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Nouvelle série, tome 80(94) (2006), 47–57 DOI:10.2298/PIM0694047B

REGULARLY VARYING PROBABILITY DENSITIES

N. H. Bingham, Charles M. Goldie, and Edward Omey

Abstract. The convolution of regularly varying probability densities is
proved asymptotic to their sum, and hence is also regularly varying. Ex-
tensions to rapid variation, O-regular variation, and other types of asymptotic
decay are also given.

Regularly varying distribution functions have long been used in probability theory;
see e.g. Feller [7, VIII.8], Bingham, Goldie and Teugels [5, Ch. 8]. This note
addresses some questions on regularly varying probability densities that seem—
surprisingly—to have been overlooked.

1. Convolution of regularly varying densities

Theorem 1.1. If f and g are probability densities on R, both regularly varying
at ∞, then their convolution has the property

(1.1)
f ∗ g(x)

f(x) + g(x)
→ 1 (x → ∞),

and so is regularly varying (with index the maximum of the index of f and the index
of g).

Proof. We have

f ∗ g(x) =
∫ ∞

−∞
f(u)g(x − u) du

=
∫ x/2

−∞
f(u)g(x − u) du +

∫ ∞

x/2

f(u)g(x − u) du

=
∫ x/2

−∞
f(u)g(x − u) du +

∫ x/2

−∞
g(u)f(x − u) du

=: B(x) + A(x).
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We can write

(1.2)
A(x)
f(x)

=
∫ ∞

−∞
hx(u) du

where

hx(u) := g(u)
f(x − u)

f(x)
1u<x/2.

Now f is regularly varying with index −ρ, notated f ∈ R−ρ, where ρ � 1
because f ∈ L1. The Potter bound of [5, Theorem 1.5.6(iii)], with A = 2, δ = ρ/2,
gives the existence of x0 such that

f(y)
f(x)

� 2max
((y

x

)−ρ/2

,
(y

x

)−3ρ/2
)

(x � x0), y � x0).

So for x � 2x0 we find that
(1.3)

for 0 < u <
x

2
,

1
2

<
x − u

x
< 1 so

f(x − u)
f(x)

� 2
(

x − u

x

)−3ρ/2

< 21+3ρ/2,

and

(1.4) for −∞ < u � 0, 1 � x − u

x
< ∞ so

f(x − u)
f(x)

� 2
(

x − u

x

)−ρ/2

� 2.

Therefore
0 � hx(u) � 21+3ρ/2g(u) for all x and u,

and as g ∈ L1 we can use the Dominated Convergence Theorem to obtain the limit
of the integral in (1.2). For each fixed u, hx(u) → g(u) as x → ∞, so

A(x)
f(x)

→
∫ ∞

−∞
g(u) du = 1.

We have also B(x)/g(x) → 1 by interchange of notation, so the result (1.1)
follows. Regular variation of f + g, with index the maximum of the index of f
and the index of g, follows by an elementary closure property of regular variation
[5, Prop. 1.5.7(iii)]. Regular variation of f ∗ g, with the same index, then follows
from (1.1). �

To set the above result in context we need to define the following class.

Definition 1.2. A function f : R → R is in the class L if f ◦ ln is slowly
varying; that is, if f is measurable, eventually positive, and such that

lim
x→∞

f(x + y)
f(x)

= 1 for every y ∈ R.

We then have the following result.

Proposition 1.3. If f and g are probability densities on R, both in L, then

lim inf
x→∞

f ∗ g(x)
f(x) + g(x)

� 1.
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Proof. We decompose f ∗g(x) as in the previous proof. Application of Fatou’s
Lemma to (1.2) gives that

lim inf
x→∞

A(x)
f(x)

�
∫ ∞

−∞
g(u) du = 1.

Similarly lim infx→∞ B(x)/g(x) � 1. The result follows. �

This enables us to see Theorem 1.1 in the following light: we have f , g ∈ R ⊂ L.
The L property gives a sharp asymptotic lower bound on f ∗ g(x)/(f(x) + g(x)),
and regular variation allows use of the Dominated Convergence Theorem to show
that the lower bound is in fact the limit.

2. Convolution of densities, one dominating the other

When one density dominates the other we can drop all further assumptions on
the dominated density, as in the following result. A further result involving rapid
variation (Corollary 2.3) will ensue.

Theorem 2.1. If f and g are probability densities on R, with f regularly vary-
ing and g(x) = o(f(x)) as x → ∞, then their convolution has the property

(2.1)
f ∗ g(x)

f(x)
→ 1 (x → ∞),

equivalent to (1.1), and is regularly varying with index the same as that of f .

Proof. We use the same decomposition of f ∗ g(x) as in the proof of (1.1),
and the proof that A(x)/f(x) → 1 as x → ∞ remains valid. Indeed, it further
remains valid if we replace g by f ; that is, we have

1
f(x)

∫ x/2

−∞
f(u)f(x − u) du →

∫ ∞

−∞
f(u) du = 1.

Given ε > 0 we may find x1 such that g(x) � εf(x) for all x � x1. Then for
x � 2x1,

0 � B(x)
f(x)

� ε

f(x)

∫ x/2

−∞
f(u)f(x − u) du = ε(1 + o(1)).

The conclusion (2.1) follows.
(2.1) is equivalent to (1.1) in this case because of the assumption g = o(f).

Finally, (2.1) makes f ∗g inherit regular variation, with the same index, from f . �

The extension to rapid variation will be immediate given the following general
result on rapidly varying functions. As usually defined ([9]; [5, §2.4]), rapidly
varying functions are assumed measurable.

Lemma 2.2. Let g ∈ R−∞. Then given any r > 0 there exists a constant X,
depending on r, such that g(x) � x−r for all x � X.

As a consequence, if f is regularly varying then g(x)/f(x) → 0 as x → ∞.
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Proof. By the ‘Uniform Convergence Theorem for Rapid Variation’ (due to
Heiberg: see [5, Theorem 2.4.1]), there exists Y such that g(y)/g(x) � e−r−1 for
all y � ex and x � Y/e. Fix y � Y and let n be the non-negative integer such that
Y en � y < Y en+1. Then

g(y)
g(Y/e)

=
g(Y )

g(Y/e)
g(Y e)
g(Y )

· · · g(Y en−1)
g(Y en−2)

g(y)
g(Y en−1)

� e−(n+1)(r+1).

Because n + 1 � ln y − ln Y the right-hand side is at most e−(ln y−ln Y )(r+1), which
is Y r+1y−r−1. Thus g(y) � Ay−r−1 where A := Y r+1g(Y/e). If we set X :=
max(Y,A) then Ay−r−1 � y−r for all y � X, so we have the result. �

Corollary 2.3. If f and g are probability densities on R, with f regularly
varying and g rapidly varying at ∞, then the conclusions of Theorem 2.1 hold for
their convolution f ∗ g.

3. Bounds instead of limits

For functions a(·), b(·) on R, both eventually positive, we use the notation a(x) �
b(x) to mean that

0 < lim inf
x→∞

a(x)
b(x)

� lim sup
x→∞

a(x)
b(x)

< ∞.

Recall from [5, §§2.1–2.2], that an eventually positive function f on R is called
almost decreasing, notation f ∈ AD, if

f(x) � sup
y�x

f(y),

and is said to have bounded decrease, notation f ∈ BD, if

for some λ > 1, lim inf
x→∞ inf

µ∈[1,λ]

f(µx)
f(x)

> 0.

Recall also, from [5, Ch. 2], the class OR of O-regularly varying functions,
which includes the classes R and ER of regularly varying and extended regularly
varying functions; R ⊂ ER ⊂ OR. A function f on R is in OR if it is measurable,
eventually positive, and has the property that

0 < f∗(λ) � f∗(λ) < ∞ for all λ > 1,

where

f∗(λ) = lim inf
x→∞

f(λx)
f(x)

, f∗(λ) = lim sup
x→∞

f(λx)
f(x)

.

For f ∈ OR the upper and lower global or Matuszewska indices α(f) and β(f) are
given respectively by

α(f) = lim
λ→∞

log f∗(λ)
log λ

= inf
λ>1

log f∗(λ)
log λ

, β(f) = lim
λ→∞

log f∗(λ)
log λ

= sup
λ>1

log f∗(λ)
log λ

;

both are thus finite.
By [5, Theorem 2.1.7], f ∈ BD implies β(f) > −∞. By the ‘Almost-Monoton-

icity Theorem’ of Aljančić and Arandelović ([1]; [5, Theorem 2.2.2]), f ∈ AD
implies α(f) � 0 and is implied by α(f) < 0. We also have, again by [5, Theorem
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2.1.7], that OR ⊂ BD, and conversely the set of measurable f ∈ AD ∩ BD is a
subset of OR. Thus for measurable f , and in particular for a probability density,
the assertion f ∈ AD ∩ BD is equivalent to f ∈ AD ∩ OR.

With all these definitions we may now give a ‘boundedness’ extension of The-
orem 1.1.

Theorem 3.1. If f and g are probability densities on R, both almost decreasing
and of bounded decrease, then their convolution f ∗ g has the property

(3.1) f ∗ g(x) � f(x) + g(x).

The convolution is then also almost decreasing and of bounded decrease, and its
global indices are bounded by those of its constituent parts in that

−∞ < min(β(f), β(g)) � β(f ∗ g) � α(f ∗ g) � max(α(f), α(g)) � 0.

Proof. The method of proof of Theorem 1.1 again applies. Bounded decrease
of f gives the bound [5, (2.2.1′)], which leads to (1.3) being replaced by f(x − u)/
f(x) � (C ′2β)−1. The assumption f ∈ AD is equivalent to the existence of a
constant M < ∞ such that f(y) � Mf(x) for all y � x � x0, and that implies
(1.4) can be replaced by f(x − u)/f(x) � M . We conclude that the functions
hx(u) are bounded above by a constant multiple of g(u), as before. In place of
hx(u) → g(u) we have the existence of 0 < c � C < ∞ such that for each fixed
u ∈ R, cg(u) � hx(u) � Cg(u) for all x � x0(u). We may then employ a limsup-
and-liminf form of Lebesgue’s Dominated Convergence theorem, e.g. [10, (12.24)],
to conclude that A(x) � f(x) as x → ∞. In combination with B(x) � g(x),
obtained as before by interchange of notation, this yields A(x)+B(x) � f(x)+g(x),
that is, (3.1).

For the remaining claims, note first that if f(y) � Mf(x) for all y � x � x0,
and g(y) � M ′g(x) for all y � x � x′

0, then f(y)+g(y) � max(M,M ′)(f(x)+g(x))
for all y � x � max(x0, x

′
0), so f + g inherits the almost-decreasing property from

f and g. We also clearly have

(f + g)∗(λ) � min(f∗(λ), g∗(λ)) and (f + g)∗(λ) � max(f∗(λ), g∗(λ))

for all λ > 1, so that f + g ∈ OR and

−∞ < min(β(f), β(g)) � β(f + g) � α(f + g) � max(α(f), α(g)) � 0.

Finally, all these properties are immediately inherited by f ∗ g from f + g via (3.1).
�

4. Limits restored

In §1 we assumed f , g ∈ L whereas in §3 we did not. With the assumption
that f , g ∈ L we gained the limit conclusion (1.1); without it, only the asymptotic
comparability conclusion (3.1). Let us restore the assumption; then we may weaken
the regular variation assumed in §1 to conditions of the type employed in §3, as
follows.



52 BINGHAM, GOLDIE, AND OMEY

Theorem 4.1. If f and g are probability densities on R, both in AD∩BD∩L,
then their convolution has the property (1.1). The convolution is then also in AD∩
BD ∩ L.

Proof. A further variant of the proof of Theorem 1.1. The conditions of
Theorem 3.1 are satisfied, so the functions hx(u) are bounded above by a constant
multiple of g(u), as in the proof of Theorem 3.1. Our assumption that f ∈ L brings
us back to hx(u) → g(u) as x → ∞ for each fixed u, as in the proof of Theorem 1.1,
so we may again use the standard Dominated Convergence Theorem to conclude
A(x)/f(x) → 1 and hence (1.1). The further conclusions about f ∗ g are as already
shown in Theorem 3.1, plus the immediate conclusion that f ∗ g ∈ L. �

There are many densities satisfying the conditions of this result but not those
of Theorem 1.1. For instance, if f(x) := c1x>1x

−2(2 + sin(lnx)) where c is such as
to make

∫
f = 1, then f is in AD ∩ BD ∩ L, but it is not regularly varying.

Is there an extension of the index conclusions of Theorem 3.1 to the above
setting? Yes. Recall that the class ER mentioned at the beginning of §3 is defined
in [5, §2.0.2] as the set of measurable, eventually positive f on R for which there
exist constants c, d such that

λd � f∗(λ) � f∗(λ) � λc for all λ > 1.

For f ∈ ER the upper and lower local or Karamata indices c(f) and d(f) are given
respectively by

c(f) = lim
λ↓1

log f∗(λ)
log λ

= sup
λ>1

log f∗(λ)
log λ

, d(f) = lim
λ↓1

log f∗(λ)
log λ

= inf
λ>1

log f∗(λ)
log λ

;

both are thus finite. (Their equality would bring us back to regular variation.)

Corollary 4.2. If f and g are probability densities on R, both in AD ∩ ER,
then their convolution f ∗ g has the property (1.1). The convolution is then also in
AD ∩ER, and its local indices are bounded by those of its constituent parts in that

−∞ < min(d(f), d(g)) � d(f ∗ g) � c(f ∗ g) � max(c(f), c(g)) < ∞.

Proof. From (1.1) it is straightforward to show that f + g ∈ ER and

−∞ < min(d(f), d(g)) � d(f + g) � c(f + g) � max(c(f), c(g)) < ∞.

The final conclusions concerning f ∗ g then follow via (1.1). �

5. Alternatives to the almost-decreasing property

In Theorem 3.1, suppose that g is a density on the positive half-line. Then in the
proof we may re-define the function hx as

hx(u) := g(u)
f(x − u)

f(x)
10<u<x/2,

and we find that in the lines following we do not employ our assumption f ∈ AD
either for the conditions of the Dominated Convergence Theorem or for its ap-
plication. We gain the conclusion (3.1) without using the assumption f ∈ AD.
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Similarly, mutatis mutandis, with f and g interchanged. If both f and g are den-
sities on the positive half-line then we gain the conclusion (3.1) without assuming
either f ∈ AD or g ∈ AD.

Similarly, in Theorem 4.1, if g is a density on the positive half-line we gain the
conclusion (1.1) without using the assumption f ∈ AD. If f is a density on the
positive half-line then we gain the same conclusion without using the assumption
g ∈ AD, while if both f and g are densities on the positive half-line then we
conclude (1.1) without assuming either f ∈ AD or g ∈ AD.

Another way to avoid assuming the almost-decrease property on one or other
component of the convolution is to compensate for its lack by a moment assump-
tion on the other component. Take the case of Theorem 3.1 (without any longer
assuming either density is restricted to a half-line). If we assume f ∈ OR rather
than the more restrictive f ∈ AD ∩ BD then for any r > α(f) there exist positive
constants C and x0 such that

f(y)
f(x)

� C
(y

x

)r

for all y � x � x0

[5, Prop. 2.2.1]. If we use this in place of (1.4) in the proof we will gain a suit-
able bound for dominated convergence if we also assume

∫ 0

−∞(−u)rg(u) du < ∞.
Similarly, if we assume g ∈ OR rather than g ∈ AD ∩ BD then we may retrieve
dominated convergence by a moment assumption on the left tail of f . We formulate
this precisely for the case where the almost-decreasing assumption is removed for
both f and g, leaving to the reader the variants where only one such assumption
is removed.

In the following we let X and Y be random variables with densities f and g
respectively. We use the notation x− := (−x)1x<0.

Theorem 5.1. Let f and g be probability densities on R, both in the class OR.
If, for some r > α(f) and s > α(g), E((X−)s + (Y −)r) < ∞, then (3.1) holds.
The convolution f ∗ g is then also in OR and we have

−∞ < min(β(f), β(g)) � β(f ∗ g) � α(f ∗ g) � max(α(f), α(g)) < ∞.

Proof. In place of (1.4) we have that for x � 2x0,

for −∞ < u � 0, 1 � x − u

x
< ∞ so

f(x − u)
f(x)

� C

(
1 +

−u

x

)r

.

If we ensure x0 � 1 and then set C ′ := C(1 + x−1
0 )r, the right-hand side is at most

C ′ max(1, (−u)r) for all x � 2x0 and u < 0. When multiplied by g(u) this bound,
by assumption, is integrable over −∞ < u < 0. Hence, as in the proof of Theorem
3.1, we have the condition of the Dominated Convergence Theorem, and may use
it again to conclude A(x) � f(x). With B(x) � g(x), similarly derived, this leads
to (3.1) as before.

The remaining conclusions are straightforward. �

In each of the results of §4 we may similarly weaken membership of AD ∩BD
for either component to membership of OR, if we also impose a suitable moment
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condition on the left tail of the other component. We give the (double) extension
of Theorem 4.1 only, leaving the proof and other possibilities to the reader.

Theorem 5.2. Let f and g be probability densities on R, both in OR ∩ L. If,
for some r > α(f) and s > α(g), E((X−)s + (Y −)r) < ∞, then (1.1) holds. The
convolution f ∗ g is then also in OR ∩ L.

6. Convolutions of distributions

The situation for probability distribution functions is much better known. The re-
sult below is Theorem 6.1 in Applebaum [2], where it is attributed to G. Samorod-
nitsky.

Theorem. If F , G are distribution functions with regularly varying tails—that
is, if F := 1−F and G := 1−G are regularly varying—then their convolution F ∗G
satisfies

(6.1)
(F ∗ G)(x)

F (x) + G(x)
→ 1 (x → ∞).

The proof (which is probabilistic in the reference cited) is given also in Em-
brechts, Klüppelberg and Mikosch [6, Lemma 1.3.1, p. 37], Feller [7, VIII.8, Propo-
sition, pp. 278–279] and Resnick [14, Prop. 4.1], in the case when the indices of
regular variation of F and G are the same. The argument holds in the general case
also.

We may extend this result using a similar method to those for densities. Note
that for non-increasing functions (such as distribution tails F , G, . . . ), membership
of BD is equivalent to membership of OR.

Theorem 6.1. If F , G are distribution functions with F , G ∈ OR ∩ L then
their convolution F ∗ G satisfies (6.1).

Proof. Let X, Y be independent with distributions F , G respectively. For
z ∈ R,
P (X + Y > z) =

P (X + Y > z, X � z/2) + P (X + Y > z, Y � z/2) + P (X > z/2, Y > z/2),
so

F ∗ G(z) = B(z) + A(z) + F (z/2)G(z/2)
where

A(z) :=
∫

(−∞,z/2]

F (z − y) dG(y) and B(z) :=
∫

(−∞,z/2]

G(z − x) dF (x).

Now in

(6.2)
A(z)
F (z)

=
∫ ∞

−∞
1y�z/2

F (z − y)
F (z)

dG(y)

we have that

for 0 < y <
z

2
,

1
2

<
z − y

z
< 1 so

F (z − y)
F (z)

� C < ∞
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since F ∈ OR, and

for −∞ < y � 0, 1 � z − y

z
< ∞ so

F (z − y)
F (z)

� 1

since F is non-increasing. We may thus apply the Dominated Convergence Theo-
rem. In (6.2) the integrand converges pointwise to 1, hence A(z)/F (z) → ∫ ∞

−∞ dG =
1. Similarly B(z)/G(z) → 1. For the final term we have for instance that

F (z/2)G(z/2)
F (z)

= O(G(z/2))

since F ∈ OR, and thus F (z/2)G(z/2)/F (z) = o(1). The result follows. �

Analogues for distribution functions of a number of our results above for den-
sities are possible, but we shall not pursue that topic.

Since addition of independent random variables corresponds to convolution of
their distribution functions, the theorems in this section have the pleasing inter-
pretation that, asymptotically, tails add over independent summands; similarly for
the results of previous sections in terms of densities.

7. Complements

7.1. One density. Theorem 4.1 is the ‘two-densities’ result corresponding to
the ‘no-densities’ result Theorem 6.1. Note however that if one of F , G has a
density, so does their convolution. Indeed, if F has density f , then H := F ∗G has
density h given by

h(x) =
∫ ∞

−∞
f(x − y) dG(y)

[7, V.4, Theorem 4]. One may thus ask for a ‘one-density’ version, but we have no
result here. One problem is the loss of symmetry (the proofs of Theorems 4.1 and
6.1 are both symmetric between F and G). Another is that, while the Monotone
Density Theorem [5, Th. 1.7.2] allows us to ‘differentiate asymptotic relations’,
and the weakest possible (Tauberian) condition relaxing monotonicity is known [5,
Th. 1.7.5], conditions of that type are awkward to handle in practice.

7.2. One density dominates. Suppose in Theorem 3.1 that the closed in-
tervals [β(f), α(f)] and [β(g), α(g)] are disjoint. Without loss of generality we may
take it that α(g) < β(f). Then g(x) = o(f(x)) as x → ∞, so that (3.1) may be
refined to f ∗ g(x) � f(x), and the final conclusion of Theorem 3.1 becomes simply
that β(f ∗ g) = β(f) and α(f ∗ g) = α(f). This is the analogue of the phenomenon
that in Theorem 1.1, when the indices of regular variation are unequal the compo-
nent of the convolution with the smaller index is negligible in comparison with the
other component, so that the convolution is asymptotically equivalent to the larger
component.

If the intervals [β(f), α(f)] and [β(g), α(g)] are not disjoint, neither f nor g
necessarily dominates the other, so no refinement along these lines is generally
available. Similar remarks apply in the case of local indices in Corollary 4.2.



56 BINGHAM, GOLDIE, AND OMEY

7.3. Subexponentiality. The subexponential class—the class S of subexpo-
nential distributions—often occurs as a generalisation of the class R of regularly
varying distributions. This class is known not to be closed under convolution (Leslie
[11]; cf. [5, Appendix 4], [6, Appendix A3.2]). Thus (in an obvious notation)
S ∗ S ⊂ S is false, while Theorems 1.1 and 2 may be written D ∗ D ⊂ D and
R ∗ R ⊂ R. One may ask whether R ∗ S ⊂ S, for instance, but we leave such
questions open.

For a subexponential distribution on [0,∞) it was proved by H. Kesten (see [3,
IV]) that for all ε > 0 there exists K(ε) with

Fn∗(x) � K(ε)(1 + ε)nF (x) for all n = 1, 2, . . . and x � 0

((·)n∗ denotes nth convolution power). One might conjecture that for a regularly
varying distribution tail F or density f , a bound of the form

Fn∗(x) � KnδF (x) for all n = 1, 2, . . . and x � 0,

or respectively

fn∗(x) � Knδf(x) for all n = 1, 2, . . . and x � 0,

might hold.

7.4. Credence. O’Hagan ([12]; cf. [13]) calls a random variable of credence
c if its density decays like |x|−c. In Bayesian statistics, one has two sources of
information—one’s prior beliefs (which summarise one’s information before sam-
pling), and the information in the sample. Problems arise where these two sources
of information may conflict. He obtains results of two kinds, for elliptically con-
toured distributions. First, for non-conflicting sources of information (that is, where
the centres agree), credences add when sources of information are combined. This
simply corresponds to the power law xa+b = xa · xb. Next, for conflicting sources
of information,

(a) the centre of the source with higher credence dominates;
(b) the tail of the source with lower credence dominates.

Part (b) is in keeping with our results, and with the coarse-averaging (or tower,
or iterated conditional expectations) property of conditional expectations (see e.g.
[15, 9.7(i)]).

7.5. Logarithmic derivatives. Berman [4] obtains results complementary
to ours, where the focus is on the logarithmic derivatives of densities rather than
densities themselves. Again, the heavier tail predominates. His work is motivated
by applications to HIV-latency times.
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[1] S. Aljančić and D. Arandelović, O-regularly varying functions, Publ. Inst. Math., Nouv. Sér.
22(36) (1977), 5–22.
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