q q q q q q q

q q q

0 1 2 3 4 5 6

0 1 2

'$'$
G

∧
∆p∨q,(q∨¬r)∨q

((q ∨ ¬r) ∨ q) ∧ (¬(p ∨ q) ∨ (p ∨ q))

(q ∨ ¬r) ∨ q

We have that {mi, nj} belongs to part(G
∨
ΣB,A) iff either

i is s and j is t, while m ∈ {2GB, . . . , 2GB+GA−1}, n < GA

and m−2GB = n, or

i and j are both s, while m,n < 2GB and |m−n| = GB.

For A and B being as in the previous example, we have

q q q q q q q

q q q

0 1 2 3 4 5 6

0 1 2

& %& %
G
∨
Σp∨q,(q∨¬r)∨q

(q ∨ ¬r) ∨ q

((p ∨ q) ∧ ¬(p ∨ q)) ∨ ((q ∨ ¬r) ∨ q)

Let G(f ◦ g) = Gf ∗Gg. To define G(f ξ g), for ξ ∈ {∧,∨}, we need an auxiliary
notion.
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Suppose bX is a bijection from X to X1 and bY a bijection from Y to Y1. Then
for R ⊆ (Xs ∪ Y t)2 we define RbX

bY
⊆ (Xs

1 ∪ Y t
1 )2 by

(ui, vj) ∈ RbX

bY
iff (i(b−1

U (u)), j(b−1
V (v))) ∈ R,

where (i, U), (j, V ) ∈ {(s,X), (t, Y )}.
If f : A ` D and g : B ` E, then for ξ ∈{∧,∨} the set of ordered pairs G(f ξg) is

Gf ∪Gg+GA
+GD

where +GA is the bijection from GB to {n+GA | n ∈ GB} that assigns n+GA to
n, and +GD is the bijection from GE to {n+GD | n ∈ GE} that assigns n+GD

to n.
It is not difficult to check that G so defined is indeed a functor from PN¬ to

Br. For that, we determine by induction on the length of derivation that for every
equation f = g of PN¬ we have Gf = Gg in Br.

Consider, for example, the following diagram, which illustrates an instance of
(
∨
Σ
∧
∆):

¡
¡

¡
¡

¡
¡

¡
¡

#
#

#
#

#

#
#

#
#

#

& %& %

'$'$

∨
Σp∧q,p∧q

dp∧q,¬(p∧q),p∧q

∧
∆p∧q,p∧q

p ∧ q

((p ∧ q) ∧ ¬(p ∧ q))∨(p ∧ q)

(p ∧ q)∧(¬(p ∧ q) ∨ (p ∧ q))

p ∧ q

This diagram shows that the equation (
∨
Σ
∧
∆), as well as the equation (

∨
Σ
′ ∧
∆
′
), which is

illustrated by analogous diagrams, is related to triangular equations of adjunctions
(cf. [8, Section 4.10]). The triangular equations of adjunctions are essentially about
“straightening a serpentine”, and this straightening is based on planar ambient
isotopies of knot theory (cf. [4, Section 1.A], ).

We have shown by this induction that Br is a proof-net category, and the
existence of a structure-preserving functor G from PN¬ to Br follows from the
freedom of PN¬.

We can define analogously to G a functor, which we also call G, from the
category DS to Br. We just omit from the definition of G above the clauses
involving

∧
∆B,A and

∨
ΣB,A. The image of DS by G in Br is the subcategory of
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Br isomorphic to Bij, which we mentioned above. The following is proved in [11,
Section 7.6].

DS Coherence. The functor G from DS to Br is faithful.

It follows immediately from this coherence result that DS is isomorphic to a
subcategory of PN¬ (cf. [11, Section 14.4]).

Up to the end of §8 we will be occupied with proving the following.

PN¬ Coherence. The functor G from PN¬ to Br is faithful.

For this proof, we must deal first with some preliminary matters.

5. Some properties of DS

In this section we will prove some results about the category DS, which we will
be use to ascertain that particular equations hold in PN¬. We need these results
also for the proof of PN¬ Coherence.

First we introduce a definition. Suppose x is the n-th occurrence of a letter
(counting from the left) in a formula A of L¬,∧,∨, and y is the m-th occurrence of
the same letter in a formula B of L¬,∧,∨. Then we say that x and y are linked in an
arrow f : A ` B of PN¬ when in the partition part(Gf) we have {(n−1)s, (m−1)t}
as a member. (Note that to find the n-th occurrence, we count starting from 1,
but the ordinal n > 0 is {0, . . . , n−1}.) We have an analogous definition of linked
occurrences of the same letter for DS: we just replace L¬,∧,∨ by L∧,∨ and PN¬

by DS.
It is easy to established by induction on the complexity of f that for every

arrow term f : A ` B of DS we have GA = GB. Moreover, every occurrence of
letter in A is linked to exactly one occurrence of the same letter in B, and vice
versa. This is related to the fact that every arrow term f : A ` B of DS may be
obtained by substituting letters for letters out of an arrow term f ′ : A′ ` B′ of DS
such that every letter occurs in A′ at most once, and the same for B′ (see [11,
Sections 3.3 and 7.6]).

Suppose for Lemmata 1D and 2D below that f : A ` B is an arrow term of DS
such that A has a subformula D in which ∧ does not occur and B has a subformula
D′ in which ∧ does not occur, and suppose that every occurrence of a letter in D

is linked to an occurrence of a letter in D′ and vice versa. Then we can prove the
following.

Lemma 1D. The source A of f is D iff the target B of f is D′.

This follows from the fact, noted above, that GA = GB. The arrow term f in
this case can have as subterms that are primitive arrow terms only arrow terms of

the forms 1E ,
∨
b→E,F,G,

∨
b←E,F,G or ∨

cE,F . We also have the following.
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Lemma 2D. If D ∧A′ or A′ ∧D is a subformula of A, then D′ ∧B′ or B′ ∧D′

is a subformula of B for some B′.

This is easily proved by induction on the complexity of the arrow term f , with
the help of Lemma 1D.

Suppose for Lemmata 1C and 2C below that f : A ` B is an arrow term of DS
such that B has a subformula C in which ∨ does not occur and A has a subformula
C ′ in which ∨ does not occur, and suppose that every occurrence of a letter in C

is linked to an occurrence of a letter in C ′ and vice versa. Then we can prove the
following duals of Lemmata 1D and 2D, in an analogous manner.

Lemma 1C. The target B of f is C iff the source A of f is C ′.

Lemma 2C. If C ∨B′ or B′ ∨ C is a subformula of B, then C ′ ∨A′ or A′ ∨ C ′

is a subformula of A for some A′.

Suppose for the following lemma, which is a corollary of either Lemma 2D or
Lemma 2C, that f : A ` B is an arrow term of DS such that an occurrence x of a
letter p in A is linked to an occurrence y of p in B.

Lemma 2. It is impossible that A has a subformula x ∧A′ or A′ ∧ x and B

has a subformula y ∨B′ or B′ ∨ y.

Suppose for Lemmata 3D, 3C, 3 and 4 below that f : A ` B is an arrow term
of DS, and for i ∈ {1, 2} let xi in A and yi in B be occurrences of the letter pi

linked in f (here p1 and p2 may also be the same letter).

Lemma 3D. If in A we have a subformula A1 ∨A2 such that xi occurs in Ai,
then in B we have a subformula B1 ∨B2 or B2 ∨B1 such that yi occurs in Bi.

This is easily proved by induction on the complexity of the arrow term f . We
prove analogously the following.

Lemma 3C. If in B we have a subformula B1 ∧B2 such that yi occurs in Bi,
then in A we have a subformula A1 ∧A2 or A2 ∧A1 such that xi occurs in Ai.

As a corollary of either Lemma 3D or Lemma 3C we have the following.

Lemma 3. It is impossible that A has a subformula x1 ∨ x2 or x2 ∨ x1 and B

has a subformula y1 ∧ y2 or y2 ∧ y1.

The following lemma, dual to Lemma 3, is a corollary of Lemma 2.

Lemma 4. It is impossible that A has a subformula x1 ∧ x2 or x2 ∧ x1 and B

has a subformula y1 ∨ y2 or y2 ∨ y1.

Lemma 3 is related to the acyclicity condition of proof nets, while Lemma 4 is
related to the connectedness condition (see [7]).

Next we can prove the following lemma.



COHERENCE OF PROOF-NET CATEGORIES 15

p-q-r Lemma. Let f : A ` B be an arrow of DS, let xi for i ∈ {1, 2, 3} be
occurrences of the letters p, q and r, respectively, in A, and let yi be occurrences of
the letters p, q and r, respectively, in B, such that xi and yi are linked in f . Let,
moreover, x2 ∨ x3 be a subformula of A and y1 ∧ y2 a subformula of B. Then there
is a dp,q,r-term h : A′ ` B′ such that x′i are occurrences of the letters p, q and r,
respectively, in the source p ∧ (q ∨ r) of the head of h and y′i are occurrences of the
letters p, q and r, respectively, in the target (p ∧ q) ∨ r of the head of h, such that
for some arrows fx : A ` A′ and fy : B′ ` B of DS we have f = fy ◦h ◦ fx in DS,
and xi is linked to x′i in fx, while y′i is linked to yi in fy.

Proof. The proof of this lemma, of which we give just a sketch, relies on a cut-
elimination and related results of [11, Sections 7.7-8]. We first find in the category
GDS introduced in [11, Section 7.7] a cut-free Gentzen term f ′ : X ` Y , which
corresponds to f , by the relationship that exists between DS and GDS. According
to the equations at the beginning of Section 7.8 of [11], which are used for the proof
of the Invertibility Lemmata in the same section, in GDS we have the equation
f ′ = f ′′ for a Gentzen term f ′′ that has as a subterm either ∧p,q(1p,∨q,r(1q,1r))
or ∨q,r(∧p,q(1p,1q),1r) both of type p ∧ (q ∨ r) ` (p ∧ q) ∨ r. By the relationship
that exists between DS and GDS, we can find starting from f ′′ an arrow term
fy ◦h ◦ fx equal to f in DS, which satisfies the conditions of the lemma. a

The full force of the Cut-Elimination Theorem of Section 7.7 of [11] is not
essential for this proof, but applying this theorem simplifies the proof.

6. The category PN

We now introduce a category called PN, which is equivalent to PN¬. In the
objects of PN, the negation connective ¬ will be prefixed only to letters, and hence
∧
∆B,A and

∨
ΣB,A will be primitive only for the crown index B being a letter. Here

is the formal definition of PN.
For P being the set of letters that we used to generate L∧,∨ and L¬,∧,∨ in

§§2-3, let P¬ be the set {¬p | p ∈ P}. The objects of PN are the formulae of the
propositional language L¬p

∧,∨ generated from P ∪ P¬ with the binary connectives ∧
and ∨. To define the arrow terms of PN, in the inductive definition we had for the
arrow terms of DS we assume in addition that for every formula A of L¬p

∧,∨ and
every letter p

∧
∆p,A: A ` A ∧ (¬p ∨ p),
∨
Σp,A: (p ∧ ¬p) ∨A ` A,

are primitive arrow terms of PN.
To define the arrows of PN, we assume as additional equations in the inductive

definition we had for the equations of DS the PN equations of §3 restricted to the
arrow terms

∧
∆p,A and

∨
Σp,A. This means that in (

∧
∆ nat) and (

∨
Σ nat) the crown
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index B will be p, in (
∧
b
∧
∆) and (

∨
b
∨
Σ) the crown index C will be p, and in (d

∧
Σ),

(d
∨
∆), (

∨
Σ
∧
∆) and (

∨
Σ
′ ∧
∆
′
) the crown index A will be p. We define

∧
Σp,A,

∨
∆p,A,

∧
∆
′
p,A,

∨
Σ
′
p,A,

∧
Σ
′
p,A and

∨
∆
′
p,A for PN as they were defined in PN¬ in terms of

∧
∆p,A and

∨
Σp,A.

The following equations of PN, and hence also of PN¬, which we call stem-
increasing equations, enable us to have in developed arrow terms only

∧
∆A,B-terms

and
∨
ΣA,B-terms that coincide with their heads:

(1 ∧ ∧
∆) 1A ∧

∧
∆p,B =

∧
b←A,B,¬p∨p

◦
∧
∆p,A∧B , by (

∧
b
∧
∆),

(
∧
∆ ∧ 1)

∧
∆p,B ∧ 1A = ∧

cA,B∧(¬p∨p) ◦
∧
b←A,B,¬p∨p

◦ (∧cB,A ∧ 1¬p∨p) ◦
∧
∆p,B∧A,

by (∧c ∧c), (∧c nat), (1 ∧ ∧
∆) and (

∧
∆ nat),

(1 ∨ ∧
∆) 1A ∨

∧
∆p,B = dR

A,B,¬p∨p
◦
∧
∆p,A∨B , by (dR

∧
∆),

(
∧
∆ ∨ 1)

∧
∆p,B ∨ 1A = ∨

cB∧(¬p∨p),A ◦ dR
A,B,¬p∨p

◦ (∨cA,B ∧ 1¬p∨p) ◦
∧
∆p,B∨A,

by (∨c ∨c), (∨c nat), (1 ∨ ∧
∆) and (

∧
∆ nat),

(
∨
Σ ∨ 1)

∨
Σp,B ∨ 1A =

∨
Σp,B∨A ◦

∨
b←p∧¬p,B,A, by (

∨
b
∨
Σ),

(1 ∨ ∨
Σ) 1A ∨

∨
Σp,B =

∨
Σp,A∨B ◦ (1p∧¬p∨ ∨

cA,B) ◦
∨
b←p∧¬p,B,A

◦ ∨
c (p∧¬p)∨B,A,

by (∨c ∨c), (∨c nat), (
∨
Σ ∨ 1) and (

∨
Σ nat),

(
∨
Σ ∧ 1)

∨
Σp,B ∧ 1A =

∨
Σp,B∧A ◦ dR

p∧¬p,B,A, by (dR
∨
Σ),

(1 ∧ ∨
Σ) 1A ∧

∨
Σp,B =

∨
Σp,A∧B ◦ (1p∧¬p ∨ ∧

cB,A) ◦ dR
p∧¬p,B,A

◦ ∧
cA,(p∧¬p)∨B ,

by (∧c ∧c), (∧c nat), (
∨
Σ ∧ 1) and (

∨
Σ nat).

Note that in the stem-increasing equations the stem index B of
∧
∆ and

∨
Σ becomes

more complex on the right-hand sides, whereas the crown index p does not change.
We have analogous stem-increasing equations for

∧
Σ,

∧
∆
′
,
∧
Σ
′
,
∨
∆,

∨
Σ
′
and

∨
∆
′
.

We will next prove several lemmata concerning PN, which we will find useful
for calculations later on. For these lemmata we need the following.

Let DS¬p be the category defined as DS save that it is generated not by P,
but by P ∪ P¬. So the objects of DS¬p are formulae of L¬p

∧,∨, i.e. the objects of
PN. For A and B formulae of L¬p

∧,∨, we define when an occurrence of p in A is
linked to an occurrence of p in B in an arrow f : A ` B of DS¬p analogously to
what we had at the beginning of the preceding section.

Let
ξ

Ξ for ξ ∈ {∧,∨} stand for either
ξ

∆, or
ξ

∆
′
, or

ξ

Σ, or
ξ

Σ
′
, and let a

ξ

ΞB,A-term

be defined as a β-term in §3, save that β is replaced by
ξ

ΞB,A. We use also Θ as a
variable alternative to Ξ. Then we have the following.
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∧
Ξ-Permutation Lemma. Let g : C ` D be a

∧
Ξp,B-term of PN such that x1

and ¬x2 are respectively the occurrences within D of p and ¬p in the crown of the
head

∧
Ξp,B of g, and let f : D ` E be an arrow term of DS¬p such that we have an

occurrence y1 of p and an occurrence ¬y2 of ¬p within a subformula of E of the
form y1 ∨ ¬y2 or ¬y2 ∨ y1, and xi is linked to yi for i ∈ {1, 2} in f . Then there is a
∧
Θp,B′-term g′ : D′ ` E of PN the crown of whose head is y1 ∨ ¬y2 or ¬y2 ∨ y1, and
there is an arrow term f ′ : C ` D′ of DS¬p such that in PN we have f ◦ g = g′ ◦ f ′.

Proof. By the Development Lemma we can assume that f is a developed
arrow term, and then it is enough to consider the case when f is either a β-term
for β a primitive arrow term of DS¬p or f is 1E . Note that in the developed
arrow term fn ◦ . . . ◦ f1, which is equal to f , we have that f1 is 1D, and that f2,
if it exists, cannot be a dB,p,¬p-term or a dB,¬p,p-term such that x1 and ¬x2 are
the occurrences of p and ¬p in the right conjunct of the source B ∧ (¬p ∨ p) or
B ∧ (p ∨ ¬p) of the head of f2. Otherwise, in the target of the head of f2 we
would obtain as the left disjunct B ∧ ¬p or B ∧ p, which together with Lemma 2
would contradict the conditions put on f , and hence also on fn ◦ . . . ◦ f1, in the
formulation of the

∧
Ξ-Permutation Lemma.

The case when f is 1E is trivial, and there are also many easy cases settled by
bifunctorial and naturality equations. The remaining, more interesting, cases are
settled by the following equations of PN:

∧
b→A,B,¬p∨p

◦ (1A ∧
∧
∆p,B) =

∧
∆p,A∧B , by (

∧
b
∧
∆),

∧
b←B1,B2,¬p∨p

◦
∧
∆p,B1∧B2 = 1B1 ∧

∧
∆p,B2 , by (

∧
b
∧
∆),

∧
b→A,¬p∨p,B

◦ (1A ∧
∧
Σp,B) =

∧
∆p,A ∧ 1B , by (

∧
b
∧
∆
∧
Σ),

∧
b←B,¬p∨p,A

◦ (
∧
∆p,B ∧ 1A)= 1B ∧

∧
Σp,A, by (

∧
b
∧
∆
∧
Σ),

∧
b→¬p∨p,B1,B2

◦
∧
Σp,B1∧B2 =

∧
Σp,B1 ∧ 1B2 , by (

∧
b
∧
Σ),

∧
b←¬p∨p,B,A

◦ (
∧
Σp,B ∧ 1A) =

∧
Σp,B∧A, by (

∧
b
∧
Σ),

∧
cB,¬p∨p ◦

∧
∆p,B =

∧
Σp,B , by definition,

∧
c¬p∨p,B ◦

∧
Σp,B =

∧
∆p,B , by definition and (∧c ∧c),

(1B ∧ ∨
cp,¬p) ◦

∧
∆p,B =

∧
∆
′
p,B , by definition,

(∨cp,¬p ∧ 1B) ◦
∧
Σp,B =

∧
Σ
′
p,B , by definition and (∧c nat),

d¬p∨p,B1,B2
◦
∧
Σp,B1∨B2 =

∧
Σp,B1 ∨ 1B2 , by (d

∧
Σ).

Besides these equations, we have analogous equations where ¬p ∨ p is replaced by
p ∨ ¬p, while

∧
∆ and

∧
Σ are replaced by

∧
∆
′
and

∧
Σ
′
respectively, and vice versa. a
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We prove analogously the following dual of the preceding lemma.
∨
Ξ-Permutation Lemma. Let g : D ` C be a

∨
Ξp,B-term of PN such that x1

and ¬x2 are respectively the occurrences within D of p and ¬p in the crown of the
head

∨
Ξp,B of g, and let f : E ` D be an arrow term of DS¬p such that we have an

occurrence y1 of p and an occurrence ¬y2 of ¬p within a subformula of E of the
form y1 ∧ ¬y2 or ¬y2 ∧ y1, and yi is linked to xi for i ∈ {1, 2} in f . Then there is a
∨
Θp,B′-term g′ : E ` D′ of PN the crown of whose head is y1 ∧ ¬y2 or ¬y2 ∧ y1, and
there is an arrow term f ′ : D′ ` C of DS¬p such that in PN we have g ◦ f = f ′ ◦ g′.

Next we prove the following lemma, which involves the p-q-r Lemma of the
preceding section.

p-¬p-p Lemma. Let x1, ¬x2 and x3 be occurrences of p, ¬p and p, respectively,
in a formula A of L¬p

∧,∨, and let y1, ¬y2 and y3 be occurrences of p, ¬p and p,
respectively in a formula B of L¬p

∧,∨. Let ¬x2 ∨ x3 or x3 ∨ ¬x2 be a subformula of

A and y1 ∧ ¬y2 or ¬y2 ∧ y1 a subformula of B. Let g1 : A′ ` A be a
∧
Ξp,C-term of

PN such that ¬x2 ∨ x3 or x3 ∨ ¬x2 is the crown of the head of g1, let g2 : B ` B′

be a
∨
Θp,D-term of PN such that y1 ∧ ¬y2 or ¬y2 ∧ y1 is the crown of the head of

g2, and let f : A ` B be an arrow term of DS¬p such that xi and yi are linked in f

for i ∈ {1, 2, 3}. Then g2 ◦ f ◦ g1 is equal in PN to an arrow term of DS¬p.

Proof. By the p-q-r Lemma, f : A ` B is equal in DS¬p, and hence also in
PN, to an arrow term of the form fy ◦h ◦ fx, where h is a dp,¬p,p-term, and the
other conditions of the p-q-r Lemma are satisfied. So in PN we have

g2 ◦ f ◦ g1 = g2 ◦ fy ◦h ◦ fx ◦ g1 = f ′y ◦ g′2 ◦h ◦ g′1 ◦ f ′x,

by the
ξ

Ξ-Permutation Lemmata above. Here the head of g′1 must be
∧
∆p,p: p `

p ∧ (¬p ∨ p), the head of h is dp,¬p,p : p ∧ (¬p ∨ p) ` (p ∧ ¬p) ∨ p, and the head

of g′2 must be
∨
Σp,p: (p ∧ ¬p) ∨ p ` p. By applying (

∨
Σ
∧
∆), and perhaps bifunctorial

equations, we obtain that g′2 ◦h ◦ g′1 is equal in PN to an arrow term of the form
1A, and hence we have g2 ◦ f ◦ g1 = f ′y ◦ f ′x in PN, which proves the lemma. a

To give an example of the application of the p-¬p-p Lemma, consider the
diagram in Figure 1. This diagram corresponds to G(

∨
Σq,p∧q ◦h ◦

∧
∆q,p∧q) for an

arrow term h of PN, which is of the form g2 ◦ f ◦ g1 for the arrow term g1 being
1p∧q ∧ (1¬q ∨

∧
Σp,q), the arrow term g2 being (1q∧

∨
Σp,¬q) ∨ 1p∧q and f an arrow

term of DS¬p. Then by applying the p-¬p-p Lemma we obtain an arrow term f ′

of DS¬p equal to g2 ◦ f ◦ g1 in PN, and next by applying the p-¬p-p Lemma (as a
matter of fact, the q-¬q-q Lemma), we obtain an arrow term h′ of DS¬p equal to
∨
Σq,p∧q ◦ f ′ ◦

∧
∆q,p∧q in PN. By DS Coherence of §4, we may conclude that h′, and

hence also
∨
Σq,p∧q ◦h ◦

∧
∆q,p∧q, is equal to 1p∧q in PN.
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p ∧ q

(q ∧ ¬q) ∨ (p ∧ q)

(q ∧ ((p ∧ ¬p) ∨ ¬q)) ∨ (p ∧ q)

(q ∧ (p ∧ (¬p ∨ ¬q))) ∨ (p ∧ q)

((q ∧ p) ∧ (¬p ∨ ¬q)) ∨ (p ∧ q)

((p ∧ q) ∧ (¬p ∨ ¬q)) ∨ (p ∧ q)

(p ∧ q) ∧ ((¬p ∨¬q) ∨ (p ∧ q))

(p ∧ q) ∧ ((¬q ∨ ¬p) ∨ (p ∧ q))

(p ∧ q) ∧ (¬q ∨ (¬p ∨ (p ∧ q)))

(p ∧ q) ∧ (¬q∨ ((¬p ∨ p)∧q))

(p ∧ q) ∧ (¬q ∨ q)

p ∧ q
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∨
Σq,p∧q

(1q ∧
∨
Σp,¬q) ∨ 1p∧q

(1q ∧ dp,¬p,¬q) ∨ 1p∧q

∧
b←q,p,¬p∨¬q ∨ 1p∧q

(∧cp,q ∧ 1¬p∨¬q) ∨ 1p∧q

dp∧q,¬p∨¬q,p∧q

1p∧q ∧ (∨c¬p,¬q ∨ 1p∧q)

1p∧q ∧
∨
b→¬q,¬p,p∧q

1p∧q ∧ (1¬q ∨ dR
¬p,p,q)

1p∧q ∧ (1¬q ∨
∧
Σp,q)

∧
∆q,p∧q

Figure 1

Here is a lemma analogous to the p-¬p-p Lemma.

¬p-p-¬p Lemma. Let ¬x1, x2 and ¬x3 be occurrences of ¬p, p and ¬p, re-
spectively, in a formula A of L¬p

∧,∨, and let ¬y1, y2 and ¬y3 be occurrences of ¬p,

p and ¬p, respectively, in a formula B of L¬p
∧,∨. Let g1 : A′ ` A be a

∧
Ξp,C-term of

PN such that x2 ∨ ¬x3 or ¬x3 ∨ x2 is the crown of the head of g1, let g2 : B ` B′

be a
∨
Θp,D-term of PN such that ¬y1 ∧ y2 or y2 ∧ ¬y1 is the crown of the head of

g2, and let f : A ` B be an arrow term of DS¬p such that xi and yi are linked in f

for i ∈ {1, 2, 3}. Then g2 ◦ f ◦ g1 is equal in PN to an arrow term of DS¬p.

To prove this lemma we proceed as for the p-¬p-p Lemma, relying on the
equation (

∨
Σ
′ ∧
∆
′
) of PN.
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7. The equivalence of PN¬ and PN

In this section we show that the categories PN¬ and PN are equivalent cat-
egories. We define inductively a functor F from the category PN¬ to PN in the
following manner. On objects we have

Fp = p, for p a letter,
F (A ξ B) = FA ξ FB, for ξ ∈ {∧,∨},
F¬p = ¬p, for p a letter,
F¬¬A = FA,
F¬(A ∧B) = F¬A ∨ F¬B,
F¬(A ∨B) = F¬A ∧ F¬B.

On arrows we have

FαA1,...,An = αFA1,...,FAn ,

for αA1,...,An being 1A,
ξ

b→A,B,C ,
ξ

b←A,B,C ,
ξ
cA,B or dA,B,C where ξ ∈ {∧,∨},

F
∧
∆p,A =

∧
∆p,FA: FA ` FA ∧ (¬p ∨ p),

F
∨
Σp,A =

∨
Σp,FA: (p ∧ ¬p) ∨ FA ` FA,

F
∧
∆¬B,A = (1FA ∧ ∨

cFB,F¬B) ◦F
∧
∆B,A: FA ` FA ∧ (FB ∨ F¬B),

F
∨
Σ¬B,A = F

∨
ΣB,A ◦ (∧cF¬B,FB ∨ 1FA) : (F¬B ∧ FB) ∨ FA ` FA,

F
∧
∆B∧C,A = (1FA ∧ ((∨cF¬B,F¬C ∨ 1FB∧FC) ◦

∨
b→F¬C,F¬B,FB∧FC

◦

◦ (1F¬C ∨ (dR
F¬B,FB,FC

◦ ∧
cFC,F¬B∨FB ◦F

∧
∆B,C)))) ◦F

∧
∆C,A:

FA ` FA ∧ ((F¬B ∨ F¬C) ∨ (FB ∧ FC)),

F
∨
ΣB∧C,A = F

∨
ΣC,A ◦ ((1FC ∧ (F

∨
ΣB,¬C ◦ dFB,F¬B,F¬C)) ◦

◦
∧
b←FC,FB,F¬B∨F¬C

◦ (∧cFB,FC ∧1F¬B∨F¬C)) ∨ 1FA) :
((FB ∧ FC) ∧ (F¬B ∨ F¬C)) ∨ FA ` FA,

F
∧
∆B∨C,A = (1FA ∧ ((∧cF¬C,F¬B ∨ 1FB∨FC) ◦

∨
b←F¬C∧F¬B,FB,FC

◦

◦ ((dF¬C,F¬B,FB ◦F
∧
∆B,¬C) ∨ 1FC))) ◦F

∧
∆C,A:

FA ` FA ∧ ((F¬B ∧ F¬C) ∨ (FB ∨ FC)),

F
∨
ΣB∨C,A = F

∨
ΣC,A ◦ (((F

∨
ΣB,C ◦ ∨cFB∧F¬B,FC ◦ dR

FC,FB,F¬B)∧1F¬C)◦

◦
∧
b→FC∨FB,F¬B,F¬C

◦ (∨cFC,FB ∧ 1F¬B∧F¬C)) ∨ 1FA) :
((FB ∨ FC) ∧ (F¬B ∧ F¬C)) ∨ FA ` FA,

F (f ◦ g) = Ff ◦Fg,

F (f ξ g) = Ff ξ Fg, for ξ ∈ {∧,∨}.
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It is easy to infer

F
∧
∆¬B,A = F

∧
∆
′
B,A, F

∨
Σ¬B,A = F

∨
Σ
′
B,A,

F
∧
∆
′
¬B,A = F

∧
∆B,A, F

∨
Σ
′
¬B,A = F

∨
ΣB,A,

F
∧
∆B,A = F

∧
∆B,FA, F

∨
ΣB,A = F

∨
ΣB,FA.

To ascertain that F so defined is indeed a functor, we have to verify that if
f = g is an instance of one of the PN equations, then Ff = Fg holds in PN. This
is done by induction on the number od occurrences of connectives in the crown
indices occurring in these equations.

For (
∧
∆ nat) and (

∨
Σ nat) this is a very easy matter. For (

∧
b
∧
∆), (

∨
b
∨
Σ), (d

∧
Σ) and

(d
∨
∆) we use essentially naturality equations. (In that context, it might be easier to

rely on the equations (dR
∧
∆) and (dR

∨
Σ), which are alternative to (d

∧
Σ) and (d

∨
∆).)

To verify (
∨
Σ
∧
∆) in cases where A is of the form B ∧ C or B ∨ C, we rely on

the induction hypothesis that if f = g is an instance of a PN equation such that
the crown indices are B and C, then we have Ff = Fg in PN. This induction
hypothesis entails that we can proceed as in the proof of the p-¬p-p Lemma in the
preceding section, first for p replaced by B, and then for p replaced by C. Finally,
we apply DS Coherence (see the example at the end of the preceding section). To

verify (
∨
Σ
∧
∆) in case A is of the form ¬B, we rely on the induction hypothesis for

the equation (
∨
Σ
′ ∧
∆
′
).

To verify (
∨
Σ
′ ∧
∆
′
) we proceed analogously. In case A is B ∧ C or B ∨ C, we

rely on the proof of the ¬p-p-¬p Lemma in the preceding section, and in case A is
¬B we rely on the induction hypothesis for the equation (

∨
Σ
∧
∆). This concludes the

verification that F is a functor from PN¬ to PN.

In the definition of F, there is some freedom in choosing the clauses for F
ξ

ΞBψC,A,
where Ξ ∈ {∆,Σ} and ξ , ψ ∈ {∧,∨}. Ours enable us to apply easily the p-¬p-p and
¬p-p-¬p Lemmata in verifying that F is a functor.

We define a functor F¬ from PN to PN¬ by stipulating that F¬A = A and
F¬f = f . It is clear that if f = g in PN, then F¬f = F¬g in PN¬; so F¬ is
indeed a functor.

Our purpose is to show that PN¬ and PN are equivalent categories via the
functors F and F¬. It is clear that FF¬A = A and FF¬f = f . Since F¬FA = FA,
we have to define in PN¬ an isomorphism iA : A ` FA. For that we need the
following auxiliary definitions in PN¬:

n→A =df

∨
Σ
′
¬A,A

◦ d¬¬A,¬A,A ◦
∧
∆A,¬¬A : ¬¬A ` A,

n←A =df

∨
ΣA,¬¬A ◦ dA,¬A,¬¬A ◦

∧
∆
′
¬A,A : A ` ¬¬A,
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∧
r→A,B =df

∨
Σ
′
A∧B,¬A∨¬B

◦ d¬(A∧B),A∧B,¬A∨¬B◦ (1¬(A∧B) ∧ ((1A∧B∨ ∨
c¬A,¬B)◦

◦
∨
b←A∧B,¬B,¬A

◦ ((dA,B,¬B ◦
∧
∆
′
B,A) ∨ 1¬A))) ◦

∧
∆
′
A,¬(A∧B) :

¬(A ∧B) ` ¬A ∨ ¬B,
∧
r←A,B =df

∨
Σ
′
A,¬(A∧B)

◦ ((((
∨
∆
′
B,¬A

◦ dR
¬A,¬B,B) ∧ 1A) ◦

∧
b→¬A∨¬B,B,A

◦

◦ (1¬A∨¬B ∧ ∧
cA,B)) ∨ 1¬(A∧B)) ◦ d¬A∨¬B,A∧B,¬(A∧B) ◦

∧
∆
′
A∧B,¬A∨¬B :

¬A ∨ ¬B ` ¬(A ∧B),

∨
r→A,B =df

∨
Σ
′
A∨B,¬A∧¬B

◦ d¬(A∨B),A∨B,¬A∧¬B ◦ (1¬(A∨B)∧((∨cA,B∨1¬A∧¬B)◦

◦
∨
b→B,A,¬A∧¬B

◦ (1B ∨ (dR
A,¬A,¬B

◦
∧
Σ
′
A,¬B)))) ◦

∧
∆
′
B,¬(A∨B) :

¬(A ∨B) ` ¬A ∧ ¬B,
∨
r←A,B =df

∨
Σ
′
B,¬(A∨B)

◦ (((1¬B ∧ (
∨
Σ
′
A,B

◦ d¬A,A,B)) ◦
∧
b←¬B,¬A,A∨B

◦

◦ (∧c¬A,¬B ∧ 1A∨B)) ∨ 1¬(A∨B)) ◦ d¬A∧¬B,A∨B,¬(A∨B) ◦
∧
∆
′
A∨B,¬A∧¬B :

¬A ∧ ¬B ` ¬(A ∨B).

It can be shown that in PN¬ we have the following equations:

n→A ◦n←A = 1A, n←A ◦n→A = 1¬¬A,
∧
r→A,B

◦ ∧r←A,B = 1¬A∨¬B , ∧
r←A,B

◦ ∧r→A,B = 1¬(A∧B),
∨
r→A,B

◦ ∨r←A,B = 1¬A∧¬B , ∨
r←A,B

◦ ∨r→A,B = 1¬(A∨B),

which means that n→ and n←, as well as
ξ
r
→

and
ξ
r
←

are inverses of each other. To
derive these equations in PN¬, we use essentially (

∧
∆ nat), (

∨
Σ nat), the p-¬p-p and

¬p-p-¬p Lemmata, and DS Coherence. (If an equation holds in PN, then every
substitution instance of it obtained by replacing letters uniformly by formulae of
L¬,∧,∨ holds in PN¬; this enables us to apply the p-¬p-p and ¬p-p-¬p Lemmata.)

The definitions of n→, n←,
ξ
r
→

and
ξ
r
←

, for ξ ∈ {∧,∨}, are such that they enable
an easy application of the p-¬p-p and ¬p-p-¬p Lemmata.

Then we define iA : A ` FA and its inverse i−1
A : FA ` A by induction on the

complexity of the formula A of L¬,∧,∨ (cf. [11, Section 14.1]):

iA = i−1
A = 1A, if A is p or ¬p, for p a letter,

iA1ξA2 = iA1 ξ iA2 , i−1
A1ξA2

= i−1
A1

ξ i−1
A2

, for ξ ∈ {∧,∨},
i¬¬B = iB ◦n→B , i−1

¬¬B = n←B ◦ i−1
B ,

i¬(A1∧A2) = (i¬A1 ∨ i¬A2) ◦
∧
r→A1,A2

, i−1
¬(A1∧A2)

= ∧
r←A1,A2

◦ (i−1
¬A1

∨ i−1
¬A2

),

i¬(A1∨A2) = (i¬A1 ∧ i¬A2) ◦
∨
r→A1,A2

, i−1
¬(A1∨A2)

= ∨
r←A1,A2

◦ (i−1
¬A1

∧ i−1
¬A2

).

We can then prove the following (cf. [11, Section 14.1]).
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Auxiliary Lemma. For every arrow term f : A ` B of PN¬ we have f =
i−1
B

◦Ff ◦ iA in PN¬.

Proof. We proceed by induction on the complexity of the arrow term f . If f

is a primitive arrow term 1A,
ξ

b→A,B,C ,
ξ

b←A,B,C ,
ξ
cA,B or dA,B,C , for ξ ∈ {∧,∨}, then

we use naturality equations, and the fact that iD is an isomorphism.
If f is

∧
∆D,A, then we proceed by induction on the complexity of D. (This is

an auxiliary induction in the basis of the main induction.) If D is p, then we use

(
∧
∆ nat) and the fact that iA is an isomorphism.

If D is ¬B, then we rely on the following equation of PN¬:

(
∧
∆n)

∧
∆¬B,A = (1A ∧ (n←B ∨ 1¬B)) ◦

∧
∆
′
B,A,

together with the induction hypothesis. To derive (
∧
∆n) we have

(1A ∧ (n←B ∨ 1¬B)) ◦
∧
∆
′
B,A

= (1A ∧ (
∨
ΣB,¬¬B ∨ 1¬B)) ◦ (1A ∧ (dB,¬B,¬¬B ∨ 1¬B)) ◦

◦ (1A ∧ (
∧
∆
′
¬B,B ∨ 1¬B)) ◦

∧
∆
′
B,A, by bifunctorial equations,

= (1A ∧ (
∨
ΣB,¬¬B ∨1¬B)) ◦ (1A ∧ ((dB,¬B,¬¬B ∨ 1¬B) ◦

◦ ∨
cB∧(¬B∨¬¬B),¬B ◦ dR

¬B,B,¬B∨¬¬B
◦ (∨c¬B,B ∧ 1¬B∨¬¬B))) ◦

◦
∧
b←A,¬B,B∨¬B

◦ (
∧
∆
′
B,A ∧ 1¬B∨¬¬B) ◦ (1A ∧ ∨

c¬B,¬¬B) ◦
∧
∆¬B,A,

by stem-increasing equations involving
∧
∆
′
analogous to (1 ∨ ∧

∆) and (1 ∧ ∧
∆) of the

preceding section, and also (
∧
∆
′
nat). The equation (

∧
∆n) follows by applying the

¬p-p-¬p Lemma (with p replaced by A), and DS Coherence.
If D is B ∧ C, then we rely on the following equation of PN¬:

(
∧
∆r)

∧
∆B∧C,A = (1A ∧ (((∧r←B,C

◦ ∨
c¬B,¬C) ∨ 1B∧C) ◦

∨
b→¬C,¬B,B∧C

◦

◦ (1¬C ∨ (dR
¬B,B,C

◦
∧
ΣB,C)))) ◦

∧
∆C,A,

together with the induction hypothesis. To show that (
∧
∆r) holds in PN¬ we

proceed as above, by applying essentially stem-increasing equations together with
the p-¬p-p Lemma. We proceed analogously when D is B ∨ C.

The cases we have if f is
∨
ΣD,A are dual to those we had above for f being

∧
∆D,A. In all these cases we proceed in an analogous manner. This concludes the
basis of the induction.

If f is f2 ◦ f1, then by the induction hypothesis we have

f2 ◦ f1 = i−1
B

◦Ff2 ◦ iC ◦ i−1
C

◦Ff1 ◦ iA



24 DOŠEN AND PETRIĆ

which yields f = i−1
B

◦Ff ◦ iA, by the fact that iC is an isomorphism and by the
functoriality of F .

If f is f1 ξ f2, for ξ ∈ {∧,∨}, then iA1ξA2 is iA1 ξ iA2 and i−1
B1ξB2

is i−1
B1

ξ i−1
B2

;
we obtain f = i−1

B
◦Ff ◦ iA by using bifunctorial equations. a

The Auxiliary Lemma shows that iA is an isomorphism natural in A, and so
we may conclude that PN¬ and PN are equivalent categories.

8. PN Coherence

We define a functor G from PN to Br as we defined it from PN¬ to Br. In
the clauses for

∧
∆B,A and

∨
ΣB,A we just restrict B to a letter p. For f an arrow term

of PN¬ we have that GFf coincides with Gf where F is the functor from PN¬

to PN of the preceding section, G in GFf is the functor G from PN to Br and G

in Gf is the functor G from PN¬ to Br. To show that, it is essential to check that
GF

∧
∆B,A and GF

∨
ΣB,A coincide with G

∧
∆B,A and G

∨
ΣB,A respectively.

In this section we will prove that G from PN to Br is faithful. This will imply
that G from PN¬ to Br is faithful too.

Analogously to what we had at the beginning of §5, we define when an occur-
rence x of a letter p in A is linked to an occurrence y of the same letter p in B

in an arrow f : A ` B of PN. We say that x and y are directly linked in a headed
factorized arrow term fn ◦ . . . ◦ f1 of PN when x and y are linked in the arrow
fn ◦ . . . ◦ f1, and for every i ∈ {2, . . . , n} if fi is a

∨
Σp,C-term and z is one of the two

occurrences of p in the crown p ∧ ¬p of the head of fi, then x and z are not linked
in the arrow fi−1 ◦ . . . ◦ f1 (see the end of §3 for the definition of headed factorized
arrow term).

An alternative definition of directly linked x and y in a headed factorized arrow
term f1 ◦ . . . ◦ fn of PN is obtained by stipulating that x and y are linked in the
arrow f1 ◦ . . . ◦ fn, and for every i ∈ {2, . . . , n} if fi is a

∧
∆p,D-term and z is one of

the two occurrences of p in the crown ¬p ∨ p of the head of fi, then z and y are
not linked in the arrow f1 ◦ . . . ◦ fi−1.

For example, the occurrence of q in the source p ∧ q and the occurrence of q in
the target q ∧ p of

∧
cp,q ◦ (

∨
Σp,p ∧ 1q) ◦ (dp,¬p,p ∧ 1q) ◦ (

∧
∆p,p ∧ 1q)

are directly linked in this headed factorized arrow term of PN, while the two
occurrences of p in its source and target are not directly linked.

Take a headed factorized arrow term of PN of the form g2 ◦ f ◦ g1 where g1 is
a
∧
∆p,D-term and g2 is

∨
Σp,C-term. Let ¬x1 ∨ x2 be the crown of the head of g1 (so

x1 and x2 are both occurrences of p) and let y2 ∧ ¬y1 be the crown of the head of
g2 (so y1 and y2 are also occurrences of the same letter p). We say that g1 and g2
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are confronted through f when xi and yi are directly linked for some i ∈ {1, 2} in
the arrow term f .

Let a
∧
∆p,A-term that is a factor of a factorized arrow term f be called a

∧
∆-

factor. We have an analogous definition of
∨
Σ-factor obtained by replacing

∧
∆ by

∨
Σ.

We can then prove the following lemma.

Confrontation Lemma. For every headed factorized arrow term g2 ◦ f ◦ g1 of
PN such that g1 and g2 are confronted through f there is a headed factorized arrow
term h of PN with a subterm of the form g′2 ◦ f ′ ◦ g′1 such that g′1 is a

∧
∆-factor, g′2

is a
∨
Σ-factor, g′1 and g′2 are confronted through f ′, and, moreover,

(1) f ′ is an arrow term of DS¬p,
(2) g2 ◦ f ◦ g1 = h in PN,

(3) the number of
∧
∆-factors is equal in g2 ◦ f ◦ g1 and h, and the same

for the number of
∨
Σ-factors.

Proof. We proceed by induction on the number n of factors of f that are
∧
∆-factors or

∨
Σ-factors. If n = 0, then the arrow term f ′ coincides with the arrow

term f .
If n > 0, then let g2 ◦ f ◦ g1 be of the form f2 ◦ g ◦ f1 for g a

∧
∆q,E-term (we

proceed analogously when g is a
∨
Σq,E-term). According to the stem-increasing

equations of §6, we may assume that g coincides with its head
∧
∆q,E . Then by

(
∧
∆ nat) we obtain in PN

g2 ◦ f ◦ g1 = f2 ◦ (f1 ∧ 1¬q∨q) ◦
∧
∆q,E′ .

After f1 ∧ 1¬q∨q in f2 ◦ (f1 ∧ 1¬q∨q) is replaced by a headed factorized arrow term
g2 ◦ f ′′ ◦ (g1 ∧ 1¬q∨q), we may apply the induction hypothesis to this arrow term,
because it can easily be seen that g1 ∧ 1¬q∨q and g2 are confronted through f ′′,

and f ′′ has one
∧
∆-factor less than f . a

A headed factorized arrow term of PN that has no subterm of the form
g2 ◦ f ◦ g1 with g1 and g2 confronted through f is called pure. For a pure arrow
term f there is a one-to-one correspondence, which we call the

∧
∆-cap bijection,

between the
∧
∆-factors of f and the caps of the partition part(Gf). In this bijec-

tion, a cap ties, in an obvious sense, the occurrences of p in the crown ¬p ∨ p of
the head of the corresponding

∧
∆-factor. There is an analogous one-to-one corre-

spondence, which we call the
∨
Σ-cup bijection, between the

∨
Σ-factors of f and the

cups of part(Gf) (see §4 for the notions of cup and cap). Intuitively speaking, this
follows from the fact that in a sequence of cups and caps tied to each other as in
the following example:
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µ´
µ´

¶³

¶³

∗

∗

cups and caps must alternate. For a pair made of a cap and a cup that is its
immediate neighbour, like those marked with ∗ in the picture, we can find a subterm
g2 ◦ f ◦ g1 such that g1 and g2 are confronted through f .

We can then prove the following.

Purification Lemma. Every arrow term of PN is equal in PN to a pure
arrow term of PN.

Proof. We apply first the Development Lemma of §3. If in the resulting
developed arrow term h we have a subterm g2 ◦ f ◦ g1 with g1 and g2 confronted
through f , then we apply first the Confrontation Lemma to obtain a developed
arrow term h′ with a subterm of the form g′2 ◦ f ′ ◦ g′1 where g′1 and g′2 are confronted
through f ′, and f ′ is an arrow term of DS¬p.

Suppose that ¬x2 ∨ x3 is the crown of the head of g′1, and y1 ∧ ¬y2 is the crown
of the head of g′2. Suppose x2 is linked to y2 in f ′. Then, by Lemma 3 of §5, it
is impossible that x3 is linked to y1, and so there must be an occurrence x1 of p

different from x3 in the source of f ′ such that x1 is linked to y1 in f ′, and there
must be an occurrence y3 of p different from y1 in the target of f ′ such that x3

is linked to y3 in f ′. Next we apply the p-¬p-p Lemma of §6 to conclude that
g′2 ◦ f ′ ◦ g′1 is equal to an arrow term h′′ of DS¬p.

After replacing g′2 ◦ f ′ ◦ g′1 in h′ by h′′, we obtain a headed factorized arrow term

in which there is one
∧
∆-factor and one

∨
Σ-factor less than in h′, and hence also than

in h, by clause (3) of the Confrontation Lemma.
If x3 is linked to y1, then we reason analogously by applying Lemma 3 of §5

and the ¬p-p-¬p Lemma of §6.
We can iterate this procedure, which must terminate, because the number of

∧
∆-factors and

∨
Σ-factors in h is finite. a

We can then prove the following.

PN Coherence. The functor G from PN to Br is faithful.

Proof. Suppose for f and g arrow terms of PN of the same type A ` B we
have Gf = Gg. By the Purification Lemma, we can assume that f and g are pure
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arrow terms. Since Gf = Gg, by the
∧
∆-cap and

∨
Σ-cup bijections we must have

the same number n > 0 of
∧
∆-factors in f and g and the same number m > 0 of

∨
Σ-factors in f and g. We proceed by induction on n+m.

If n+m = 0, then we just apply DS Coherence. Suppose now n > 0. So there
is a

∧
∆-factor in f and a

∧
∆-factor in g that correspond by the

∧
∆-cap bijections to

the same cap of part(Gf), which is equal to part(Gg). By using the head increasing

equations of §6, together with (
∧
∆ nat), we obtain in PN

f = f ′ ◦
∧
∆p,A, g = g′ ◦

∧
∆p,A

for f ′ and g′ pure arrow terms of the same type A ∧ (¬p ∨ p) ` B, and such that

the number of
∧
∆-factors in f ′ and g′ is n−1 in each, and the number of

∨
Σ-factors

in f ′ and g′ is m in each, the same number we had for the
∨
Σ-factors in f and g. So

we have

G(f ′ ◦
∧
∆p,A) = Gf = Gg = G(g′ ◦

∧
∆p,A).

We can show that Gf ′ = Gg′. We obtain Gf ′ out of G(f ′ ◦
∧
∆p,A) in the follow-

ing manner. We first remove from the partition part(G(f ′ ◦
∧
∆p,A)) a cap {kt, lt},

where the k+1-th occurrence of letter in B is an occurrence of p in a subformula
¬p of B, and the l+1-th occurrence of letter in B is an occurrence of p that is not
in a subformula ¬p of B (here we have either k < l or l < k). After this removal,
we add two new transversals:

{GAs, kt}, {(GA+1)s, lt},

and this yields part(Gf ′). Since Gg′ is obtained from G(g′ ◦
∧
∆p,A), which is equal

to G(f ′ ◦
∧
∆p,A) in exactly the same manner, we obtain that Gf ′ = Gg′.

Then, by the induction hypothesis, we have that f ′ = g′ in PN, which implies
that f = g in PN. We proceed analogously in the induction step when m > 0, via
∨
Σ-factors. a

From PN Coherence and the equivalence between the categories PN¬ and PN,
proved in the preceding section, we may conclude in the following manner that the
functor G from PN¬ to Br is faithful.

Proof of PN¬ Coherence. Suppose that for f and g arrows of PN¬ of the
same type we have Gf = Gg. Then, as we noted at the beginning of this section,
we have GFf = GFg, and hence Ff = Fg in PN by PN Coherence. It follows
that f = g in PN¬ by the equivalence of the categories PN¬ and PN. a

So we have proved PN¬ Coherence, announced at the end of §4.
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9. The category MDS

In this and in the next section we add mix arrows of the type A ∧B ` A ∨B

to proof-net categories, together with appropriate conditions that will enable us
to prove coherence with respect to Br for the resulting categories, which we call
mix-proof-net categories. The mix arrows, which underly the mix principle of
linear logic, were treated extensively in [11, Chapters 8, 10, 11, 13]. The proof of
coherence for mix-proof-net categories is an adaptation of the proof of coherence
for proof-net categories given in the preceding sections.

The category MDS is defined as the category DS in §2 save that we have the
additional primitive arrow terms mA,B : A ∧ B ` A ∨ B for all objects, i.e. for all
formulae, A and B of L∧,∨, and we assume the following additional equations:

(m nat) (f ∨ g) ◦mA,B = mD,E ◦ (f ∧ g), for f : A ` D and g : B ` E,

(
∧
b m) mA∧B,C ◦

∧
b→A,B,C = dA,B,C ◦ (1A ∧mB,C),

(
∨
b m)

∨
b→C,B,A

◦mC,B∨A = (mC,B ∨ 1A) ◦ dC,B,A,

(cm) mB,A ◦ ∧
cA,B = ∨

cB,A ◦mA,B .

The proof-theoretical principle underlying mA,B is called mix (see [11, Section 8.1]
and references therein).

To obtain the functor G from MDS to Br, we extend the definition of the
functor G from DS to Br (see §4) by adding the clause that says that GmA,B is
the identity arrow 1GA+GB of Br. We have the following result of [11, Section 8.4].

MDS Coherence. The functor G from MDS to Br is faithful.

In the remainder of this section we will prove some lemmata concerning MDS,
which we will use for the proof of coherence in the next section. For that we need
some preliminaries.

For x a particular proper subformula of a formula A of L∧,∨, and ξ ∈ {∧,∨},
we define A−x inductively as follows:

(B ξ x)−x = (x ξ B)−x = B,

for x a proper subformula of C,

(B ξ C)−x= B ξ C−x,

(C ξ B)−x= C−x ξ B.

For i ∈ {1, 2}, let Ai be a formula of L∧,∨ with a proper subformula xi, which
is an occurrence of a letter q, and let xi be the ni-th occurrence of letter counting
from the left. We define the following functions µi : N − {ni−1} → N :

µi(n) =df

{
n if n < ni−1
n−1 if n > ni−1.

The definition of linked occurrence of a letter in an arrow of MDS is analogous
to what we had in §5. Then we can prove the following.
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Lemma 1. For every arrow term f : A1 ` A2 of MDS such that x1 and x2 are
linked in the arrow f , there is an arrow term f−q : A−x1

1 ` A−x2
2 of MDS such that

the members of part(Gf−q) are {s(µ1(m1)), t(µ2(m2))} for each {s(m1), t(m2)} in
part(Gf), provided mi 6= ni−1.

Proof. We proceed by induction on the complexity of the arrow term f . If f

is a primitive arrow term αB1,...,Bm , then for some j ∈ {1, . . . , m} we have that xi

occurs in a subformula Bj of Ai. If xi is a proper subformula of this subformula
Bj , then B−xi

j is defined, and f−q is

α
B1,...,Bj−1,B

−xi
j ,Bj+1,...,Bm

(note that B−x1
j and B−x2

j are the same formula). If xi is not a proper subformula
of the subformula Bj , then f−q is 1

A
−xi
i

.
If f is g ◦h, then f−q is g−q ◦h−q, and if f is g ξ h for ξ ∈ {∧,∨}, then f−q is

either g−q ξ h, or g ξ h−q, or g when h is 1x1 , or h when g is 1x1 . a
Here is an example of the application of Lemma 1. If f : A1 ` A2 is

((mq,p∧q ◦ (1q ∧ ∧
cq,p) ◦

∧
cq∧p,q) ∨ 1p) ◦ dq∧p,q,p ◦

∧
b→q,p,q∨p ◦ ∧

cp∧(q∨p),q:

(p ∧ (q ∨ p)) ∧ q ` (q ∨ (p ∧ q)) ∨ p,

where x1 is the second (rightmost) occurrence of q in (p ∧ (q ∨ p)) ∧ q, while x2 is
the second occurrence of q in (q ∨ (p ∧ q)) ∨ p, then f−q : A−q

1 ` A−q
2 is

((mq,p ◦ (1q ∧ 1p) ◦
∧
cp,q) ∨ 1p) ◦ dp,q,p ◦1p∧(q∨p) ◦1p∧(q∨p) : p ∧ (q ∨ p) ` (q ∨ p) ∨ p,

which is equal to ((mq,p ◦
∧
cp,q) ∨ 1p) ◦ dp,q,p.

We define inductively a notion we call a context :

¤ is a context;
if Z is a context and A a formula of L∧,∨, then Z ξ A and A ξ Z are
contexts for ξ ∈ {∧,∨}.

Next we define inductively what it means for a context Z to be applied to an
object B of MDS, which we write Z(B), or to an arrow term f of MDS, which
we write Z(f):

¤(B) = B, ¤(f) = f ,

(Z ξ A)(B) = Z(B) ξ A, (Z ξ A)(f) = Z(f) ξ 1A,

(A ξ Z)(B) = A ξ Z(B); (A ξ Z)(f) = 1A ξ Z(f).

We use X, Y , Z, . . . for contexts.
For f : A ` C an arrow of MDS, we say that an occurrence x of a formula B

as a subformula of A and an occurrence y of the same formula B as a subformula
of C are linked in f when the n-th letter in x is linked in f to the n-th letter in y.

Let f : X(p) ∧B ` Y (p ∧B) be an arrow term of MDS such that the displayed
occurrences of p in the source and target, and also the displayed occurrences of B,
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are linked in the arrow f . Then, by successive applications of Lemma 1, for each
occurrence of a letter in B, we obtain the arrow term f−B : X(p) ` Y (p) of MDS,
and the displayed occurrences of p in X(p) and Y (p) are linked in the arrow f−B .

Let f† : X(p ∧B) ` Y (p ∧B) be the arrow term of MDS obtained from f−B

by replacing the occurrences of p that correspond to those displayed in X(p) and
Y (p) by occurrences of p ∧B. This replacement is made in the indices of primitive
arrow terms that occur in f−B , and it need not involve all the occurrences of p in
these indices. For example, if X is ¤ ∧ (q ∨ p) and Y is (q ∨¤) ∨ p, while f−B is

((mq,p ◦
∧
cp,q) ∨ 1p) ◦ dp,q,p : p ∧ (q ∨ p) ` (q ∨ p) ∨ p,

then f† is

((mq,p∧B ◦ ∧
cp∧B,q) ∨ 1p) ◦ dp∧B,q,p : (p ∧B) ∧ (q ∨ p) ` (q ∨ (p ∧B)) ∨ p.

Then we can prove the following.

Lemma 2∧. Let f : X(p) ∧B ` Y (p ∧B) and f† : X(p ∧B) ` Y (p ∧B) be as
above. Then there is an arrow term hX : X(p) ∧B ` X(p ∧B) of DS such that
f = f† ◦hX in MDS.

Proof. We construct the arrow term hX of DS by induction on the complexity
of the context X. For the basis we have that h� is 1p∧B . In the induction step we
have

hZ∧A = (hZ ∧ 1A) ◦ ∧
cA,Z(p)∧B ◦

∧
b←A,Z(p),B

◦ (∧cZ(p),A ∧ 1B),

hZ∨A = (hZ ∨ 1A) ◦ ∨
cZ(p)∧B,A ◦ dR

A,Z(p),B
◦ (∨cA,Z(p) ∧ 1B),

hA∧Z = (1A ∧ hZ) ◦
∧
b←A,Z(p),B ,

hA∨Z = (1A ∨ hZ) ◦ dR
A,Z(p),B .

It is easy to see that Gf = G(f† ◦hX), and then the lemma follows by applying
MDS Coherence. a

Let f : Y (B ∨ p) ` B ∨X(p) be an arrow term of MDS such that the displayed
occurrences of p in the source and target, and also the displayed occurrences of B,
are linked in the arrow f . Then, as above by Lemma 1, we obtain the arrow term
f−B : Y (p) ` X(p) of MDS, and the displayed occurrences of p in Y (p) and X(p)
are linked in the arrow f−B .

Let f† : Y (B ∨ p) ` X(B ∨ p) be the arrow term of MDS obtained from f−B

by replacing the occurrences of p that correspond to those displayed in Y (p) and
X(p) by occurrences of B ∨ p (cf. the example above). Then we can prove the
following, analogously to Lemma 2∧.

Lemma 2∨. Let f : Y (B ∨ p) ` B ∨X(p) and f† : Y (B ∨ p) ` X(B ∨ p) be as
above. Then there is an arrow term hX : X(B ∨ p) ` B ∨X(p) of DS such that
f = hX ◦ f† in MDS.
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10. MPN¬ Coherence

The category MPN¬ is defined as the category PN¬ in §3 save that we have
the additional primitive arrow terms mA,B : A ∧B ` A ∨B for all objects A and B

of PN¬, and we assume as additional equations (m nat), (
∧
b m), (

∨
b m) and (cm) of

the preceding section. To obtain the functor G from MPN¬ to Br, we extend the
definition of the functor G from PN¬ to Br by adding the clause that says that
GmA,B is the identity arrow 1GA+GB of Br.

A mix-proof-net category is defined as a proof-net category (see §3) that has

in addition a natural transformation m satisfying the equations (
∧
b m), (

∨
b m) and

(cm). The category MPN¬ is up to isomorphism the free mix-proof-net category
generated by P.

The category MPN is defined as the category PN in §6 save that we have the
additional primitive arrow terms mA,B for all objects of PN, and we assume as

additional equations (m nat), (
∧
b m), (

∨
b m) and (cm). We can prove that MPN¬

and MPN are equivalent categories as in §7. (We have an additional case involving
mA,B in the proof of the analogue of the Auxiliary Lemma of §7, and similar trivial
additions elsewhere; otherwise the proof is quite analogous.)

We have a functor G from MPN to Br defined by restricting the definition of
the functor G from MPN¬ to Br (cf. the beginning of §8), and we will prove the
following.

MPN Coherence. The functor G from MPN to Br is faithful.

The proof of this coherence proceeds as the proof of PN Coherence in §8. The
only difference is in the

∧
Ξ-Permutation and

∨
Ξ-Permutation Lemmata of §6.

The formulation of the
∧
Ξ-Permutation Lemma is modified by replacing PN and

DS¬p by respectively MPN and MDS¬p, where the category MDS¬p is defined
as MDS save that it is generated not by P, but by P ∪ P¬ (cf. §6); moreover, we
assume that y1 and ¬y2 occur in E within a subformula of the form p ∧ (¬y2 ∨ y1)
or ¬p ∧ (y1 ∨ ¬y2). We modify the proof of this lemma as follows.

If in E we have p ∧ (¬y2 ∨ y1), then by the stem-increasing equations of §6 we

have that the
∧
Ξp,B-term g : C ` D is equal to f ′′ ◦

∧
∆p,C for f ′′ : C ∧ (¬p ∨ p) ` D

an arrow term of DS¬p, and so for f : D ` E an arrow term of MDS¬p satisfying
the conditions of the lemma we have in MPN

f ◦ g = f ◦ f ′′ ◦
∧
∆p,C .

Then we apply Lemma 2∧ of the preceding section to

f ◦ f ′′ : C ∧ (¬p ∨ p) ` E,

where C is X(p), ¬p ∨ p is B and E is Y (p ∧ (¬p ∨ p)). So for

hX : X(p) ∧ (¬p ∨ p) ` X(p ∧ (¬p ∨ p))
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an arrow term of DS¬p, and

(f ◦ f ′′)† : X(p ∧ (¬p ∨ p)) ` Y (p ∧ (¬p ∨ p))

we have
f ◦ f ′′ = (f ◦ f ′′)† ◦hX .

By the
∧
Ξ-Permutation Lemma of §6 we have

hX ◦
∧
∆p,C = g′ ◦ f ′

where g′ is the
∧
∆p,p-term X(

∧
∆p,p), and by bifunctorial and naturality equations

we have
(f ◦ f ′′)† ◦X(

∧
∆p,p) = Y (

∧
∆p,p) ◦ (f ◦ f ′′)−(¬p∨p).

Note that (f ◦ f ′′)† is obtained from (f ◦ f ′′)−(¬p∨p) : X(p) ` Y (p) by replacement
of p.

So we have in MPN

f ◦ g = f ◦ f ′′ ◦
∧
∆p,C

= (f ◦ f ′′)† ◦hX ◦
∧
∆p,C

= (f ◦ f ′′)† ◦X(
∧
∆p,p) ◦ f ′

= Y (
∧
∆p,p) ◦ f ′′′

for f ′′′, which is (f ◦ f ′′)−(¬p∨p) ◦ f ′, an arrow term of MDS¬p.

We proceed analogously if in E we have ¬p ∧ (y1 ∨ ¬y2); instead of
∧
∆p,p we

then have
∧
∆
′
p,p. We have an analogous reformulation of the

∨
Ξ-Permutation Lemma

of §6, with a proof based on Lemma 2∨ of the preceding section.
Instead of Lemma 2∧ of the preceding section, we could have proved, with more

difficulty, an analogous lemma where f is of type

Z(X1(p) ∧X2(B)) ` Y (p ∧B),

and f† is of one of the following types:

Z(X1(p ∧B) ∧ (X2(B))−B) ` Y (p ∧B),

Z(X1(p ∧B)) ` Y (p ∧B).

Then in the proof of the
∧
Ξ-Permutation Lemma modified for MPN we would not

need to pass from g to f ′′ ◦
∧
∆p,C via stem-increasing equations, but this alternative

approach is altogether less clear.
Note that we have no analogue of Lemma 2 of §5 for MDS. The lack of

this lemma, on which we relied in §6 for the proof of the
∧
Ξ-Permutation and

∨
Ξ-

Permutation Lemmata, is tied to the modifications we made for these lemmata with
MPN. We have also no analogue of Lemma 4 of §5, but the analogue of Lemma 3
of §5 does hold.
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From MPN Coherence and the equivalence of the categories MPN¬ and
MPN we can then infer the following.

MPN¬ Coherence. The functor G from MPN¬ to Br is faithful.
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