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Zoran Ognjanović, Zoran Marković
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Abstract. We present a propositional probability logic which allows making
formulas that speak about imprecise and conditional probabilities. A class of
Kripke-like probabilistic models is defined to give semantics to probabilistic
formulas. Every possible world of such a model is equipped with a probability
space. The corresponding probabilities may have nonstandard values. The
proposition “the probability is close to r” means that there is an infinitesimal
ε, such that the probability is equal to r−ε (or r+ε). We provide an infinitary
axiomatization and prove the corresponding extended completeness theorem.

1. Introduction

Although the problem of reasoning with uncertain knowledge is a very old
problem dating, at least, from Leibnitz and Boole, formal systems for reasoning in
the presence of uncertainty have been recognized as a useful tool in many fields of
Computer Science and Artificial Intelligence only since the Nils Nilsson’s paper [16].
Using the semantical approach, Nilsson introduced some procedures for calculating
the bounds on the absolute probability of a consequence given the probabilities of
the premisses. It motivated many semantical and some proof-theoretical approaches
to logics with absolute probabilities (see [2, 4, 5, 6, 9, 10, 15, 18, 19, 20], and
the references given there). In the latter discussion on the subject [17] Nilsson
argued that a more natural generalization of the classical modus ponens could be
handled by conditional probabilities. However, there are not too many papers
discussing conditional probabilities from the logical point of view [6, 7, 14, 22]. In
[6] a logic which allows formal reasoning about conditional probabilities using the
machinery of real closed fields is introduced. In [14], a fuzzy modal logic FCP (LΠ)
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35



36 OGNJANOVIĆ, MARKOVIĆ AND RAŠKOVIĆ

is introduced along the ideas about coherent probabilities proposed by de Finetti.
For each pair of classical propositional formulas α and β, the probability of the
conditional event “α given β” is taken as the truth-value of the (fuzzy) modal
proposition P (α | β). An axiomatic system is introduced and shown to be sound
and complete with respect to the class of probabilistic Kripke structures induced by
coherent conditional probabilities. A close approach can be found in [7], where a
treatment of nonstandard conditional probability by means of fuzzy logic is given.
One of the areas of application of probabilistic logics is the area of default reasoning,
which for a while suffered from a lack of proper syntactic characterization. In
the seminal paper [12] a set of properties which form a core of default reasoning
and the corresponding formal system denoted P are proposed. Many semantics
for default entailment have been introduced and proven to be characterized by P
[8]. One such approach uses conditional probability to semantically characterize
defaults [12], but in that context probability function with non-standard values has
to be used. Another similar line of research concerns the study of conditionals (or
counter-factuals) [3].

In this paper we present a propositional probability logic LICPS (L for logic, I
for imprecise, CP for conditional probabilities, while S denotes a special countable
set which will be discussed later on) and explore the issue of completeness. The
logic allows making formulas that speak about imprecise and conditional probabil-
ities. The corresponding language is obtained by adding probability operators to
the classical propositional language. There are two kinds of new operators. The
operators of the first type ({P>s}s∈S , for the probability of a single formula, and
{CP>s}s∈S , {CP=s}s∈S , for the conditional probability) concern standard (”crisp”)
probabilities with the intended meaning “the (conditional) probability is at least s”
and “is s”, respectively. The operators of the second type (CP≈r, P≈r, where r be-
longs to the unit interval of rational numbers) concern imprecise probabilities with
the intended meaning that “the (conditional) probability is close to r”. The set S
mentioned above is the unit interval of a recursive nonarchimedean field containing
all rational numbers. An example of such field is the Hardy field Q[ε], where ε is
an infinitesimal. In this paper S is used to syntactically define the range of the
probability functions that will appear in the interpretation. Thus, the proposition
“the (conditional) probability is close to r” means that there is an infinitesimal ε0,
such that the (conditional) probability is equal to r − ε0 (or r + ε0).

Probabilistic models based on Kripke models are used to give semantics to
the formulas so that interpreted formulas are either true or false. Every world
from a probability model is equipped with a probability space. The corresponding
probability measures are defined on sets of subsets of possible worlds, while the
range of the probabilities is the set S. More precisely, we consider the so called
class of measurable models. A model is measurable if only sets of possible worlds
definable by formulas are measurable. We give an infinitary axiomatic system for
LICPS . Here the terms finitary and infinitary concern the proof system only:
our object language is countable, formulas are finite, while only proofs are allowed
to be infinite. For that axiomatic system and the mentioned class of measurable
probability models we prove the extended completeness theorem (‘every consistent
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set of formulas is satisfiable’). The reason for introducing infinitary rules is that
for our logic the compactness theorem does not hold, i.e., there exists a countably
infinite set of formulas that is unsatisfiable although every finite subset is satisfiable.
For instance, consider {¬P=0α} ∪ {P<εnα : n is a positive integer}. It follows that
it is not possible to give a usual finitary axiomatic system for LICPS since the
compactness theorem follows easily from the extended completeness theorem if the
corresponding axiomatization is finitary. There are four infinitary rules in our
system. One of them (Rule 3) enables us to syntactically define the range of the
probability functions which will appear in the interpretation. A similar rule was
given in [1] but restricted to rationals only.

We showed in [21, 22] how, thanks to our nonstandard probabilistic semantics,
a restriction (denoted LPPS) of LICPS can be used to syntactically describe
the behavior of the defaults in a probabilistic framework. LPPS allows only one
imprecise conditional probability operator CP≈1, and does not allow iteration of
probabilistic operators. The axioms and rules of the system P can be translated
into LPPS-valid formulas, so that the formula CP≈1(β, α) syntactically describes
the behavior of the default ’if α, then generally β’. Thus, the corresponding LPPS-
axiom system can be used to characterize the default consequence relation. In [13]
a combination of probabilistic knowledge and default reasoning is considered. Since
the axioms and rules of the system P are applied to probabilistic knowledge, and
since LPPS does not allow iteration of probabilistic operators, it is not possible
to extend our approach from [21, 22] to the framework discussed there. Thus,
we consider our logic LICPS as a natural generalization of LPPS which might be
useful in characterization of the system proposed in [13].

2. Syntax

Let Q[0, 1] denote the set of all rational numbers from the unit interval. Let
S be the unit interval of a recursive nonarchimedean field containing Q[0, 1]. An
example of such field is the Hardy field Q[ε]. Q[ε] contains all rational functions of
a fixed infinitesimal ε which belongs to a nonstandard elementary extension R∗ of
the standard real numbers (see [11, 23]). A typical positive element of Q[ε] is of
the form

εk

∑n
i=0 aiε

i

∑m
i=0 biεi

,

where a0 · b0 6= 0.
The language of the logic consists of:

• a denumerable set Var = {p, q, r, . . .} of propositional letters,
• classical connectives ¬, and ∧,
• a denumerable list of unary probabilistic operators (P>s)s∈S ,
• a denumerable list of unary probabilistic operators (P≈r)r∈Q[0,1],
• a denumerable list of binary probabilistic operators (CP>s)s∈S ,
• a denumerable list of binary probabilistic operators (CP=s)s∈S and
• a denumerable list of binary probabilistic operators (CP≈r)r∈Q[0,1].
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The set of formulas is defined inductively as the smallest set containing propo-
sitional letters and closed under formation rules: if α and β are formulas, s ∈ S and
r ∈ Q[0, 1], then ¬α, α ∧ β, P>sα, P≈rα, CP>s(α, β), CP=s(α, β) and CP≈r(α, β)
are formulas. Let ForS denote this set of formulas.

For example, (¬p ∧ P≈0.5q) ∧ CP>1−2ε1(r ∧ q, CP=0.8(r, p)) is a formula.
The other classical connectives (∨, →, ↔) can be defined as usual, while we

denote ¬P>sα by P<sα, P>1−s¬α by P6sα, ¬P6sα by P>sα, P>sα ∧ ¬P>sα by
P=sα, ¬P=sα by P6=sα, ¬CP>s(α, β) by CP<s(α, β), CP<s(α, β) ∨ CP=s(α, β) by
CP6s(α, β), and CP>s(α, β) ∧ ¬CP=s(α, β) by CP>s(α, β). Finally, we use ⊥ to
denote ¬p ∧ p.

3. Semantics

The semantics for our logic will be based on the Kripke-style models.

Definition 3.1. An LICPS-model is a structure M = 〈W,Prob, v〉 where:

• W is a nonempty set of elements called worlds,
• Prob is a probability assignment which assigns to every w ∈ W a proba-

bility space Prob(w) = 〈W (w),H(w), µ(w)〉, where:
– W (w) is a non empty subset of W ,
– H(w) is an algebra of subsets of W (w) and
– µ(w) : H(w) → S is a finitely additive probability measure, and

• v : W × Var → {true, false} is a valuation which associates with every
world w ∈ W a truth assignment v(w) on the propositional letters.

Let M = 〈W,Prob, v〉 be an LICPS-model, w, u ∈ W , p ∈ Var, α, β ∈ ForS ,
s ∈ S and r ∈ Q[0, 1]. The satisfiability relation |= is inductively defined as follows:

(1) (w, M) |= p if v(w)(p) = true,
(2) (w, M) |= ¬α if it is not (w,M) |= α,
(3) (w, M) |= α ∧ β if (w, M) |= α and (w, M) |= β,
(4) (w, M) |= P>sα if µ(w)({u ∈ W (w) : (u,M) |= α}) > s,
(5) (w, M) |= P≈rα if for every integer n > 0,

µ(w)({u ∈ W (w) : (u, M) |= α}) ∈ [max{0, r − 1/n},min{1, r + 1/n}],
(6) (w, M) |= CP>s(α, β) if either µ(w)({u ∈ W (w) : (u,M) |= β}) = 0 or

µ(w)({u ∈ W (w) : (u, M) |= β}) > 0 and µ(w)({u∈W (w):(u,M)|=α∧β})
µ(w)({u∈W (w):(u,M)|=β}) > s,

(7) (w, M) |= CP=s(α, β) if either µ(w)({u ∈ W (w) : (u,M) |= β}) = 0 and
s = 1 or µ(w)({u ∈ W (w) : (u,M) |= β}) > 0 and
µ(w)({u∈W (w):(u,M)|=α∧β})

µ(w)({u∈W (w):(u,M)|=β}) = s,
(8) (w, M) |= CP≈r(α, β) if either µ(w)({u ∈ W (w) : (u,M) |= β}) = 0 and

r = 1 or µ(w)({u ∈ W (w) : (u,M) |= β}) > 0 and for every positive
integer n, µ(w)({u∈W (w):(u,M)|=α∧β})

µ(w)({u∈W (w):(u,M)|=β}) ∈ [max{0, r− 1/n},min{1, r +1/n}].

In the sequel, we will omit M from (w, M) |= α and write w |= α if M is clear
from the context.
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Note that the condition 5 is equivalent to saying that the probability of α equals
r−ε0 (or r+ε0) for some infinitesimal ε0 ∈ S. The similar holds for the condition 8.

In an LICPS-model M = 〈W,Prob, v〉 the set {u ∈ W (w) : u |= α}, is
denoted by [α]w. In the sequel we consider only so-called measurable models. An
LICPS-model M = 〈W,Prob, v〉 is said to be measurable if for every w ∈ W ,
H(w) = {[α]w : α ∈ ForS}, i.e., if every set of the form [α]w is measurable and
every H(w) contains only sets definable by formulas. It is not hard to see that
H(w)’s are algebras. Let us denote this class of models by LICPS

Meas.
A set of formulas T is LICPS

Meas-satisfiable if there is a world w in an LICPS
Meas-

model M such that for every formula α ∈ T , w |= α. A formula α is LICPS
Meas-

satisfiable if the set {α} is LICPS
Meas-satisfiable. A formula α is LICPS

Meas-valid
(denoted by |= α) if it is satisfied in each world in each model.

4. Axiomatization

The set of all valid formulas can be characterized by the following set of axiom
schemata:

(1) all the axioms of the classical propositional logic
(2) P>0α
(3) P6sα → P<tα, t > s
(4) P<sα → P6sα
(5) P>1(α ↔ β) → (P=sα → P=sβ)
(6) (P=sα ∧ P=tβ ∧ P>1¬(α ∧ β)) → P=min(1,s+t)(α ∨ β)
(7) P≈rα → P>r1α, for every rational r1 ∈ [0, r)
(8) P≈rα → P6r1α, for every rational r1 ∈ (r, 1]
(9) CP=s(α, β) → ¬CP=t(α, β), s 6= t

(10) P=0β → CP=1(α, β)
(11) (P=tβ ∧ P=s(α ∧ β)) → CP=s/t(α, β), t 6= 0, s 6 t
(12) CP=s(α, β) → ¬CP>t(α, β), s < t
(13) CP=s(α, β) → CP>t(α, β), s > t
(14) CP=s(α, β) → (P=ts(α ∧ β) ↔ P=tβ), t 6= 0
(15) CP≈r(α, β) → CP>r1(α, β), for every rational r1 ∈ [0, r)
(16) CP≈r(α, β) → CP6r1(α, β), for every rational r1 ∈ (r, 1]
(17) CP=r(α, β) → CP≈r(α, β)

and inference rules:
(1) From α and α → β infer β.
(2) From α infer P>1α.
(3) From β → P6=sα, for every s ∈ S, infer β → ⊥.
(4) From γ → (P=ts(α ∧ β) ↔ P=sβ), for every s ∈ S r {0}, infer γ →

CP=t(α, β).
(5) For every r ∈ Q[0, 1], from γ → P>r−1/nα, for every integer n > 1/r, and

γ → P6r+1/nα, for every integer n > 1/(1− r), infer γ → P≈rα.
(6) For every r ∈ Q[0, 1], from γ → CP>r−1/n(α, β), for every integer n >

1/r, and γ → CP6r+1/n(α, β), for every integer n > 1/(1 − r), infer
γ → CP≈r(α, β).
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We denote this axiomatic system by AxLICP S .
The axioms 2– 6 and Rule 2 concern the “crisp” probabilities. They are given

in [18, 19]. For example, Axiom 2 says that every formula is satisfied in a set
of worlds of the probability at least 0. By substituting ¬α for α in Axiom 2, the
formula P61α (= P>0¬α) is obtained. This formula means that every formula
is satisfied in a set of worlds of the probability at most 1. Let us denote it by
2’. Axiom 5 means that the equivalent formulas must have the same probability.
Axiom 6 corresponds to the property of the finite additivity of probability. Rule 2
may be considered as the analogue of the rule of necessitation in modal logic. From
Axiom 2’ and Rule 2 we obtain another inference rule 2’: from α infer P=1α. Rule
3 guarantees that the probability of a formula belongs to the set S, enabling us
thus to syntactically specify the range of the probability functions that will appear
in the semantics.

The axioms 9–14 and Rule 4 concern properties of the “crisp” conditional prob-
abilities and the relationship between the probability and conditional probability.

The axioms 7–8 and 15–17, and the rules 5 and 6 syntactically determine
imprecise probabilities. For example, Rule 5 says that if the probability of α belongs
to the interval [r−1/n, r+1/k] for all integers integers n and k such that r−1/n > 0,
r + 1/k 6 1, then the probability of α is infinitesimally close to r.

Note that the rules 3–6 are infinitary.
A formula α is deducible from a set T of formulas (denoted T `AxLICP S α) if

there is an at most denumerable sequence (called proof) of formulas α0, α1,. . . , α,
such that every αi is an axiom or a formula from the set T , or it is derived from
the preceding formulas by an inference rule, with the exception that Rule 2 can be
applied to the theorems only. A formula α is a theorem (` α) if it is deducible from
the empty set. T 0AxLICP S

α means that T `AxLICP S
α does not hold. A set T of

formulas is consistent if there is at least one formula α such that T 0AxLICP S α. A
consistent set T of formulas is said to be maximal consistent if for every formula
α either α ∈ T or ¬α ∈ T . A set T is deductively closed if for every formula α, if
T ` α, then α ∈ T .

The limitation of application of Rule 2 in deductions allows us to obtain De-
duction theorem (Theorem 5.1) which is one of the main steps in our approach to
proving completness of AxLICP S . Also, note that, in the presence of Deduction the-
orem, unrestricted applications of Rule 2 would produce undesirable consequences.
For example, consider the following deduction:

α ` α
α ` P>1α, by Rule 2
` α → P>1α by Deduction theorem,

but the last formula α → P>1α certainly is not a valid formula of our logic.

5. Soundness and completeness

Soundness of the system follows from the soundness of the classical proposi-
tional logic, as well as from the properties of probabilistic measures, so the proof
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is straightforward and we omit it here. For the detailed arguments see the proof of
Theorem 13 in [15].

In order to prove the completeness theorem for our logic, we show that every
consistent set of sentences is satisfiable. We begin with the deduction theorem and
some auxiliary statements. Then, we describe how a consistent set T of formulas
can be extended to a maximal consistent set, and how a canonical model can be
constructed out of maximal consistent sets. Finally, we prove that for every world
w from the canonical model and every formula α, w |= α if and only if α ∈ w, and
as a consequence we obtain that the set T is satisfiable.

Theorem 5.1 (Deduction theorem). If T is a set of formulas and T ∪{α} ` β,
then T ` α → β.

Proof. We use the transfinite induction on the length of the inference. Let us
first consider the case where β = P>1γ is obtained from T ∪ {α} by an application
of Rule 2. In that case γ and β must be theorems. Then, from ` β → (α → β),
we obtain T ` α → β. Next, suppose that β = γ → CP=t(ϕ,ψ) is obtained from
T ∪ {α} by an application of Rule 4. Then:

T, α ` γ → (P=ts(ϕ ∧ ψ) ↔ P=sψ), for every s ∈ S r {0}
T ` α → (γ → (P=ts(ϕ ∧ ψ) ↔ P=sψ)), for every s ∈ S r {0}, by the
induction hypothesis
T ` (α ∧ γ) → (P=ts(ϕ ∧ ψ) ↔ P=sψ)), for every s ∈ S r {0}
T ` (α ∧ γ) → CP=t(ϕ,ψ), by Rule 4
T ` α → β.

The other cases follow similarly. ¤

Theorem 5.2. For every formula α, the following hold:
(1) ` P>tα → P>sα, t > s
(2) ` P6tα → P6sα, t < s
(3) ` P=tα → ¬P=sα, t 6= s
(4) ` P=tα → ¬P>sα, t < s
(5) ` P=tα → ¬P6sα, t > s
(6) ` P=rα → P≈rα, r ∈ Q[0, 1].

Proof. (1–2) Let us call the property expressed by these two formulas the
monotonicity of the probability. The formulas follow from the axioms 3 and 4.

(3) Note that P=tα denotes P>tα ∧ P6tα, while ¬P>sα = P<sα. From Axiom
3, we have ` P6tα → ¬P>sα for every s > t. Similarly, by the contraposition,
from Axiom 3, we obtain ` P>tα → ¬P6sα, for every s < t. It follows that
` (P6tα ∧ P>tα) → (¬P6sα ∨¬P>sα), and that ` P=tα → ¬P=sα for every s 6= t.

(4–5) Similarly as the above item (3) of this Theorem.
(6) This statement give us an example of an application of an infinitary infer-

ence rule. Namely, by the above items (4–5) of this Theorem, we have ` P=rα →
P>r−1/nα for every n > 1/r, and ` P=rα → P6r+1/nα for every n > 1/(1 − r).
Then, by Rule 5, it follows ` P=rα → P≈rα. ¤
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Theorem 5.3. Every consistent set can be extended to a maximal consistent
set.

Proof. Let T be a consistent set, and α0, α1, . . . an enumeration of all for-
mulas. We define a sequence of sets Ti, i = 0, 1, 2, . . . such that:

(1) T0 = T
(2) for every i > 0,

(a) if T2i ∪ {αi} is consistent, then T2i+1 = T2i ∪ {αi};
(b) otherwise, if αi is of the form γ → CP=t(α, β), then T2i+1 = T2i ∪

{¬αi, γ → ¬(P=ts(α ∧ β) ↔ P=sβ)}, for some s > 0 so that T2i+1 is
consistent;

(c) otherwise, if αi is of the form γ → P≈rα, then T2i+1 = T2i ∪ {¬αi,
γ → ¬P>r−1/nα}, or T2i+1 = T2i ∪{¬αi, γ → ¬P6r+1/nα}, for some
integer n so that T2i+1 is consistent;

(d) otherwise, if αi is of the form γ → CP≈r(α, β), then
T2i+1 = T2i ∪ {¬αi, γ → ¬CP>r−1/n(α, β)}, or
T2i+1 = T2i ∪ {¬αi, γ → ¬CP6r+1/n(α, β)}, for some integer n so
that T2i+1 is consistent;

(e) otherwise, T2i+1 = T2i ∪ {¬αi},
(3) for every i > 0, T2i+2 = T2i+1 ∪ {P=sαi}, for some s ∈ S, so that T2i+2 is

consistent,

The sets obtained by the steps 1 and 2a are obviously consistent. The step 2e
produces consistent sets, too. For if T2i, αi ` ⊥, by Deduction theorem we have
T2i ` ¬αi, and since T2i is consistent, so it is T2i ∪ {¬αi}. The same holds for
the steps 2b– 2d. Let us first consider the step 2b. Suppose that αi is of the
form γ → CP=t(α, β), and that neither T2i ∪ {γ → CP=t(α, β)} nor T2i ∪ {¬(γ →
CP=t(α, β)), γ → ¬(P=ts(α ∧ β) ↔ P=sβ)}, for every s > 0, are consistent. It
means that:

(1) T2i,¬(γ → CP=t(α, β)), γ → ¬(P=ts(α ∧ β) ↔ P=sβ) ` ⊥, for every
s > 0,

(2) T2i,¬(γ → CP=t(α, β)) ` (γ → ¬(P=ts(α ∧ β) ↔ P=sβ)) → ⊥, for every
s > 0, by Deduction theorem,

(3) T2i,¬(γ → CP=t(α, β)) ` ¬(γ → ¬(P=ts(α ∧ β) ↔ P=sβ)), for every
s > 0,

(4) T2i,¬(γ → CP=t(α, β)) ` γ → (P=ts(α ∧ β) ↔ P=sβ)), for every s > 0,
by the classical tautology ¬(α → β) → (α → ¬β),

(5) T2i,¬(γ → CP=t(α, β)) ` γ → CP=t(α, β), by Rule 4,
(6) T2i ` ¬(γ → CP=t(α, β)) → (γ → CP=t(α, β)), by Deduction theorem,
(7) T2i ` γ → CP=t(α, β), by classical reasoning

which contradicts consistency of T2i since T2i∪{γ → CP=t(α, β)} is not consistent.
Next, consider the step 2c, suppose that αi is of the form γ → P≈rα, and that
T2i ∪ {γ → P≈rα} is not consistent. Also, let all the sets T2i ∪ {¬(γ → P≈rα),
γ → ¬P>r−1/nα}, for every integer n : r − 1/n > 0, and T2i ∪ {¬(γ → P≈rα),
γ → ¬P6r+1/nα} for every integer n : r + 1/n 6 1 be inconsistent Then, we have:
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(1) T2i,¬(γ → P≈rα), γ → ¬P>r−1/nα ` ⊥, for every integer n,
(2) T2i,¬(γ → P≈rα), γ → ¬P6r+1/nα ` ⊥, for every integer n,
(3) T2i,¬(γ → P≈rα) ` γ → P>r−1/nα, for every integer n,
(4) T2i,¬(γ → P≈rα) ` γ → P6r+1/nα, for every integer n,
(5) T2i,¬(γ → P≈rα) ` γ → P≈rα, by Rule 5

which, similarly as above, contradicts consistency of T2i. The step 2d and the case
when αi = γ → CP≈r(α, β) follows in the same way using Rule 6.

Finally, consider the step 3 of the construction, and suppose that for every
s ∈ S, T2i+1 ∪ {P=sαi} is not consistent. Let T2i+1 = T0 ∪ T+

2i+1, where T+
2i+1

denotes the set of all formulas β that are added to T0 in the previous steps of the
construction. Then:

(1) T0, T
+
2i+1, P=sαi ` ⊥, for every s ∈ S, by the hypothesis

(2) T0, T
+
2i+1 ` ¬P=sαi, for every s ∈ S, by Deduction theorem

(3) T0 ` (
∧

β∈T+
2i+1

β) → ¬P=sαi, for every s ∈ S, by Deduction theorem
(4) T0 ` (

∧
β∈T+

2i+1
β) → ⊥, by Rule 3

(5) T2i+1 ` ⊥
which contradicts consistency of T2i+1.

Let T ∗ = ∪iTi. We have to prove that T ∗ is a maximal consistent set.
First, we can show that if P=sα ∈ T ∗, then for every formula β, β → P=sα ∈

T ∗. Suppose that it is not the case. Then, according to the above construction, for
some β, and some j, P=sα and ¬(β → P=sα) (i.e., β ∧ ¬P=sα) belong to Tj . It
means that Tj ` P=sα ∧ ¬P=sα, a contradiction.

The steps 2a–2e guarantee that for every formula α, α or ¬α belongs to T ∗,
i.e., that T ∗ is maximal. On the other hand, there is no formula α such that
α,¬α ∈ T ∗. To prove that, suppose that α = αi and ¬α = αj for some i and j. If
α,¬α ∈ T ∗, then also α,¬α ∈ Tmax(2i,2j)+1, a contradiction with the consistency
of Tmax(2i,2j)+1.

We continue by showing that T ∗ is a deductively closed set, and since it does
not contain all formulas, it follows that T ∗ is consistent.

First, note that if for some i, Ti ` α, it must be α ∈ T ∗. Otherwise, if
¬α ∈ T ∗, there must be some k such that Tk ` α and Tk ` ¬α which contradicts
the consistency of Tk.

Now, suppose that the sequence γ1, γ2,. . . , α forms a proof of α from T ∗. If
the sequence is finite, there must be a set Ti such that Ti ` α, and α ∈ T ∗. Thus,
suppose that the sequence is countably infinite. We can show that for every i, if γi

is obtained by an application of an inference rule, and all the premises belong to
T ∗, then it must be γi ∈ T ∗. If the rule is a finitary one, then there must be a set
Tj which contains all the premises and Tj ` γi. Reasoning as above, we conclude
γi ∈ T ∗.

So, let us consider the infinitary rules.
Let γi = β → ⊥ be obtained from the set of premises {γk

i = β → ¬P=sk
ϕ :

sk ∈ S} by Rule 3. Suppose that γi /∈ T ∗. By the induction hypothesis, γk
i ∈ T ∗ for

every k. The step 3 of the construction guaranties that there are some l and sl ∈ S
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such that P=sl
ϕ ∈ Tl. Reasoning as above, we conclude that β → P=sl

γ ∈ T ∗.
Thus, there must be some j such that both β → ¬P=sl

γ, and β → P=sl
γ belongs

to Tj . It follows that Tj ` β → ¬P=sl
γ, Tj ` β → P=sl

γ, and Tj ` β → ⊥, which
means that β → ⊥ ∈ T ∗, i.e., γi ∈ T ∗, a contradiction.

Let γi = β → CP=t(ϕ, ψ) be obtained from the set of premises {γk
i = β →

(P=ts(ϕ ∧ ψ) ↔ P=sψ) : s ∈ S r {0}} by rule Rule 4. Suppose that γi /∈ T ∗.
By the step 2b of the construction, there are some s′ > 0 and l such that β →
¬(P=ts′(ϕ ∧ ψ) ↔ P=s′ψ) ∈ Tl. It follows that there must be some j such that
both β → ¬(P=ts′(ϕ ∧ ψ) ↔ P=s′ψ) and β → (P=ts′(ϕ ∧ ψ) ↔ P=s′ψ) belongs to
Tj . Then, Tj ` β → ⊥ and Tj ` β → CP=t(ϕ,ψ). Thus, β → CP=t(ϕ,ψ) ∈ T ∗, a
contradiction.

Let γi = β → P≈rϕ be obtained by Rule 5 from the set of premises of the form
β → P>r−1/nϕ, for every integer n : r − 1/n > 0 and β → P6r+1/nϕ, for every
integer n : r + 1/n 6 1. Suppose that γi /∈ T ∗. By the step 2c of the construction,
there are some n and j such that β → ¬P>r−1/nϕ or β → ¬P6r+1/nϕ belongs to
Tj . Let us suppose the former case, while the latter one will follow similarly. It
means that there is some l such that β → P>r−1/nϕ, β → ¬P>r−1/nϕ ∈ Tl. Then,
Tl ` β → ⊥, and Tl ` β → P≈rϕ. It follows that γi ∈ T ∗, a contradiction.

Finally, the case concerning the formulas of the form γi = β → CP≈r(ϕ,ψ)
and Rule 6 can be proved in the same way.

Hence, from T ∗ ` α, we have α ∈ T ∗. It follows that T ∗ is a maximal consistent
set. ¤

Being a maximal consistent set, T ∗ has all the expected properties summarized
in the next statement.

Theorem 5.4. Let T ∗ be defined as above. Then, the following hold:
(1) T ∗ contains all theorems.
(2) If α ∈ T ∗, then ¬α /∈ T ∗.
(3) α ∧ β ∈ T ∗ iff α ∈ T ∗ and β ∈ T ∗.
(4) If α, α → β ∈ T ∗, then β ∈ T ∗.
(5) There is exactly one s ∈ S such that P=sα ∈ T ∗.
(6) If P>sα ∈ T ∗, there is some t ∈ S such that t > s and P=tα ∈ T ∗.
(7) If P6sα ∈ T ∗, there is some t ∈ S such that t 6 s and P=tα ∈ T ∗.
(8) There is exactly one s ∈ S such that CP=s(α, β) ∈ T ∗.
(9) If CP>s(α, β)∈T ∗, there is some t∈S such that t>s and CP=t(α, β)∈T ∗.

(10) If CP≈r1(α, β) ∈ T ∗ and r2 ∈ Q[0, 1]r {r1}, then CP≈r2(α, β) /∈ T ∗

Proof. (1– 4) The proof is standard and left to the reader.
(5) First, note that, according to Theorem 5.2. 3, if P=sα ∈ T ∗, then for

every t 6= s, P=tα /∈ T ∗. On the other hand, suppose that for every s ∈ S,
¬P=sα ∈ T ∗. It follows that T ∗ ` ¬P=sα for every s ∈ S, and by Rule 3, T ∗ ` ⊥
which contradicts consistency of T ∗. Thus, for every α, there is exactly one s ∈ S
such that P=sα ∈ T ∗.

(6) Since P>sα ∈ T ∗, we have that ¬P<sα ∈ T ∗. By the above item (5) of
this Theorem, for every α there is some t ∈ S such that P=tα ∈ T ∗. It means that
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P>tα ∈ T ∗, and P6tα ∈ T ∗. If t < s, then by Axiom 3 from P6tα ∈ T ∗ it follows
that P<sα ∈ T ∗ (i.e., ¬P>sα ∈ T ∗), a contradiction. Thus, it must be t > s.

(7) Similarly as the above item (6) of this Theorem.
(8) According to Axiom 9 there cannot be two different t, s ∈ S such that

CP=t(α, β) ∈ T ∗ and CP=s(α, β) ∈ T ∗. From the above item (6) of this Theorem,
we have that for exactly one t′ and exactly one t′′, P=t′β ∈ T ∗ and P=t′′(α∧β) ∈ T ∗.
If t′ = 0, then CP=1(α, β) ∈ T ∗, by Axiom 10. Let t′ 6= 0, and s = t′′

t′ . Using
Axiom 11 we have that CP=s(α, β) ∈ T ∗. Thus, for all α and β, there is exactly
one s ∈ S such that CP=s(α, β) ∈ T ∗.

(9) Let CP>sα ∈ T ∗. From the above item (8) of this Theorem, there is exactly
one t ∈ S such that CP=t(α, β) ∈ T ∗. It follows from Axiom 12 that t cannot be
less than s. Thus, it must be t > s.

(10) Let CP≈r1(α, β) ∈ T ∗ and r2 ∈ Q[0, 1] r {r1}. Suppose that r2 < r1. If
CP≈r2(α, β) ∈ T ∗, from the axioms 15 and 16, for every r3 ∈ (r2, r1) ∩ Q[0, 1] it
must be CP>r3(α, β) ∈ T ∗ and CP6r3(α, β) ∈ T ∗, which implies CP=r3(α, β) ∈ T ∗,
a contradiction to the above item (9) of this Theorem. The same conclusion follows
from the assumption that r2 > r1. ¤

Let the tuple M = 〈W,Prob, v〉 be defined as follows:
• W is the set of all maximal consistent sets of formulas,
• [α] = {w ∈ W : α ∈ w},
• for every world w ∈ W , Prob(w) is defined as follows:

– W (w) = W ,
– H(w) is a class of all sets of the form [α] = {w ∈ W : α ∈ w} and
– µ(w)([α]) = s iff P=sα ∈ w and

• for every propositional letter p ∈ Var, v(w)(p) = true iff p ∈ w.
The next theorem states that M is an LICPS

Meas-model.

Theorem 5.5. Let M = 〈W,Prob, v〉 be defined as above. Then, the following
hold for every w ∈ W :

(1) µ(w) is a well-defined function.
(2) {[α]} is an algebra of subsets of W (w).
(3) µ(w) : {[α]} → S is a finitely additive probability measure.

Proof. (1) It follows from Theorem 5.4. 5 that for every α there is exactly one
s ∈ S such that P=sα ∈ w, i.e., that µ(w)([α]) = s. On the other hand, let [α] = [β]
for some α and β. It means that for every w ∈ W , α ↔ β ∈ w, that ¬(α ↔ β)
is inconsistent, and that ` α ↔ β and ` P=1(α ↔ β). Axiom 5 guarantees that
P=sα ∈ w iff P=sβ ∈ w. Thus, [α] = [β] implies that µ(w)([α]) = µ(w)([β]).

(2) For an arbitrary β, W = [β ∨¬β], and W ∈ H(w). If [β] ∈ H(w), then the
complement of [β] is [¬β], and it belongs to H(w) as well. If [β1],. . . , [βk] ∈ H(w),
then also the union [β1]∪ . . .∪ [βk] ∈ H(w) because [β1]∪ . . .∪ [βk] = [β1∨ . . .∨βk].

(3) It follows from the step 3 of the construction in Theorem 5.3 that µ(w) :
H(w) → S. Since for an arbitrary formula α, W = [α ∨ ¬α], ` α ∨ ¬α and by
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the Rule 2’ we have ` P=1(α ∨ ¬α), it follows that P=1(α ∨ ¬α) ∈ w. It means
that µ(w)(W ) = 1. Let [α] ∩ [β] = ∅, µ(w)([α]) = s and µ(w)([β]) = t. Since,
[α] ∩ [β] = ∅, we have that [¬(α ∧ β)] = W , and µ(w)([¬(α ∧ β)]) = 1. From the
assumptions we have that P=sα, P=tβ, P>1¬(α∧β) ∈ w. Using Axiom 6 it follows
that P=s+t(α ∨ β) ∈ w, i.e., µ(w)([α ∨ β]) = s + t. ¤

Now we can prove the extended completeness theorem for the class LICPS
Meas:

Theorem 5.6 (Extended completeness theorem). A set T of formulas is con-
sistent if and only if T has an LICPS

Meas-model.

Proof. The (⇐)-direction follows from the soundness of the axiomatic sys-
tem AxLICP S . In order to prove the (⇒)-direction we construct the canonical
LICPS

Meas-model M = 〈W,Prob, v〉 as above, and show that for all α and w ∈ W ,
w |= α iff α ∈ w.

Let α be a propositional letter from Var. By the definition of the valuation
v(w), w |= α iff α ∈ w. The classical cases α = ¬β and α = β ∧ γ follow by the
standard arguments.

Let α = P>sβ. If P>sβ ∈ w, then, by Theorem 5.4. 6, there is some t > s
such that P=tβ ∈ w, i.e., such that µ(w)([β]) = t > s. Thus, w |= P>sβ. On the
other hand suppose that w |= P>sβ, i.e., that µ(w)([β]) = t > s, and P=tβ ∈ w. It
means that P>tβ ∈ w, and by Theorem 5.2. 1 it follows that P>sβ ∈ w.

Let α = P≈rβ. If P≈rβ ∈ w, by the axioms 7 and 8, for every rational r′ < r,
P>r′β ∈ w, and for every rational r′ > r, P6r′β ∈ w. Suppose that w 6|= P≈rβ. It
means that there is some t ∈ S such that t 6= r and µ(w)([β]) = t, i.e., P=tβ ∈ w.
Also, there must be an interval [r1, r2] containing r such that r1 and r2 are rational
and t /∈ [r1, r2], otherwise w |= P≈rβ. Now, if t < r, then according to Theorem 5.2.
4 ¬P>r1β ∈ w, a contradiction. The similar conclusion follows from the assumption
that t > r. Thus, it must be w |= P≈rβ. For the other direction, suppose that
w |= P≈rβ. It follows that w |= P>r′β for every rational r′ < r and w |= P6r′′β
for every rational r′′ > r. However, if P≈rβ /∈ w, by the step 2c of the construction
in Theorem 5.3, there must be some rational r1 < r (or some rational r2 > r)
such that ¬P>r1β ∈ w (or ¬P6r2β ∈ w) which contradicts consistency of w. Thus,
P≈rβ ∈ w.

Let α = CP=s(β, γ). Suppose that CP=s(β, γ) ∈ w. If P=0γ ∈ w, from Axiom
10 and Theorem 5.4. 8 it must be CP=1(β, γ) ∈ w, and s = 1. Since µ(w)([γ]) = 0,
we have w |= CP=1(β, γ). Otherwise, let P=tγ ∈ w, t 6= 0. It follows from Axiom
14 that P=st(β ∧ γ) ∈ w. Since µ(w)([γ]) = t 6= 0 and µ(w)([β ∧ γ]) = st, we have
w |= CP=s(β, γ). For the other direction, suppose that w |= CP=s(β, γ). If w |=
P=0γ, then s = 1 and P=0γ ∈ w. From Axiom 10 we have that CP=1(β, γ) ∈ w.
Otherwise, let w |= P=tγ, t 6= 0, and CP=s(β, γ) /∈ w. Then, by the step 2b of
the construction in Theorem 5.3, there is some u > 0 such that ¬(P=su(β ∧ γ) ↔
P=uγ) ∈ w. It means that (P=su(β∧γ)∧¬P=uγ) ∈ w or (¬P=su(β∧γ)∧P=uγ) ∈ w,
i.e., P=su(β ∧ γ) ∈ w and ¬P=uγ ∈ w or ¬P=su(β ∧ γ) ∈ w and P=uγ ∈ w. In
the former case µ(w)([β ∧ γ]) = su and µ(w)([γ]) = t, t /∈ {0, u}. It follows that
µ(w)([β∧γ])

µ(w)([γ]) 6= s, a contradiction since w |= CP=s(β, γ). In the latter case, we
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have that u = t, µ(w)([β ∧ γ]) 6= st and µ(w)([β]) = t, t 6= 0, which implies a
contradiction in the same way as above. Thus, CP=s(β, γ) ∈ w.

Let α = CP>s(β, γ). Suppose that CP>s(β, γ) ∈ w. From Theorem 5.4. 8
and Theorem 5.4. 9, there is exactly one t > s such that CP=t(β, γ) ∈ w, and
w |= CP=t(β, γ). It follows that w |= CP>s(β, γ). For the other direction, suppose
that w |= CP>s(β, γ). If µ(w)([γ]) = 0, we have that M |= CP=1(β, γ), and
since P=0γ ∈ w, by Axiom 10 it follows that CP=1(β, γ) ∈ w. Then, by Axiom
13 we have that CP>s(β, γ) ∈ w. Otherwise, let µ(w)([γ]) 6= 0. From Theorem
5.4. 5 there is exactly one u′ such that P=u′(β ∧ γ) ∈ w, and exactly one u′′ 6= 0
such that P=u′′γ ∈ w. It means that µ(w)([β ∧ γ]) = u′ and µ(w)([γ]) = u′′,
w |= CP=u′/u′′(β, γ), and CP=u′/u′′(β, γ) ∈ w. Since w |= CP>s(β, γ), Axiom 12
guarantees that it must be s 6 u′

u′′ . It follows from Axiom 13 that CP>s(β, γ) ∈ w.
Finally, let α = CP≈r(β, γ). Suppose that CP≈r(β, γ) ∈ w. If µ(w)([γ]) = 0,

it follows that w |= CP≈1(β, γ), and by the axioms 10 and 17 that CP≈1(β, γ) ∈ w.
By Theorem 5.4. 10 we have that r = 1 and w |= CP≈r(β, γ). Next, suppose
that µ(w)([γ]) 6= 0. From the axioms 15 and 16 we have that for every rational
r1 ∈ [0, r), CP>r1(β, γ) ∈ w, and for every rational r2 ∈ (r, 1], CP6r2(β, γ) ∈ w.
Suppose that w 6|= CP≈r(β, γ). It means that there is some t ∈ S such that t 6= r

and µ(w)([γ]) > 0, µ(w)([β∧γ])
µ(w)([γ]) = t and CP=t(β, γ) ∈ w. Furthermore, there must

be an interval [r1, r2] containing r such that r1 and r2 are rational and t /∈ [r1, r2].
If it is not the case, w |= CP≈r(β, γ). Suppose that t < r. According to Axiom
12, ¬CP>r1(β, γ) ∈ w, a contradiction. The similar conclusion follows from the
assumption that t > r. It follows w |= CP≈r(β, γ). For the other direction,
suppose that w |= CP≈r(β, γ). Then, w |= CP>r′(β, γ) for every rational r′ < r
and w |= CP6r′′(β, γ) for every rational r′′ > r. However, if CP≈r(β, γ) /∈ w, by
the step 2d of the construction in Theorem 5.3, there must be some rational r1 < r
(or r2 > r) such that ¬CP>r1(β, γ) ∈ w (or ¬CP6r2(β, γ) ∈ w) which contradicts
consistency of w. Thus, CP≈r(β, γ) ∈ w. ¤

6. Conclusion

In this paper we consider a language, a class of probabilistic models and a sound
and complete axiomatic system for reasoning about conditional probabilities.

We are aware of only one paper [6] in which conditional probability is defined
syntactically. The approach taken there includes among the axioms the complicated
machinery of real closed fields. It is needed to obtain the sound and complete
axiomatization. In our approach, since the parts of field theory are moved to
the meta theory, the axioms are rather simple. Also, we are able to prove the
extended completeness theorem (‘every consistent set of formulas has a model’)
which is impossible for the system in [6], although at a price of introducing infinitary
deduction rules.

Note that in the canonical LICPS
Meas-model M = 〈W,Prob, v〉 constructed

above, for all w, w′ ∈ W , the following conditions hold:
• W (w) = W (w′) and
• H(w) = H(w′).
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Thus, the same proof can be used to show that AxLICP S is complete with respect
to the subclass of LICPS

Meas containing only models that satisfy those conditions.
As we mentioned in the introduction, a fragment of the presented logic (denoted

LPPS) is used in [21, 22] to model defaults. Besides the mentioned syntactical
restrictions in LPPS , we use there an additional semantical requirement called
“neatness”. The requirement means that only the empty set has the zero probability
and it is important in modelling default reasoning. In this paper we do not consider
the “neatness”-condition, but, following the ideas from [22], we can easily handle it.
The only change in the completeness proof concerns an additional step in building
a maximal consistent extension of a set of formulas, where we have to add the
following step: if the current extension of the considered consistent set is enlarged
by P=0α, then ¬α must be added as well. In allowing the nesting of probabilistic
operators our logic resembles conditional logic [3], i.e., it treats the conditional
probability operator as a standard binary logical operator (except that it has a
denumerable list of such operators). However, our logic is much more expressive
since it also includes the (absolute) probability operators (P>s) which behave like
a sort of modal operators. This enables us to combine defeasible and probabilistic
knowledge in the same context.

There are many possible directions for further investigations. For example, the
question of decidability of our logic naturally arises. In [6] decidability of a similar
logic was proven. For the present approach the problem is still open since we do not
consider real-valued probabilities, but the range of probability is the unit interval
of a recursive nonarchimedean field.
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