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Abstract. This is a survey of the authors’ results on the properties and appli-
cations of some subclasses of (so-called) O-regularly varying (ORV) functions.
In particular, factorization and uniform convergence theorems for Avaku-
mović–Karamata functions with non-degenerate groups of regular points are
presented together with the properties of various other extensions of regularly
varying functions. A discussion of equivalent characterizations of such classes
of functions is also included as well as that of their (asymptotic) inverse func-
tions. Applications are given concerning the asymptotic behavior of solutions
of certain stochastic differential equations.
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It was in winter 2000, when we heard about Tatjana Ostrogorski for the first
time. Being all at Marburg in those days, we were completing the paper [9] and,
since we needed an advice concerning the references, we asked E. Seneta about
his opinion and possible related results in the literature. He kindly provided us
with a preliminary list of references and suggested to ask Tatjana concerning fur-
ther results on this topic. Unfortunately, we were not able to take advantage of
a discussion of the topic with her. On the other hand, among other references in
Prof. Seneta’s list, we came across the origin of the topic due to Avakumović [2].
Vojislav G. Avakumović was a late professor at the University of Marburg, where
some of his students and collaborators are still working. Due to this special co-
incidence of the topic and the place, where we were working on it, we decided to
continue these investigations further. Thanks to the support given by Deutsche
Forschungsgemeinschaft this became possible. In the survey below, we present
some of our results in this field.

1. Introduction

In a stimulating paper in 1930, Karamata [29] introduced the notion of regular
variation and proved some fundamental theorems for regularly varying (RV) func-
tions such as the Representation Theorem, the Uniform Convergence Theorem, and
the Characterization Theorem (see also [30]). These results (together with later
extensions and generalizations) turned out to be fruitful for various fields of math-
ematics (cf. Seneta [47] and Bingham, Goldie and Teugels [6] for excellent surveys
on this topic and for the history of the theory and its applications).

After the papers of Karamata, various generalizations of the notion of regular
variation (for functions of a single argument) appeared in the literature. In this
paper, we are mainly concerned with a generalization due to Avakumović [2] that
has been further investigated in Karamata [31], Feller [22], and Aljančić and Aran-
djelović [1]. The functions studied by these and several other authors are known
in the literature as O-regularly varying (ORV) functions (see Definition 2.1 below).
Bari and Stechkin [3], for example, independently studied ORV functions and their
applications in the theory of best function approximation.

We also mention extensions of the Karamata theory to the cases of multidi-
mensional arguments (see, for example, Yakymiv [51], Ostrogorski [41, 42]) and
of multidimensional functions (Meerschaert and Scheffler [40]).

The defining property of ORV functions f is that f is positive, measurable,
and such that

f∗(c) = lim sup
t→∞

f(ct)
f(t)

<∞ for all c > 0.

The function f∗ is called the “limit function” of f . Note that, in the theory of
regular variation, f∗ is assumed to exist as a positive and finite limit for all c > 0.
This results in the well-known characterization of f∗ as a power function with some
characteristic index ρ. The current paper is organized as follows. In a first and
introductory part (Sections 1 and 2), we give a historical overview on the topic and
collect a series of related definitions and preliminaries.
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The main aim of the second part (Section 3) is to study the classes of ORV
functions with “non-degenerate groups of regular points”, that is, those functions f
for which f∗(c) exists as a positive and finite limit not necessarily for all c > 0, but
possibly for some c > 0 (the set of those c necessarily forms a subgroup of R+). This
extends the investigation of regularly varying functions to a larger class of functions,
and leads us to new representation, characterization and uniform convergence the-
orems which, in general, are different from their well–known counterparts in RV
theory. In particular, the limit functions can typically be represented as a product
of a power function and a positive periodic component which, in turn, results in
corresponding representations for the ORV functions themselves.

We give some typical examples of ORV functions with “non-degenerate groups
of regular points” and discuss some invariance properties of the transformation f �→
f∗. In addition, we present the factorization representations for limit functions of
ORV (and of other generalized RV) functions, which as corollaries cover well–known
characterization theorems for RV functions. We also consider the corresponding
factorization representations for the class of ORV functions with non-degenerate
groups of regular points. Finally, some uniform convergence theorems are given for
ORV functions (and some of their variants), which complement their corresponding
counterparts in the RV theory. Section 3 contains results from Buldygin et al.
[10, 12, 14]. For the proofs we refer to Buldygin et al. [14].

The third part of this paper (Sections 4–6) deals with some properties of func-
tions preserving the equivalence of functions, that is with functions f satisfying
f(u(t))/f(v(t)) → 1, whenever u(t)/v(t) → 1 (as t → ∞), and with asymptotic
quasi-inverse functions (confer Buldygin et al. [9], [15]–[17]; proofs can be found
in [11] and [15]–[17]). This part is organized as follows. In Section 4, we consider
the Integral Representation Theorems for pseudo-regularly varying (PRV) functions
(cf. Definition 2.4) and obtain some equivalent characterizations of functions with
positive order of variation (POV, see Definition 2.6). Moreover, a theorem on in-
creasing versions for POV functions and a variant of Potter’s theorem for PRV
functions are considered. The solutions of some application problems in Section
7 below are closely connected with the question of when differentiable functions
satisfy PRV conditions or are even pseudo-monotone of positive variation (PMPV,
see Definition 2.5). Therefore, in Section 4, the latter question will be discussed
in some detail. In Section 5, we consider asymptotic quasi-inverse and asymptotic
inverse functions and investigate the problem of the existence of such functions.
We also discuss conditions under which quasi-inverse functions preserve the equiv-
alence of functions. Main properties and characterizations of POV functions and
their asymptotic quasi-inverses are studied in Section 6. Moreover, the limiting
behavior of the ratio of asymptotic quasi-inverse functions is discussed.

To be more precise, let a real-valued function f be locally bounded on [t0,∞)
for some t0 � 0, and let f(t) → ∞ as t→ ∞. Then its generalized inverse function
f←(s) = inf{t ∈ [t0,∞) : f(t) � s} is defined on [f(t0),∞), is nondecreasing and
tends to ∞ as s→ ∞.
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One of the pioneering works on generalized inverses in probability theory is
Vervaat [50] where functional central limit theorems and laws of the iterated loga-
rithm are proved for nondecreasing and unbounded stochastic processes and their
generalized inverses. Confer also the book by Resnick [45] as a standard reference
for properties of generalized inverses, in particular in relation to regular variation.

Below are two determining properties for the inverse function f−1:
(i) f(f−1(t)) = t, t ∈ [f(t0),∞), and
(ii) f−1(f(t)) = t, t ∈ [t0,∞).

The inverse function f−1 exists if f is continuous and strictly increasing. But,
if either f is discontinuous or f is not strictly increasing then its inverse func-
tion f−1 does not exist, in which case the generalized inverse function is a natural
substitution for the inverse function in many situations. However, generalized in-
verse functions do not always satisfy the above determining properties of inverse
functions.

Various other definitions of (so-called) “quasi-inverse” functions are known in
the literature. Any of these definitions either lacks part of the above determining
properties or weakens them in one way or another.

In Section 5 we consider asymptotic quasi-inverse functions f̃ (−1) defined, for
a given function f , by the property f(f̃ (−1)(t)) ∼ t as t → ∞, and asymptotic
inverse functions, satisfying, in addition, f̃ (−1)(f(t)) ∼ t as t → ∞. That is, we
keep condition (i) (and (ii)) in an asymptotic sense in the definition of quasi-inverse
(inverse) functions. Note that an asymptotic quasi-inverse function is not unique,
even when its original function is continuous and strictly increasing. On the other
hand, not all functions f have an asymptotic quasi-inverse function, and one of
the questions is how to describe an appropriate class of functions f possessing
asymptotic quasi-inverses.

Below (Sections 5 and 6) we consider the following four problems for asymptotic
quasi-inverse functions:

(A) for which functions are their generalized inverse functions also asymptotic
quasi-inverse functions;

(B) for which functions are their asymptotic quasi-inverse functions also as-
ymptotic inverse functions;

(C) for which functions are their asymptotic quasi-inverse functions asymp-
totically equivalent;

(D) for which functions can the asymptotic behavior of their asymptotic quasi-
inverses be obtained from the asymptotic behavior of the original functions
or vice versa.

All four problems above are closely related to each other; we shall present here
solutions for the classes of PRV, PMPV and POV functions.

Our motivation for applications of the four problems above results from cer-
tain correspondences in the theory of probability, particularly between the strong
law of large numbers for random walks and the renewal theorem for counting pro-
cesses (see, e.g., Gut et al. [25]). Namely, given a sequence of random variables
{Zn, n � 0}, generalized renewal processes can be defined in “a natural way” as
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follows: consider either R(t) = sup{n � 0: Zn � t} or R(t) = sup{n � 0:
max(Z0, Z1, . . . , Zn) � t} or R(t) =

∑∞
n=1 I(Zn � t). If the sequence {Zn, n � 0}

is strictly increasing, then all three functions coincide. Otherwise they are different,
and further “natural” definitions of renewal processes could be given. In a certain
sense, the sequence {Zn} and the process {R(t)} can be viewed as generalized
inverses to each other.

Given a continuous, strictly increasing, and unbounded function f , it is proved
in Klesov et al. [33] that, under some mild conditions, if Zn/fn → 1 almost
everywhere (a.e.) as n→ ∞, then R(t)/f−1(t) → 1 a.e. as t→ ∞, where fn = f(n)
and f−1 is the inverse to f . The main assumption posed on the function f in [33]
is that either f or f−1 or both of them (the choice depends on the desired result)
satisfy the PRV property. The above results are of the following nature: given an
asymptotic behavior for an original function, find the corresponding limit behavior
for its inverse function. Thus, in Klesov et al. [33], problem (D) has been considered
for continuous, strictly increasing and unbounded functions, and an application of
this problem has been discussed.

PRV functions and their various applications have been studied by Korenblyum
[36], Matuszewska [38], Matuszewska and Orlicz [39], Stadtmüller and Trautner
[48], [49], Berman [4, 5], Yakymiv [53, 54], Cline [19], Klesov et al. [33], Djurčić
and Torgašev [21], Buldygin et al. [9], [11]–[13], [15]–[18]. Note that PRV func-
tions are called regularly oscillating in Berman [4], weakly oscillating in Yakymiv
[53] and intermediate regularly varying in Cline [19].

Recall that one of the main properties of PRV functions is that PRV functions,
and only they, preserve the equivalence of functions and sequences, cf. Theorem 2.1
below.

In a more general setting, problem (D) has been considered in Djurčić and
Torgašev [21] and Buldygin et al. [9, 11]. In these papers, among other questions,
PMPV functions are defined (see, [21, Definition 3] and [11, relation (6.2)]). One
of the main properties of PMPV functions is that their quasi-inverse functions are
PRV functions and preserve the equivalence of functions. Moreover, the POV prop-
erty has been introduced in [11] as a generalization of RV functions with positive
index. In particular, it is proved in Buldygin et al. [11] that strictly increasing, un-
bounded POV functions and their quasi-inverse functions simultaneously preserve
the equivalence of functions and sequences. Moreover, only POV functions possess
this property. Note that condition (2.3) defining PMPV functions has also been
used by Yakymiv [52] in connection with Tauberian theorems.

The complete solution of problems (A)–(D) for PRV and POV functions is
given in [15] and [16].

In the fourth part of this paper (Section 7) we present various applications of
the general results from Sections 4–6. We investigate the almost sure asymptotic
behavior (as t→ ∞) of the solution of the stochastic differential equation dX(t) =
g(X(t))dt + σ(X(t))dW (t), where g and σ are positive continuous functions and
W is a standard Wiener process. Applying the general results of the theory of
PRV and PMPV functions, we find conditions on g and σ, under which X(t), as
t → ∞, may be approximated almost everywhere on {X(t) → ∞} by the solution
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of the underlying deterministic differential equation dµ(t) = g(µ(t))dt. Moreover,
the asymptotic stability with respect to initial conditions of solutions of the above
stochastic differential equation as well as the asymptotic behavior of generalized
renewal processes connected with this equation are considered in this part. This
section is based on Buldygin et al. [16]–[18] (for the proofs we refer to Buldygin
et al. [17]).

ORV functions also find their applications in the theory of renewal functions
and processes constructed from random walks with multidimensional time (see,
Klesov and Steinebach [34, 35] and Indlekofer and Klesov [27]) and in the strong
law of large numbers for random walks with restricted domain (see, [28]).

Further applications to the asymptotic behavior of generalized renewal sample
functions of continuous functions and sequences were considered in Buldygin et al.
[11, 16].

2. Definitions and preliminaries

Let R be the set of real numbers, R+ be the set of positive numbers, Q be
the set of rational numbers, Z be the set of integers, and N be the set of positive
integers. Also let F be the space of real-valued functions f = (f(t), t > 0), and
F+ =

⋃
A>0{f ∈ F|f(t) > 0, t ∈ [A,∞)}. Thus f ∈ F+ if and only if f is eventually

positive.
Let F

(∞) be the space of functions f ∈ F+ such that
(i) sup0�t�T f(t) <∞, ∀T > 0; (ii) lim supt→∞ f(t) = ∞.

Further let F
∞ and F

∞
ndec be the spaces of functions f ∈ F

(∞) such that f(t) →
∞, t→ ∞, and f be nondecreasing for large t, respectively.

We also use the subspaces C(∞), C∞, and C∞ndec of continuous functions in F(∞),
F
∞, and F

∞
ndec, respectively. Finally, the space C

∞
inc contains all functions f ∈ C

∞,
which are strictly increasing for large t. Throughout the paper “measurability”
means “Lebesgue measurability” and “meas” denotes the Lebesgue measure.

For given f ∈ F+, introduce the upper and lower limit functions

f∗(c) = lim sup
t→∞

f(ct)
f(t)

and f∗(c) = lim inf
t→∞

f(ct)
f(t)

, c > 0,

which take values in [0,∞].

RV and ORV functions. Recall that a measurable function f ∈ F+ is called
regularly varying (RV) if f∗(c) = f∗(c) = κ(c) ∈ R+ for all c > 0 (see Karamata
[29]). In particular, if κ(c) = 1 for all c > 0, then the function f is called slowly
varying (SV). For any RV function f , κ(c) = cα, c > 0, for some number α ∈ R
which is called the index of the function f . Moreover, f(t) = tα�(t), t > 0, where
� is a slowly varying function.

A measurable function f ∈ F+ is called O-regularly varying (ORV) if f∗(c) <∞
for all c > 0 (see Avakumović [2] and Karamata [31]). It is obvious that any RV
function is an ORV function.
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On some versions of ORV functions. There exist various versions of ORV
functions. Three of them will be considered in our context. In what follows
“weakly” always means that the corresponding functions are not assumed to be
measurable.

Definition 2.1. A function f ∈ F+ is calledO-weakly regularly varying (OWRV)
if

(2.1) 0 < f∗(c) � f∗(c) <∞ for all c > 0.

Moreover, a function f ∈ F+ is called O-regularly varying (ORV) if it is OWRV
(i.e. condition (2.1) holds) and measurable.

Definition 2.2. A function f ∈ F+ is called O-weakly uniformly regularly
varying (OWURV) if there exists an interval [a, b] ⊂ (0,∞) with a < b such that

0 < inf
c∈[a,b]

f∗(c) � sup
c∈[a,b]

f∗(c) <∞.

Note that any OWURV function is an OWRV function.

Remark 2.1. It is known (see, for example, [1, Theorem 1]; [6, Theorems 2.0.1
and 2.0.4]) that all ORV functions are OWURV. Moreover, if f is an ORV function,
then

0 < lim inf
t→∞ inf

c∈[a,b]

f(ct)
f(t)

� lim sup
t→∞

sup
c∈[a,b]

f(ct)
f(t)

<∞

for any interval [a, b] ⊂ (0,∞).

Certain subclasses of ORV functions have also been discussed in the literature.
For example, Drasin and Seneta [20] studied the so-called OSV functions.

Definition 2.3. A function f ∈ F+ is called O-weakly slowly varying (OWSV)
if it is an OWRV function such that supc>0 f

∗(c) <∞. Moreover, a function f ∈ F+

is called O-slowly varying (OSV) if it is OWSV and measurable.

PRV functions. For any RV function f , we have f∗(c) → 1 as c → 1. In
order to generalize this property to a wider class of functions, we introduce the
following definition (see Buldygin et al. [11]).

Definition 2.4. A function f ∈ F+ is called weakly pseudo-regularly varying
(WPRV) if

(2.2) lim sup
c→1

f∗(c) = 1.

A function f ∈ F+ is called pseudo-regularly varying (PRV) if it is a measurable
WPRV function (cf. Buldygin et al. [11]).

It is obvious that from (2.2) it follows that the function f is an ORV function.
Thus every PRV function is an ORV function. Any quickly growing function, e.g.
f(t) = et, t � 0, is not PRV.

Remark 2.2. (Buldygin et al. [11]) Let f ∈ F+. Then,
1) condition (2.2) is equivalent to any of the following four conditions:
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(i) lim infc→1 f∗(c) = 1, (iii) limc↓1 f∗(c) = limc↓1 f∗(c) = 1,

(ii) limc→1 lim supt→∞
∣∣∣ f(ct)

f(t) − 1
∣∣∣ = 0, (iv) limc↑1 f∗(c) = limc↑1 f∗(c) = 1;

2) condition (2.2) holds if and only if the upper limit function f∗ (or the lower
limit function f∗) is continuous at the point c = 1, that is, limc→1 f

∗(c) = 1 or
limc→1 f∗(c) = 1;

3) if f is a function with a nondecreasing upper limit function f∗, then condition
(2.2) holds if and only if limc↓1 f∗(c) = 1 or limc↑1 f∗(c) = 1; moreover, under these
conditions, f∗ is continuous at every point c ∈ (0,∞).

Example 2.1. Any PRV function is ORV, but not vice versa. For example,
the function f(t) = 2 + (−1)[t], t � 0, is ORV, but not PRV. �

Example 2.2. Any RV function is PRV, but not vice versa. For example, let
α be a fixed real number. Then, the function

f(t) =

{
0, for t = 0,
tα exp {sin(log t)} , for t > 0,

is PRV, but not RV. �
Example 2.3. Also, the function

f(t) =

⎧⎪⎨
⎪⎩

1, for t ∈ [0, 1);
2k, for t ∈ [

22k, 22k+1
)
, k = 0, 1, 2 . . . ;

t/2k+1, for t ∈ [
22k+1, 22k+2)

)
, k = 0, 1, 2 . . . ;

is PRV, but not RV. �
PMPV and POV functions. Next we define further classes of functions

playing an important role in the context of this paper (see also Buldygin et al.
[11]).

Definition 2.5. A function f ∈ F+ is called weakly pseudo-monotone of posi-
tive variation (WPMPV) if

(2.3) f∗(c) > 1 for all c > 1,

or, equivalently, if f∗(c) < 1 for all c ∈ (0, 1). A function f ∈ F+ is called pseudo-
monotone of positive variation (PMPV) if f is a measurable WPMPV function.

Note that every slowly varying function f is not a PMPV function. On the
other hand, any RV function of positive index as well as any quickly increasing
monotone function, for example f(t) = et, t � 0, is PMPV.

Remark 2.3. Observe that any function f satisfying condition (2.3) belongs
to F

(∞).

Using condition (2.3) we introduce a subclass of PRV functions, which is similar
to the class of RV functions with positive index (cf. Buldygin et al. [11]).

Definition 2.6. A WPRV (PRV) function f is said to have positive order of
variation WPOV (POV) if it satisfies condition (2.3).
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Any slowly varying function f as well as any quickly growing function, e.g.
f(t) = et, t � 0, is not POV. On the other hand, any RV function of positive index
is a POV function. Example 2.3 presents a PRV function, which is neither an RV
function nor a POV function. Example 2.2, with α � 1, gives a PRV function,
which is not an RV function, but is a POV function.

Functions preserving asymptotic equivalence. In this subsection, the
functions u and v are nonnegative and eventually positive.

Two functions u and v are called (asymptotically) equivalent if u(t) ∼ v(t) as
t → ∞, that is limt→∞ u(t)/v(t) = 1. The equivalence of functions is denoted by
u ∼ v.

Definition 2.7. A function f preserves the equivalence of functions if f(u(t))
f(v(t)) →

1 as t→ ∞ for all nonnegative functions u and v such that u ∼ v and limt→∞ u(t) =
limt→∞ v(t) = ∞.

In a similar way, one can introduce the notion of functions f preserving the
equivalence of sequences. Below, all sequences {un, n � 0} and {vn, n � 0} are
assumed to be nonnegative and eventually positive.

Two sequences {un, n � 0} and {vn, n � 0} are called (asymptotically) equiva-
lent if limn→∞ un/vn = 1. Equivalent sequences {un, n � 0} and {vn, n � 0} are
denoted by {un} ∼ {vn}. A function f preserves the equivalence of sequences if
f(un)/f(vn) → 1 as n → ∞ for all sequences of positive numbers {un, n � 0} and
{vn, n � 0} such that {un} ∼ {vn} and limn→∞ un = limn→∞ vn = ∞. One of the
most important properties of WPRV functions is that they and only they preserve
the equivalence of both functions and sequences.

Theorem 2.1. (Buldygin et al. [11]) Let f ∈ F+. The following conditions
are equivalent:

(a) a function f preserves the equivalence of functions;
(b) a function f preserves the equivalence of continuous functions, which are

strictly increasing to infinity;
(c) a function f preserves the equivalence of sequences;
(d) a function f is WPRV.

Theorem 2.1 implies the following version of a Uniform Convergence Theorem
(see also Yakymiv [53], Buldygin et al. [11]).

Theorem 2.2. Let f be a WPRV function. Then

lim
a↓1

lim sup
t→∞

sup
a−1�c�a

∣∣∣∣f(ct)
f(t)

− 1
∣∣∣∣ = 0.

3. On Factorization representations for Avakumović–Karamata
functions with non-degenerate groups of regular points

Regular points. Consider f ∈ F+. A number λ > 0 is called a regular point
of the function f , denoted λ ∈ Gr(f), if

(3.1) f∗(λ) = f∗(λ) ∈ (0,∞),
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that is, the limit κf (λ) = limx→∞ f(λx)/f(x) exists, and is positive and finite. The
function κf = (κf (λ), λ ∈ Gr(f)) is called the limit function of f . In the sequel,
for the sake of brevity, all functions f∗, f∗ and κf are sometimes just called limit
functions.

The set Gr(f) of regular points of f is a multiplicative subgroup of R+ with 1 ∈
Gr(f). If Gr(f) = {1}, then Gr(f) is called degenerate, otherwise non-degenerate.

Given f ∈ F+, if f is measurable and Gr(f) = R+, then f is regularly varying
(RV) in Karamata’s sense.

The next theorems are well-known (see [30], [23], [26], [47], [6]) and are fun-
damental in the theory of regular variation.

Characterization Theorem 1. Let f ∈ F+, and let f be measurable. If
meas(Gr(f)) > 0, then Gr(f) = R+, that is, f is an RV function, and there exists
a real number ρ = ρf such that

(3.2) κf (λ) = λρ, λ > 0.

For any RV function f , one has

(3.3) f(x) = xρ�(x), x > 0,

where (�(x), x > 0) is a slowly varying function. Moreover, (3.2) and (3.3) are
equivalent.

There are various extensions of the notion of regularly varying functions. For
example, weakly regularly varying functions and their characterizations have been
studied (cf. [37], [46], [47], [6]).

Given f ∈ F+, if Gr(f) = R+, then f is called weakly regularly varying (WRV).
Here the function f is not assumed to be measurable.

Characterization Theorem 2. Let f ∈ F+, and let both f and 1/f be
bounded on all finite intervals far enough to the right. If there exists a measurable
set Λ ⊂ Gr(f) such that meas(Λ) > 0, then Gr(f) = R+, that is, f is a WRV
function, and there exists a real number ρ = ρf such that (3.2) holds.

Note that for any WRV function f , from the above theorem we have

(3.4) f(x) = xρw(x), x > 0,

where (w(x), x > 0) is a weakly slowly varying function (WSV), that is κw(λ) = 1,
λ > 0. Moreover, (3.4) and (3.2) are equivalent.

The above characterization theorems show that, if the set of regular points
Gr(f) is “sufficiently large”, then, with some additional conditions on f , assertions
(3.2), (3.3) and (3.4) hold, and the function f is regularly or weakly regularly
varying.

Note for later use that Hr(f) = log(Gr(f)) is an additive subgroup of numbers
u in R such that exp (u) ∈ Gr(f).

Some examples. Next we present some examples of functions f with nonde-
generate, but “small” groups of regular points Gr(f). It will be seen later on, that
the form of their limit functions is typical in some sense for the general situation.
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Example 3.1. Let (r(x), x > 0) be a regularly varying function with index ρ,
and put f(x) = r(x) exp{sin (log x)}, x > 0. Then, for all λ > 0,

(3.5) f∗(λ) = λρ exp {2| sin (log
√
λ)|}, f∗(λ) = λρ exp {−2| sin (log

√
λ)|}.

By (3.5), Gr(f) = {e2πn : n ∈ Z}, and this multiplicative group is non-degenerate.
Moreover, κf (λ) = λρ, λ ∈ Gr(f). Note that (exp{2| sin(u/2)|}, u ∈ R) is a positive
periodic function with set of periods Hr(f) = {2πn : n ∈ Z}. �

Example 3.2. Let (r(x), x > 0) be a regularly varying function with index ρ
and put f(x) = r(x) exp{sign (sin (log x))}, x > 0, where sign (x) = 1, if x > 0,
sign (x) = −1, if x < 0, and sign (0) = 0. Then, for all λ such that log λ 	= 2πn,
n ∈ Z,

(3.6) f∗(λ) = λρ exp {2}, f∗(λ) = λρ exp {−2},
whereas

(3.7) f∗(λ) = f∗(λ) = λρ,

for all λ such that log λ = 2πn, n ∈ Z. By relations (3.6), (3.7),Gr(f) = {e2πn :
n ∈ Z}, and this multiplicative group is non-degenerate. Moreover, κf (λ) = λρ,
λ ∈ Gr(f). Rewrite f∗ in the form f∗(λ) = λρ exp{2(1 − IHr(f)(log λ))}, where
IHr(f) is the indicator function of Hr(f), and note that (exp{2(1−IHr(f)(u)}, u ∈ R)
is a positive periodic function with set of periods Hr(f) = {2πn : n ∈ Z}. �

Example 3.3. Let (r(x), x > 0) be a regularly varying function with index ρ
and let (d(x), x > 0) be the Dirichlet function, i.e. d(x) = 1, if x ∈ Q, and d(x) = 0
otherwise. Put f(x) = r(x) exp{d(x)}, x > 0. Then, for all λ > 0,

(3.8) f∗(λ) = λρ exp{1 − d(λ)}, f∗(λ) = λρ exp{d(λ) − 1}.
By (3.8), Gr(f) = Q∩R+, and this multiplicative group is non-degenerate. More-
over, κf (λ) = λρ, λ ∈ Gr(f). Note that the set Gr(f) is everywhere dense in
R+, but meas(Gr(f)) = 0. Rewrite f∗ from (3.8) in the form f∗(λ) = λρ exp{1 −
d(elog λ)}, and note that (exp{1 − d(eu)}, u ∈ R) is a positive periodic function
with set of periods Hr(f) = {u ∈ R : exp(u) ∈ Q ∩ R+}. �

The next example shows that for every non-degenerate multiplicative subgroup
of R+ there exists a function f such that Gr(f) = G.

Example 3.4. Let (r(x), x > 0) be a regularly varying function with index ρ
and let G be a non-degenerate multiplicative subgroup of R+. Put

f(x) = r(x) exp{IG(x)}, x > 0,

where IG is the indicator function of G. Then, for all λ > 0,

(3.9) f∗(λ) = λρ exp{1 − IG(λ)}, f∗(λ) = λρ exp{IG(λ) − 1}.
By (3.9) Gr(f) = G, and this multiplicative group is non-degenerate. Moreover,
κf (λ) = λρ, λ ∈ Gr(f). Rewrite f∗ from (3.9) in the form f∗(λ) = λρ exp{1 −
IG(elog λ)}, and note that (exp{1 − IG(exp{u})}, u ∈ R) is a positive periodic
function with set of periods Hr(f) = {u ∈ R : exp(u) ∈ G}. �
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∗-invariant limit functions. In a next step we consider some facts related
to invariants of the transformations f �→ f∗ and f �→ f∗.

Definition 3.1. A function f ∈ F+ is called an upper ∗-invariant function,
if f(λ) = f∗(λ) for all λ > 0, and it is called a lower ∗-invariant function, if
f(λ) = f∗(λ) for all λ > 0.

Proposition 3.1. Let f be an OWRV function with non-degenerate group
of regular points Gr(f). Then its upper limit function f∗ is upper ∗-invariant,
i.e. f∗∗ = (f∗)∗ = f∗, and its lower limit function f∗ is lower ∗-invariant, i.e.,
f∗∗ = (f∗)∗ = f∗. Moreover, (f∗)∗ = f∗ and (f∗)∗ = f∗.

The following example contains some ∗-invariant functions.

Example 3.5. The function f = (xa, x > 0), with a ∈ R fixed, is both upper
∗-invariant and lower ∗-invariant; the function f = (exp {2| sin (log

√
x)|}, x > 0)

is upper ∗-invariant and the function f = (exp {−2| sin (log
√
x)|}, x > 0) is lower

∗-invariant.

Corollary 3.1. Let ϕ be an OWRV function with non-degenerate group of
regular points Gr(ϕ). If ϕ is upper ∗-invariant, then the function g(λ) = 1/ϕ(1/λ),
λ > 0, is lower ∗-invariant.

A Factorization representation for the limit functions of OWRV func-
tions with non-degenerate groups of regular points.

Theorem 3.1. Let f be an OWRV function with non-degenerate group of reg-
ular points Gr(f). Assume that c ∈ Gr(f) with c 	= 1. Then, for λ > 0,

f∗(λ) = λαP (log λ) and f∗(λ) =
λα

P (− log λ)
,

where α = logc κf (c), (P (u), u ∈ R) is a positive periodic function with P (0) = 1,
for which its set of periods Sper(P ) contains the set {nu0, n ∈ Z} with u0 = log c 	=
0, and Sper(P ) ⊂ Hr(f). Moreover, the function (P (log λ), λ > 0) is upper ∗-
invariant and the function (1/P (− log λ), λ > 0) is lower ∗-invariant, that is, for
all u ∈ R,

lim sup
x→∞

P (u+ x)
P (x)

= P (u) and lim inf
x→∞

P (u+ x)
P (x)

=
1

P (−u) .

Corollary 3.2. Let f be an OWRV function with non-degenerate group of
regular points Gr(f), and let (P (u), u ∈ R) be as in Theorem 3.1. Then,

(a) P (u)P (−u) � 1 for all u ∈ R; (b) infu∈R P (u) supu∈R P (u) � 1.

A factorization representation for the limit functions of OWURV and
ORV functions with non-degenerate groups of regular points. Theorem
3.1 demonstrates that, for any OWRV function f with non-degenerate group of
regular points Gr(f), its limit functions f∗ and f∗ can be represented as a product
of a power function and a positive periodic component with logarithmic argument.
But, in general, such a representation need not necessarily be unique. The following
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theorem shows that, for any OWURV function with non-degenerate group of regular
points, such a representation is indeed unique. Moreover, the form of the periodic
component will be studied in more detail.

Theorem 3.2. Let f be an OWURV function with non-degenerate group of
regular points Gr(f). Then,

(i) there exists a unique real number ρ ∈ R, such that ρ = logc κf (c), c ∈
Gr(f) � {1};

(ii) if 1 ∈ {κf (c), c ∈ Gr(f) � {1}}, then ρ = 0;
(iii) we have

(3.10) κf (λ) = λρ, λ ∈ Gr(f);

(iv) for λ > 0,

(3.11) f∗(λ) = λρP(log λ) and f∗(λ) =
λρ

P(− log λ)
,

where (P(u), u ∈ R) is a positive periodic function such that P(0) = 1,

1 = min−∞<u<∞P(u) � P(u) � sup
−∞<u<∞

P(u) <∞, u ∈ R,

and Sper(P) = Hr(f), with Sper(P) denoting the set of periods of P;
(v) (P(log λ), λ > 0) is upper ∗-invariant and (1/P(− log λ), λ > 0) is lower

∗-invariant, that is, for all u ∈ R,

lim sup
x→∞

P(u+ x)
P(x)

= P(u) and lim inf
x→∞

P(u+ x)
P(x)

=
1

P(−u) ;

(vi) p = logP is subadditive, that is, P(u+ x) � P(u)P(x), and p(u + x) �
p(u) + p(x), for all u, x ∈ R;

(vii) for given f , the representations (3.10), (3.11) are unique.

Definition 3.2. The exponent ρ in (iii) of Theorem 3.2 is called the index,
and the function P in (iv) of Theorem 3.2 is called the periodic component of the
OWURV function f with non-degenerate group of regular points Gr(f).

By Theorem 3.2, for a given OWURV function f with non-degenerate group
of regular points Gr(f), the function f∗ is uniquely defined by its index ρ and its
periodic component P. The next result is immediate from (vi) of Theorem 3.2.

Corollary 3.3. Let f be an OWURV function with non-degenerate group of
regular points Gr(f), and with periodic component P. Then the following state-
ments are equivalent:

(a) f∗ is continuous on R+; (c) P is continuous at 0;
(b) P is uniformly continuous on R; (d) f∗ is continuous at 1.

The next results follow from Theorem 3.2 again.

Corollary 3.4. Let f be an OWURV function with non-degenerate group of
regular points Gr(f), and with periodic component P. Then the following state-
ments are equivalent:
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(a) assertion (3.2) holds;
(b) Gr(f) = R+;
(c) Sper(P) = R;
(d) P(u) = 1 for all u ∈ R;
(e) P(u)P(−u) = 1 for all u ∈ R;
(f) Gr(f) is dense in R+ and f∗ is continuous on R+;
(g) Gr(f) is dense in R+ and f∗ is continuous at one point λ ∈ R+;
(h) Sper(P) is dense in R and P is continuous on R;
(i) Sper(P) is dense in R and P is continuous at one point u ∈ R.

Corollary 3.5. Let f be an OWURV function with non-degenerate group of
regular points Gr(f) and index ρ. Then

lim
λ→0+

log f∗(λ)
log λ

= lim
λ→∞

log f∗(λ)
log λ

= ρ,

lim
λ→0+

log f∗(λ)
log λ

= lim
λ→∞

log f∗(λ)
log λ

= ρ.

In view of Remark 2.1 we conclude:

Theorem 3.3. Let f be an ORV function with non-degenerate group of regular
points Gr(f). Then all statements of Theorem 3.2 retain.

Corollaries (Characterization theorems). Theorem 3.2 immediately im-
plies the following series of characterization theorems:

Corollary 3.6. Let f be an OWURV function, and let its group of regular
points Gr(f) contain a set of positive Lebesgue measure. Then Gr(f) = R+, that
is, f is a WRV function, and there exists a real number ρ such that assertion (3.2)
holds. Moreover, f(x) = xρw(x), x > 0, where (w(x), x > 0) is a weakly slowly
varying function, that is κw(λ) = 1, λ > 0.

Corollary 3.7. The Characterization Theorems 1 and 2 hold true.

Corollary 3.8. (Bingham et al. [6, Theorem 1.4.3]) Let f ∈ F+ and

(3.12) lim sup
λ↓1

f∗(λ) � 1 or lim sup
λ↑1

f∗(λ) � 1.

Then the following statements are equivalent:
(i) there exists a real number ρ such that (3.2) holds;
(ii) f is a WRV function;
(iii) Gr(f) contains a set of positive Lebesgue measure;
(iv) Gr(f) is dense in R+;
(v) there exist positive numbers λ1, λ2 ∈ Gr(f) � {1} such that log λ1/ log λ2

is irrational.
Moreover, (i) ⇒ (3.12).

Corollary 3.9. Let f ∈ F+, and assume there exists λ0 > 0 such that

(3.13) lim
λ→λ0

f∗(λ) = 1.

Then the following statements are equivalent:
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(i) there exists a real number ρ such that (3.2) holds;
(ii) f is a WRV function;
(iii) Gr(f) contains a set of positive Lebesgue measure;
(iv) Gr(f) is dense in R+;
(v) there exist positive numbers λ1, λ2 ∈ Gr(f) � {1} such that log λ1/ log λ2

is irrational.
Moreover, if (iv) and (3.13) hold with λ0 	= 1, then ρ = 0, that is, f is a WSV

function.

Note that (3.13) is also necessary for (i) of Corollary 3.9.

A factorization representation for ORV functions having nondegen-
erate groups of regular points. In the previous subsections, factorization rep-
resentations for the limit functions of Avakumović–Karamata functions have been
considered. Now, we present a factorization representation for the functions them-
selves.

Proposition 3.2. Let f be an OWURV function with non-degenerate group
of regular points Gr(f), and with index ρ and periodic component P. Then there
exists an OWSV function (s(x), x > 0) such that

(3.14) f(x) = xρs(x), x > 0,

where (s(x), x > 0) has the upper limit function

(3.15) s∗(λ) = P(log λ), λ > 0.

Corollary 3.10. Let f be an ORV function with non-degenerate group of
regular points Gr(f), and with index ρ and periodic component P. Then there
exists an OSV function (s(x), x > 0) such that (3.14) and (3.15) hold.

The following statement is due to Drasin and Seneta [20].

Proposition 3.3. Let (ψ(x), x > 0) ∈ F+, and let ψ be measurable. Then ψ is
an OSV function if and only if it can be written in the form ψ(x) = �(x)θ(x), x > 0,
where � is slowly varying and θ is measurable such that θ and 1/θ are positive and
bounded on (0,∞).

Now, a factorization representation for ORV functions with non-degenerate
group of regular points can be considered.

Theorem 3.4. Let f ∈ F+, and let f be measurable. Then, f is an ORV
function with non-degenerate group of regular points Gr(f) if and only if f can be
written in the form

(3.16) f(x) = r(x)θ(x), x > 0,

where
(A1) (r(x), x > 0) is an RV function;
(A2) (θ(x), x > 0) is a positive measurable function;
(A3) θ and 1/θ are bounded on (0,∞);
(A4) θ∗ = (P(log λ), λ > 0);
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(A5) (P(u), u ∈ R) is a positive periodic function with P(0) = 1 and

0 < inf−∞<u<∞P(u) � sup
−∞<u<∞

P(u) <∞.

Moreover, if (3.16) and (A1)–(A5) hold, then
(A6) the index of r coincides with the index of f ;
(A7) the set of periods of P coincides with Hr(f);
(A8) (P(log λ), λ > 0) is upper ∗-invariant, that is, for all u ∈ R,

lim sup
x→∞

P(u+ x)
P(x)

= P(u) and lim inf
x→∞

P(u+ x)
P(x)

=
1

P(−u) ;

(A9) min−∞<u<∞ P(u) = 1;
(A10) logP is subadditive;
(A11) Gr(f) = Gr(θ).

It is well known (see, for example, [47] and [6]), that

lim
x→∞

log r(x)
log x

= ρr

for any RV function (r(x), x > 0) with index ρr. The following statement extends
this result to ORV functions with non-degenerate groups of regular points.

Corollary 3.11. Let f be an ORV function with non-degenerate group of
regular points Gr(f) and index ρ. Then, limx→∞ log f(x)/log x = ρ.

The representation (3.16) can be rewritten in the following form.

Theorem 3.5. Let f ∈ F+, and let f be measurable. Then, f is an ORV
function with non-degenerate group of regular points Gr(f) if and only if f can be
written in the form

(3.17) f(x) = xρ�(x) exp{h(log x)}, x > 0,

where
(B1) ρ ∈ R;
(B2) (�(x), x > 0) is an SV function;
(B3) (h(u), u ∈ R) is a measurable function such that supu∈R |h(u)| <∞;
(B4) for all u ∈ R,

lim sup
x→∞

[h(u+ x) − h(x)] = p(u) and lim inf
x→∞ [h(u+ x) − h(x)] = −p(−u);

(B5) (p(u), u ∈ R) is a periodic function such that p(0) = 0, and

−∞ < inf
u∈R

p(u) � sup
u∈R

p(u) <∞.

Moreover, if (3.17) and (B1)–(B5) hold, then
(B6) ρ is the index of f ;
(B7) the set of periods of p coincides with Hr(f);
(B8) for all u ∈ R,

lim sup
x→∞

[p(u+ x) − p(x)] = p(u) and lim inf
x→∞ [p(u+ x) − p(x)] = −p(−u);
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(B9) p is nonnegative, and minu∈R p(u) = 0;
(B10) p is subadditive, that is, p(u+ x) � p(u) + p(x) for all u, x ∈ R.

The next statement follows from Theorem 3.5 in combination with a well–
known result about infinitely differentiable variants of SV functions (cf. [8] and [6,
Theorem 1.3.3]).

Corollary 3.12. Let f be an ORV function with non-degenerate group of
regular points Gr(f), and with index ρ and periodic component P. Then f ∼ f1,
that is, f(x)/f1(x) → 1 as x → ∞, where f1(x) = cxρ�1(x) exp{h(log x)}, x > 0,
with c a positive number, h as in Theorem 3.5, p = logP, and �1 an infinitely
differentiable SV function such that, for all n ∈ N,

lim
x→∞

dnh1

dxn
(x) = 0,

where h1(u) = log �1(eu), u ∈ R.

The next result, for which we first introduce some additional notation, comple-
ments Theorem 3.5.

Definition 3.3. The function (g(u), u ∈ R) is called uniformly continuous at
infinity if, for every ε > 0, there exist positive numbers x′ = x′(ε) and δ = δ(ε)
such that |g(x1) − g(x2)| < ε for all x1, x2 � x′ with |x1 − x2| < δ.

It is clear, that if the function (g(u), u ∈ R) is uniformly continuous on [A,∞),
for some A ∈ R, then it is uniformly continuous at infinity.

Definition 3.4. The function (g(u), u ∈ R) is called almost periodic at infinity
if, for every ε > 0 and for all x1, x2 ∈ R, there exists a sequence of positive numbers
un = un(ε, x1, x2), n � 1, such that un → ∞, as n→ ∞, and

lim sup
n→∞

|g(xi + un) − g(xi)| < ε, i = 1, 2.

Obviously, if the function (g(u), u ∈ R) is almost periodic (in Bohr’s sense,
[7]), then it is almost periodic at infinity.

Proposition 3.4. Let f be an ORV function with non-degenerate group of
regular points Gr(f), and with periodic component P. Then

(i) if P [f∗] is continuous at 0 [1], then P and p = logP are uniformly
continuous on R, and f∗ is continuous on R+;

(ii) if h = (h(u), u ∈ R) is uniformly continuous at infinity, then P and p are
uniformly continuous on R, where (h(u), u ∈ R) is as in (3.17).

Moreover, if the function h is almost periodic at infinity, then, with p = logP,
(iii) h(u+ x) � h(x) + p(u) for all u, x ∈ R, and
(iv) |h(u+ x) − h(x)| � max{|p(u)|, |p(−u)|} for all u, x ∈ R;
(v) if p [f∗] is continuous at 0 [1], then h is uniformly continuous on R, and

f is continuous on R+;
(vi) h is a periodic function, and Sper(h) = Sper(p).
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By (vi) of Proposition 3.4, in the class of functions h being almost periodic at
infinity, only periodic functions are relevant in representation (3.17)

Note that various integral representations for ORV functions with non-degener-
ate groups of regular points can be obtained from Theorems 3.4, 3.5 and Proposi-
tion 3.4 in combination with well-known integral representations for RV functions
(cf. [47, 6]), and with integral representations for PRV functions (see Section 4).

Uniform convergence theorems for OWURV and ORV functions with
non-degenerate groups of regular points. In this subsection some uniform
convergence theorems for OWURV and ORV functions with non-degenerate groups
of regular points will be presented. These theorems complete the results above,
and, in combination with the well-known Uniform Convergence Theorem for RV
functions (see, for example, [47, Theorem 1.2], and [6, Theorem 1.2.1]), they com-
plement its counterpart for general ORV functions [1, Theorem 1].

The next statement refines (v) of Theorem 3.2, and (A8) of Theorem 3.4.

Proposition 3.5. Let f be an OWURV function with non-degenerate group of
regular points Gr(f), and with periodic component P. Then

lim sup
x→∞

sup
−∞<u<∞

(P(u+ x)
P(x)

− P(u)
)

= 0,

lim inf
x→∞ inf−∞<u<∞

(P(u+ x)
P(x)

− 1
P(−u)

)
= 0.

The next result complements [1], Theorem 1.

Theorem 3.6. Let f be an ORV function with non-degenerate group of regular
points Gr(f), and with index and periodic component ρ and P, respectively. If
(θ(x), x > 0) in the representation (3.16) is uniformly continuous at infinity (recall
Definition 3.3), then, for any [a, b] ⊂ R+,

lim sup
x→∞

sup
λ∈[a,b]

(
f(λx)
f(x)

− λρP(log λ)
)

= 0,

lim inf
x→∞ inf

λ∈[a,b]

(
f(λx)
f(x)

− λρ

P(− log λ)

)
= 0.

Corollary 3.13. Let f be an ORV function with non-degenerate group of
regular points Gr(f), and with periodic component P. If h = (h(u), u ∈ R) in the
representation (3.17) is uniformly continuous at infinity, then, for any [a, b] ⊂ R,

lim sup
x→∞

sup
u∈[a,b]

[h(u+ x) − h(x) − p(u)] = 0,

lim inf
x→∞ inf

u∈[a,b]
[h(u+ x) − h(x) + p(−u)] = 0,

where p = logP.

From Corollary 3.13 in combination with Proposition 3.4 we also have:
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Corollary 3.14. Let f be an ORV function with non-degenerate group of
regular points Gr(f), and with periodic component P. If h = (h(u), u ∈ R) in the
representation (3.17) is almost periodic at infinity (recall Definition 3.4), and if f∗

[p = logP] is continuous at 1 [0], then p and h are uniformly continuous on R, h
is periodic, and

lim sup
x→∞

sup
−∞<u<∞

[h(u+ x) − h(x) − p(u)] = 0,

lim inf
x→∞ inf−∞<u<∞[h(u+ x) − h(x) + p(−u)] = 0.

4. On some properties of PRV, PMPV and POV functions

A representation theorem for prv functions and some characteriza-
tions of POV functions. There is a basic result concerning RV functions, namely
the Representation Theorem, for which several proofs have been given in the lit-
erature (see, e.g., Karamata [29] and Bingham et al. [6]). For ORV functions,
the Representation Theorem has been proved in Karamata [31] and Aljančić and
Arandelović [1]. Here we briefly recall a Representation Theorem for PRV func-
tions in the manner of Karamata’s representation for RV functions. Moreover, as
an application, we will obtain some equivalent characterizations of POV functions.

Recall that a function f is RV if and only if

(4.1) f(t) = exp
{
α(t) +

∫ t

t0

β(s)
ds

s

}

for some t0 > 0 and all t � t0, where α and β are bounded measurable functions such
that the limits limt→∞ α(t) and limt→∞ β(t) exist. For SV functions, limt→∞ β(t) =
0. ORV functions have the same characterization representation (4.1), with α and
β only being bounded measurable functions (see Aljančić and Arandelović [1]).

Note that all of these representations are not unique. For example, one can
start from a discontinuous function β and obtain a similar representation with other
functions α̃ and β̃, where β̃ is continuous or even infinitely differentiable.

The proof of the Representation Theorem for PRV functions is based on that
for ORV functions (see Aljančić and Arandelović [1]).

Theorem 4.1. (Yakymiv [53], Buldygin et al. [11]) A function f is PRV if
and only if it has a representation (3.1), where α and β are bounded measurable
functions such that

(4.2) lim
c→1

lim sup
t→∞

|α(ct) − α(t)| = 0.

Remark 4.1. Condition (4.2) characterizes the so-called slowly oscillating
functions (see Bingham et al. [6]).

Another representation for PRV functions is based on that for SV functions
and the fact that (f ◦ log) is an SV function for any PRV function f .
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Theorem 4.2. (Buldygin et al. [11]) A function f is PRV if and only if

f(t) = exp
{
a(t) +

∫ t

t0

b(s) ds
}

for some t0 > 0 and all t � t0, where a and b are measurable functions such that
the limit limt→∞ a(t) exists, limt→∞ b(t) = 0, and

lim
c→1

lim sup
t→∞

∫ ct

t0

b(s) ds = lim
c→1

lim inf
t→∞

∫ ct

t0

b(s) ds = 0.

Next, we discuss some characterizations for POV functions.

Proposition 4.1. Let f be a PRV function. Then condition (2.3) is equivalent
to any of the following two conditions:

1) for any sequence of positive numbers {cn} such that lim supn→∞ cn > 1 and
for any sequence of positive numbers {tn} such that limn→∞ tn = ∞, one has

(4.3) lim sup
n→∞

f(cntn)
f(tn)

> 1;

2) for any sequence of positive numbers {cn} such that lim supn→∞ cn ∈ (1,∞)
and for any sequence of positive numbers {tn} such that limn→∞ tn = ∞, condition
(4.3) holds.

We need the following auxiliary result.

Lemma 4.1. Let f be a POV function. Then, for any sequence of positive num-
bers {cn} and for any sequence of positive numbers {tn} such that limn→∞ cn = ∞
and limn→∞ tn = ∞, one has

lim
n→∞

f(cntn)
f(tn)

= ∞.

Corollary 4.1. A function f ∈F+ is a POV function if and only if f is a PRV
function and, for any sequence of positive numbers {cn} such that lim supn→∞ cn>1
and for any sequence of positive numbers {tn} with limn→∞ tn = ∞, condition (4.3)
holds.

Remark 4.2. If f ∈ F+ is a POV function, then f ∈ F
∞.

Increasing versions of POV functions. Many problems related to POV
functions become easier if the functions are monotone. Hence, we next consider the
problem of existence of strictly increasing versions for POV functions.

Theorem 4.3. Assume that f is a POV function. Then there exists a strictly
increasing and continuous POV function f1 tending to ∞ such that f ∼ f1.

Potter bounds for PRV functions. Due to the Representation Theorem
and the Uniform Convergence Theorem, we can prove a variant of Potter’s Theorem
[44] (see, e.g., Bingham et al. [6, p.25]) for PRV functions. The following theorem
improves Corollary 4 of Yakymiv [53].
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Theorem 4.4. Let f be a PRV function. Then there exists some b > 0 and,
for any A > 1, there exist λA > 1, and tA > 0 such that, for all λ ∈ (1, λA],

(4.4) A−1λ−bf(s) � f(t) � Aλbf(s)

for all t � tA and all s ∈ [λ−1t, λt].

Remark 4.3. Let f ∈ F+. If condition (4.4) holds then f is a WPRV function.

The following result provides a characterization of PRV functions in terms of
Potter bounds.

Corollary 4.2. Let f ∈ F+ be measurable. Then f is a PRV function if and
only if condition (4.4) holds.

Conditions for differentiable functions to be PRV or PMPV. The
solutions of the main application problems in this paper (see Section 7) are closely
connected with the question of when differentiable functions satisfy PRV or PMPV
conditions. In this subsection, the latter question will be discussed. In the sequel,
the following five conditions on a function f and its derivative f ′ will play a role:

(D) f ∈ F
∞ and there exists t0 = t0(f) > 0 such that f is positive and

continuously differentiable for all t � t0;
(DM) condition (D) holds and f ′(t) � 0 for all t � t0;

(DM+) condition (D) holds and f ′(t) > 0 for all t � t0;
(DM1) condition (DM+) holds and f ′ is nonincreasing for all t � t0;
(DM2) condition (DM+) holds and f ′ is nondecreasing for all t � t0.

For a function f satisfying condition (D), the following integral representation
holds:

(4.5) f(t) = f(t0) exp
{∫ t

t0

f ′(u)
f(u)

du

}
for any t > t0.

Conditions for differentiable functions to be PRV. The following state-
ment is immediate from Definition 2.4 in combination with (4.5).

Lemma 4.2. Assume condition (D). Then f is a PRV function if and only if

lim
c→1

lim sup
t→∞

∫ ct

t

f ′(u)
f(u)

du = 0.

On applying Lemma 4.2 in combination with Remark 2.2, we get the following
result.

Lemma 4.3. Assume condition (DM). Then f is a PRV function if and only
if

lim
c↓1

lim sup
t→∞

∫ ct

t

f ′(u)
f(u)

du = 0.

Let us consider some corollaries of the above lemmas.

Corollary 4.3. Assume condition (D).
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1) If lim sup
t→∞

t|f ′(t)|
f(t)

<∞, then f is a PRV function.

2) If f is a PRV function, then lim inf
t→∞

tf ′(t)
f(t)

<∞.

3) If condition (DM) holds and

(4.6) lim sup
t→∞

tf ′(t)
f(t)

<∞,

then f is a PRV function.
4) If condition (DM1) holds, then f is a PRV function.

Remark 4.4. If condition (D) holds and lim supt→∞ t|f ′(t)| <∞, then f∗(c) =
1 for all c > 0. This means that f is an SV function, and hence it is a PRV function.
Thus we can confine ourselves to the case, when lim supt→∞ t|f ′(t)| = ∞.

Corollary 4.4. Assume condition (DM2). Then f is a PRV function if and
only if (4.6) holds true.

The integral in the next statement means the Lebesgue integral.

Corollary 4.5. Assume condition (DM+). If∫ 1

0+

(f ′)∗(c)dc > 0,

then f is a PRV function.

On applying Corollary 4.5, we get the following result.

Corollary 4.6. Assume condition (DM+). If the set {c∈(0, 1] : (f ′)∗(c)>0}
has positive Lebesgue measure, then f is a PRV function. In particular, this con-
dition holds if f ′ is an ORV function.

Conditions for differentiable functions to be PMPV. The following
statement is also immediate from Definition 2.5 in combination with (4.5).

Lemma 4.4. Assume condition (D). Then f is a PMPV function if and only
if

lim inf
t→∞

∫ ct

t

f ′(u)
f(u)

du > 0 for all c > 1.

Next, we consider some corollaries of Lemma 4.4.

Corollary 4.7. Assume condition (DM).
1) If

(4.7) lim inf
t→∞

tf ′(t)
f(t)

> 0,

then f is a PMPV function.

2) If f is a PMPV function, then lim sup
t→∞

tf ′(t)
f(t)

> 0.

3) If f is a PMPV function, then lim sup
t→∞

tf ′(t) = ∞.
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4) If condition (DM2) holds, then f is a PMPV function.

Corollary 4.8. Assume condition (DM1). Then f is a PMPV function if
and only if (4.7) holds true.

The next result gives a condition in terms of the function (f ′)∗.

Lemma 4.5. Assume condition (DM+). If c(f ′)∗(c) > 1 for all c > 1, then f
is a PMPV function.

5. Asymptotic quasi-inverse and asymptotic inverse functions

In this section we study asymptotic quasi-inverse and asymptotic inverse func-
tions and investigate the problem of their existence. Theorem 5.1 below shows that
any PRV function f ∈ F∞ has an asymptotic quasi-inverse function, and Theorem
5.2 proves that any POV function has an asymptotic inverse function.

Moreover, in this section we discuss conditions under which quasi-inverse func-
tions preserve the equivalence of functions.

First, we recall the definition of a quasi-inverse function which will be useful
for our considerations below (cf. Buldygin et al. [11]).

Definition 5.1. Let f ∈ F(∞). A function f (−1) ∈ F∞ is called a quasi-inverse
function for f if f(f (−1)(s))) = s for all large s.

For any f ∈ C
(∞), a quasi-inverse function exists, but may not be unique.

If f ∈ C
∞
inc, then its inverse function f−1(·) exists, that is, f(f−1(s)) = s and

f−1(f(t)) = t for all sufficiently large s and t.

Example 5.1. Let x ∈ C(∞). Put

x
(−1)
1 (s) = inf{t � 0 : x(t) = s} = inf{t � 0 : x(t) � s},

for s � s0 = x(0), and x
(−1)
1 (s) = 0, for 0 � s < s0, if s0 > 0. The function x

(−1)
1

is a quasi-inverse function for x. If x ∈ C∞inc, then x(−1)
1 = x−1. �

Example 5.2. Let x ∈ C
∞. Put

x
(−1)
2 (s) = sup{t � 0 : x(t) = s} = sup{t � 0 : x(t) � s},

for s � s0 = x(0), and x
(−1)
2 (s) = 0, for 0 � s < s0, if s0 > 0. The function x

(−1)
2

is a quasi-inverse function for x. Observe that x(−1)
1 (s) � x

(−1)
2 (s), s > 0, and, in

general, x(−1)
1 	= x

(−1)
2 . If x ∈ C

∞
inc, then x(−1)

2 = x
(−1)
1 = x−1. �

Example 5.3. Let f be a POV function. Then, by Theorem 4.3, f has a
strictly increasing and continuous version g, which, in turn, has an inverse function
g−1.

Next we introduce the notion of an asymptotic quasi-inverse function.

Definition 5.2. Let f ∈ F
(∞). A function f̃ (−1) is called an asymptotic quasi-

inverse function for f if (i) f̃ (−1) ∈ F
∞; (ii) f(f̃ (−1)(s)) ∼ s as s→ ∞.
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Of course, every quasi-inverse function is an asymptotic quasi-inverse function.
Also recall (cf. Bingham et al. [6]) that a function f̃−1 is called an asymptotic
inverse function for f ∈ F

(∞) if f̃−1 is an asymptotic quasi-inverse function and
(iii) f̃−1(f(s)) ∼ s as s→ ∞.
It is clear that any inverse function is an asymptotic inverse function. If f ∈ F

∞

and, if an asymptotic inverse function f̃−1 exists, then f is also an asymptotic
inverse function for f̃−1.

Remark 5.1. Let f ∈ F
(∞) and let f̃ (−1) be an asymptotic quasi-inverse func-

tion for f .
(A) If a function g is asymptotically equivalent to f , then f̃ (−1) is an asymp-

totic quasi-inverse function for g.
(B) If f is a WPRV function and g is asymptotically equivalent to f̃ (−1), then,

by Theorem 2.1, g is an asymptotic quasi-inverse function for f .

Example 5.4. Let f be an RV function with positive index α. Then (see, e.g.,
Bingham et al. [6, p.28]) there exists an asymptotic inverse function f̃−1 which is
an RV function with index 1/α, and one version of this function is

f̃−1(s) = inf{t � 0 : f(t) > s}.
In this case, the asymptotic inverse function f̃−1 is uniquely determined up to
asymptotic equivalence. �

Next we shall consider some important examples of asymptotic quasi-inverse
functions for PRV functions.

Lemma 5.1. Let f be a PRV function.
1) If f ∈ F

(∞), then

ϕ(s) = inf{t � 0 : f(t) > s}, ϕ1(s) = inf{t � 0 : f(t) � s}
are nondecreasing asymptotic quasi-inverse functions for f .

2) If f ∈ F
∞, then ϕ, ϕ1 and

ψ(s) = sup{t � 0 : f(t) < s}, ψ1(s) = sup{t � 0 : f(t) � s}
are nondecreasing asymptotic quasi-inverse functions for f .

Lemma 5.2. Let f ∈ F
∞. If the functions ϕ1 and ψ1 of Lemma 5.1 are asymp-

totically equivalent, then f is an asymptotic quasi-inverse function for both ϕ1 and
ψ1.

On combining the above lemmas we get the following result.

Theorem 5.1. Let f ∈ F
∞ be a PRV function. Then, the functions ϕ1 �

ϕ � ψ � ψ1 of Lemma 5.1 are nondecreasing asymptotic quasi-inverse functions
for f . Moreover, if the functions ϕ1 and ψ1 are asymptotically equivalent, then all
these four functions are asymptotically equivalent and are nondecreasing asymptotic
inverse functions for f .
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Next, we discuss some conditions, given in terms of the function f itself, which
guarantee the existence of an asymptotic inverse function.

Theorem 5.2. Let f ∈ F+ be a POV function. Then, the four functions ϕ1, ϕ,
ψ, ψ1 of Lemma 5.1 are asymptotically equivalent and are nondecreasing asymptotic
inverse functions for f .

In general, the functions ϕ1 and ψ1 of Lemma 5.1 are either not asymptotically
equivalent or are not quasi-inverse for the original function f .

Example 5.5. Let f(t) = [log t], t � 1, where [x] denotes the integer part of
a real number x. The function f is an SV function, and hence is not POV, but is
PRV. By Lemma 5.1, the functions ϕ1 and ψ1 are asymptotic quasi-inverse functions
for f . Nevertheless, ϕ1 and ψ1 are not asymptotically equivalent. Moreover, the
function (et, t � 0) is also an asymptotic quasi-inverse function for f . Note, that
[log t] ∼ log t as t → ∞, and that (log t, t � 1) is not a POV function. But, for
the latter function, (et, t � 0) is the inverse function and ϕ1 and ψ1 are equal to
(et, t � 0). �

Example 5.6. The functions ϕ1 and ψ1 of Lemma 5.1 are not asymptotic quasi-
inverse functions for f(t) = e[t], t � 0. Nevertheless, ϕ1 and ψ1 are asymptotically
equivalent. Observe that f is not PRV. �

For non-PRV functions, asymptotic quasi-inverse functions may not exist at
all.

Example 5.7. For the non-PRV function f(t) = e[t], t � 0, there is no asymp-
totic quasi-inverse function.

Indeed, for any ϕ ∈ F+ and for tn = exp{n + 1
2}, n � 1, we have that either

[ϕ(tn)] � n+ 1 or [ϕ(tn)] � n, which implies that either

lim sup
t→∞

exp{[ϕ(t)]}
t

� lim sup
n→∞

exp{[ϕ(tn)]}
tn

= exp
{

lim sup
n→∞

(
[ϕ(tn)] − n− 1

2

)}
� exp

{
1
2

}
> 1,

or

lim inf
t→∞

exp{[ϕ(t)]}
t

� lim inf
n→∞

exp{[ϕ(tn)]}
tn

= exp
{

lim inf
n→∞

(
[ϕ(tn)] − n− 1

2

)}
� exp

{
−1

2

}
< 1. �

Example 5.8. By Example 5.7 and Remark 5.1, the function f(t) = t
[t] · e[t],

t � 1, does not have an asymptotic quasi-inverse function, since f(t) ∼ e[t] as
t→ ∞. Observe, that the function f is strictly increasing. �

Example 5.9. Let a ∈ F+. By the method of Example 5.7, the function
(e[a(t)], t > 0) does not have an asymptotic quasi-inverse function. Hence, by
Lemma 5.1, the function (e[a(t)], t > 0) is not PRV for any a ∈ F(∞). �
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The PRV property for asymptotic quasi-inverse functions. In this sub-
section, we discuss conditions under which quasi-inverse functions preserve the
equivalence of functions, i.e., in view of Theorem 2.1, are WPRV (or PRV).

Lemma 5.3. Let f ∈ F
(∞). Then, an asymptotic quasi-inverse function f̃ (−1)

for f is WPRV (and thus preserves the equivalence of functions) if and only if

lim sup
c→1

lim sup
t→∞

f̃ (−1)(ct)
f̃ (−1)(t)

= 1.

Proposition 5.1. Let f ∈ F
∞
ndec and let f̃ (−1) be an asymptotic quasi-inverse

function for f . If (2.3) holds, then f̃ (−1) is WPRV (and thus preserves the equiv-
alence of functions).

Theorem 5.3. Let f ∈ F∞ndec and let f̃−1 be an asymptotic inverse function
for f . Then f̃−1 is WPRV (and thus preserves the equivalence of functions) if and
only if condition (2.3) holds.

Corollary 5.1. Let f ∈ F
∞ and let f̃−1 be a nondecreasing asymptotic inverse

function for f . Then f is WPRV (and preserves the equivalence of functions) if
and only if the following condition holds:

(5.1) (f̃−1)∗(c) = lim inf
t→∞

f̃−1(ct)
f̃−1(t)

> 1 for all c > 1.

Corollary 5.2. (Buldygin et al. [11]) Let f ∈ C
∞
inc. Then its inverse function

f−1 is PRV (and thus preserves the equivalence of functions) if and only if condition
(2.3) holds. Moreover, f is a PRV function if and only if

(f−1)∗(c) = lim inf
t→∞

f−1(ct)
f−1(t)

> 1 for all c > 1.

6. Properties and characterizations of POV functions and their
asymptotic quasi-inverses. Related limit results

The main results of this section (Theorems 6.1–6.4) show that the class of POV
function is similar to the class of RV functions with positive index.

Proposition 6.1. Let f ∈ F(∞) be a WPRV function and let f̃ (−1) be an
asymptotic quasi-inverse function for f . Then,

1) if there exists a nondecreasing function g such that f ∼ g, then condition
(5.1) holds (with f̃ (−1) replacing f̃−1);

2) if there exists a nondecreasing function g such that f̃ (−1) ∼ g, then con-
dition (5.1) holds (with f̃ (−1) replacing f̃−1);

3) if f is a POV function, then f̃ (−1) is a WPRV function;
4) if f is a POV function, then f̃ (−1) is a WPOV function.

Corollary 6.1. Let f ∈ F
∞ and let f̃ (−1) be an asymptotic inverse function

for f . Assume that f̃ (−1) is a PRV function. Then,
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1) if there exists a nondecreasing function g which is asymptotically equiva-
lent either to f or to f̃ (−1), then condition (2.3) holds;

2) if f̃ (−1) is a POV function, then f is a WPRV function;
3) if f̃ (−1) is a POV function, then f is a WPOV function.

Applying Proposition 6.1, Corollary 6.1 and Theorem 2.1 we get the following
result.

Theorem 6.1. Let both f ∈ F
∞ and its asymptotic inverse function f̃−1 be

measurable functions. Assume that there exists a nondecreasing function g which
is asymptotically equivalent either to f or to f̃ (−1). Then, the following four con-
ditions are equivalent:

(a) f is POV; (b) f̃−1 is POV; (c) both f and f̃−1 are PRV;
(d) both f and f̃−1 preserve the equivalence of functions and sequences.

Theorem 6.2. Let f ∈ F+ be a POV function. Then, the four functions
ϕ1, ϕ, ψ, ψ1 from Lemma 5.1 are asymptotically equivalent and are nondecreasing
asymptotic inverse functions for f . Moreover, each of these functions possesses the
POV property.

Theorem 6.2 follows from Theorems 5.2 and 6.1, since every nondecreasing
function is measurable.

Theorem 6.3. Let f ∈ F+ be a POV function and let f̃−1 be an asymptotic
inverse function for f . If q is an asymptotic quasi-inverse function for f , then

1) q ∼ f̃−1; 2) q is an asymptotic inverse function for f .
This means that an asymptotic quasi-inverse function for f is also an asymptotic
inverse function, and it is uniquely determined up to asymptotic equivalence.

The next result complements Theorem 6.3.

Theorem 6.4. Let f ∈ F+ be a POV function. Then
1) there exists a continuous POV function f0, asymptotically equivalent to

f and strictly increasing to ∞, for which the inverse function f−1
0 is a

continuous POV function, strictly increasing to ∞;
2) f−1

0 is an asymptotic inverse function for f ;
3) if g ∼ f , then any asymptotic quasi-inverse function for g is asymptoti-

cally equivalent to any asymptotic quasi-inverse function for f .

Limit behavior of ratios of asymptotic quasi-inverse functions. The
following theorem extends Theorems 6.3 and 6.4 to the case of functions satisfying
condition (2.3).

Theorem 6.5. Let f be a WPMPV function, that is, let f satisfy condition
(2.3). If f ∼ f0 ∈ F∞ndec, and f̃−1

0 is an asymptotic inverse function for f0, then

1) f̃−1
0 is an asymptotic inverse function for f ;

2) any asymptotic quasi-inverse function for f is equivalent to f̃−1
0 and is a

version of an asymptotic inverse function for f .
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This means that all asymptotic quasi-inverse functions for f are asymptotically
equivalent, and that the asymptotic inverse function f̃−1 is uniquely determined up
to asymptotic equivalence.

The following results describe the relationship between the limiting behavior of
the ratio of asymptotic quasi-inverse functions and that of their original functions.

Corollary 6.2. Let f be a WPMPV function, that is f satisfies condition
(2.3). Assume that f ∼ f0 ∈ F

∞
ndec, and f̃−1

0 is an asymptotic inverse function
for f0. If, for some function x ∈ F

∞,

(6.1) lim
t→∞

x(t)
f(t)

= a for some a ∈ (0,∞),

then, for any asymptotic quasi-inverse function x̃(−1) of x and for any asymptotic
quasi-inverse function f̃ (−1) of f , we have

(6.2) lim
s→∞

x̃(−1)(s)
f̃ (−1)(s/a)

= lim
s→∞

x̃(−1)(s)
f̃−1
0 (s/a)

= 1.

Corollary 6.3. (Buldygin et al. [11]) Let f ∈ C
∞
inc and let f satisfy condition

(2.3). If, for some function x ∈ F
∞,

lim
t→∞

x(t)
f(t)

= a for some a ∈ (0,∞),

then, for any quasi-inverse function x(−1) of x, we have lim
s→∞

x(−1)(s)
f−1(s/a)

= 1.

Corollary 6.2 and Examples 5.1 and 5.2 imply the following result.

Corollary 6.4. Let f ∼ f0 ∈ F
∞
ndec and let f̃−1 be an asymptotic inverse

function for f0. Assume that condition (2.3) and relation (6.1) hold for some
function x ∈ F∞. Then,

1) if x ∈ C
(∞), then (6.2) holds for x̃(−1)

1 (s) = inf{t � 0 : x(t) � s};
2) if x ∈ C

∞, then (6.2) holds for x̃(−1)
2 (s) = sup{t � 0 : x(t) � s};

3) if x ∈ C∞, then

lim
s→∞

z(s)
f̃−1(s/a)

= 1

for any function z satisfying x̃(−1)
1 (s) � z(s) � x̃

(−1)
2 (s) for all large s.

The case of POV functions. For POV functions we have a more complete
result compared to that of Theorem 6.5.

Theorem 6.6. Let f ∈ F+ be a POV function and let f̃ (−1) be an asymptotic
quasi-inverse function of f . Assume that x ∈ F

∞ and x̃(−1) is an asymptotic
quasi-inverse function of x. Then, we have

1) relations (6.1) and (6.2) are equivalent, that is

lim
t→∞

x(t)
f(t)

= a ∈ (0,∞) ⇐⇒ lim
s→∞

x̃(−1)(s)
f̃ (−1)(s/a)

= 1;
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2) if (6.1) holds and x is measurable, then it is a POV function and, as
an asymptotic quasi-inverse function x̃(−1) for x, we can take in 1) the function
x̃

(−1)
1 (s) = inf{t � 0 : x(t) � s} or x̃(−1)

2 (s) = sup{t � 0 : x(t) � s};
3) if x is measurable, then the relation (6.1) implies the relation

lim
s→∞

z(s)
f̃ (−1)(s/a)

= 1,

for any function z satisfying x̃(−1)
1 (s) � z(s) � x̃

(−1)
2 (s) for all large s.

The proof of Theorem 6.6 follows from Theorems 6.2, 6.3 and 6.4.

Zero and infinite limits of ratios. The following results discuss relation-
ships between the limiting behavior of the ratio of asymptotic quasi-inverse func-
tions in case the limit of the ratio of the original functions equals 0 or ∞. In this
situation, Corollary 6.2 can be retained for zero and infinite limits, but with the
additional condition that

(6.3) lim inf
s→∞

f̃−1(c0s)
f̃−1(s)

> 1 for some c0 > 1.

Proposition 6.2. Let f ∈ F
∞
ndec, and let f̃−1 ∈ F

∞
ndec be an asymptotic inverse

for f . Assume that x ∈ F
(∞), and let x̃(−1) be an asymptotic quasi-inverse function

for x. Then, under conditions (6.3) and (2.3), the following relations hold:

lim
t→∞

x(t)
f(t)

= ∞ =⇒ lim
s→∞

x̃(−1)(s)
f̃−1(s)

= 0 ;

lim
t→∞

x(t)
f(t)

= 0 =⇒ lim
s→∞

x̃(−1)(s)
f̃−1(s)

= ∞.

For POV functions the latter result reads as follows.

Proposition 6.3. Let f be a POV function, and let f̃−1 be an asymptotic
inverse for f . Assume that x ∈ F

(∞) and x̃(−1) is an asymptotic quasi-inverse
function for x. Then the following relations hold:

lim
t→∞

x(t)
f(t)

= ∞ ⇐⇒ lim
s→∞

x̃(−1)(s)
f̃−1(s)

= 0 ;

lim
t→∞

x(t)
f(t)

= 0 ⇐⇒ lim
s→∞

x̃(−1)(s)
f̃−1(s)

= ∞.

Proposition 6.3 follows from Proposition 6.2, Theorem 6.3 and Theorem 6.4.

Remark 6.1. Proposition 6.3 extends Theorem 6.6 and allows for considering
a = 0 or ∞ in the limiting relations (6.1) and (6.2).
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Limit behavior of the ratio of asymptotic quasi-inverse functions for
RV functions. For RV functions, Theorem 6.6 and Proposition 6.3 read as follows.

Corollary 6.5. Let f be an RV function with positive index α, and let f̃−1

be an asymptotic inverse function for f . Assume that x ∈ F
(∞) and x̃(−1) is an

asymptotic quasi-inverse function for x. Then, we have
1) the relation

(6.4) lim
t→∞

x(t)
f(t)

= a ∈ [0,∞]

is equivalent to

(6.5) lim
s→∞

x̃(−1)(s)
f̃−1(s)

=
(

1
a

)1/α

∈ [0,∞];

Here and in the sequel, it is assumed that (1/∞) = 0 and (1/0) = ∞.
2) if (6.4) holds and x is measurable, then, as a quasi-inverse function x̃(−1)

for x, we can take in (6.5) the function x̃
(−1)
1 (s) = inf{t � 0 : x(t) � s}

or x̃(−1)
2 (s) = sup{t � 0 : x(t) � s};

3) moreover, if x is measurable then (6.4) implies the relation

lim
s→∞

z(s)
f̃−1(s)

=
(

1
a

)1/α

∈ [0,∞],

for any function z such that x̃(−1)
1 (s) � z(s) � x̃

(−1)
2 (s) for all large s.

Remark 6.2. In statement 3) of Corollaries 6.4–6.5 and Theorem 6.6, we can
take z as any function satisfying x̃(−1)

1 (s) − δ1(s) � z(s) � x̃
(−1)
2 (s) + δ2(s) for all

large s, where δ1 and δ2 are two nonnegative functions for which

lim
s→∞

δ1(s)
f̃−1(s/a)

= 0 and lim
s→∞

δ2(s)
f̃−1(s/a)

= 0.

7. PRV and PMPV properties of functions and the asymptotic
behavior of solutions of stochastic differential equations

Introduction. Gihman and Skorohod [24, §17] and later Keller et al. [32],
considered the asymptotic behavior, as t → ∞, of a solution X = (X(t), t � 0) of
the stochastic differential equation (SDE)

(7.1) dX(t) = g(X(t))dt+ σ(X(t))dW (t), t � 0, X(0) ≡ 1.

Here W is a standard Wiener process and X denotes the Itô-solution of (7.1). One
of the basic assumptions in the above papers was that both σ = (σ(x),−∞ < x <
∞) and g = (g(x),−∞ < x < ∞) are positive functions, and the authors were
only interested in situations, in which the event {limt→∞X(t) = ∞} occurs with
positive probability and such that infinity will not be reached in finite time.

Gihman and Skorohod [24, §17] and Keller et al. [32] gave conditions under
which the asymptotic of X(t), as t→ ∞, is determined by a nonrandom function.
In this section, we reconsider this problem under the same basic conditions.



ON SOME EXTENSIONS OF KARAMATA’S THEORY 89

Denote by µ = (µ(t), t � 0) the solution of the deterministic differential equa-
tion corresponding to (7.1) for σ ≡ 0, i.e.

(7.2) dµ(t) = g(µ(t))dt, t � 0, µ(0) = 1.

We assume that the function g is such that the solution µ exists, is unique, tends
to ∞, as t → ∞, and that infinity will not be reached in finite time. Then an
interesting question is, under which conditions it holds that

(7.3) lim
t→∞

X(t)
µ(t)

= 1 a.e. on
{

lim
t→∞X(t) = ∞

}
.

Here “a.e.” stands for “almost everywhere”, which means that the property holds
except for a subset of probability 0. The methods used in Gihman and Skorohod
[24, S17 Theorem 4] and in Keller et al. [32] are similar and consist of two main
steps. First, they study the process Y (t) = G(X(t)), t � 0, where

(7.4) G(t) =
∫ t

1

ds

g(s)
, t � 0,

and prove that, under some conditions,

(7.5) lim
t→∞

G(X(t))
t

= 1 a.e. on
{

lim
t→∞X(t) = ∞

}
.

Note that G = (G(t), t � 1) is the inverse function of µ (G = µ−1) if g is positive
and continuous. In the second step, relation (7.5) is used to prove (7.3).

For the second step, Gihman and Skorohod [24, §17, Theorem 4] assume that,
for some C > 0,

(7.6) lim
ε→0

sup
z>C

sup
|z/u−1|�ε

∣∣∣∣µ(z)
µ(u)

− 1
∣∣∣∣ = 0.

By Theorem 2.1 and Remark 2.2, under condition (7.6), the function µ preserves
the equivalence of functions, so that (7.6) implies in this case that

lim
t→∞

X(t)
µ(t)

= lim
t→∞

µ(G(X(t)))
µ(t)

= 1 a.e. on
{

lim
t→∞X(t) = ∞

}
,

that is, relation (7.3) holds. Note that Gihman and Skorohod [24] use another
reasoning; the general idea above, however, simplifies the proof considerably.

Condition (7.6) is formulated in terms of the function µ, that is in terms of
the solution of equation (7.2). It is more natural, however, to give conditions in
terms of the functions g and G. Our goal in this section is to find conditions for the
implication (7.6) =⇒ (7.3) expressed in terms of the functions g and G. For doing
so, we follow the general approach developed in Sections 4–6. This approach allows
for solving the following general problem: Find conditions on a given function under
which its inverse or quasi-inverse function preserves the equivalence of functions.

Further in this section, we study the asymptotic stability with respect to initial
conditions of the solution of SDE (7.1), as well as the asymptotic behavior of
generalized renewal processes connected with this SDE.
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The main problems of this section are closely connected with the problem of
finding out when differentiable functions satisfy PRV or PMPV conditions. In
Section 4, these questions were discussed in a general setting.

Asymptotic behavior of the solution of a stochastic differential equa-
tion. General statements. Let us now consider the stochastic differential equa-
tion (7.1), where both functions g and σ are positive and such that (7.1) has a.e.
a unique and continuous solution X as well as (7.2) has a unique and continuous
solution µ. For example, g and σ may be positive and continuously differentiable.
Our main goal is to find conditions on g and σ, under which relation (7.3) holds.
To do so, we first consider the following general statement, which describes extra
conditions for relation (7.6) to imply or being equivalent to (7.3).

Theorem 7.1. Let g and σ be positive and continuous functions such that
problem (7.1) has a.e. a unique continuous solution as well as (7.2) has a unique
continuous solution. Assume

(7.7) lim
t→∞G(t) =

∫ ∞
1

du

g(u)
= ∞,

and let G (see (7.4)) be such that

(7.8) lim inf
t→∞

∫ ct

t

du

g(u)G(u)
> 0 for all c > 1.

Then,
1) if (7.6) holds, then also (7.3) holds true;
2) if

(7.9) lim
c↓1

lim sup
t→∞

∫ ct

t

du

g(u)G(u)
= 0,

then (7.6) and (7.3) are equivalent.

Recall that G = (G(t), t � 1) is the inverse function of µ. By condition (7.7),
µ(t) → ∞ as t → ∞. Moreover, (7.7) excludes the possibility of explosions (that
is, the solution does not reach infinity in finite time). Note that the function
g(u) = u, u > 0, satisfies (7.7), but does not satisfy condition (7.8).

Remark 7.1. In view of Definition 2.5 above, condition (7.8) means that the
function G is a PMPV function. Observe that, by Corollary 5.2, under condition
(7.7) the function µ preserves the equivalence of functions (see Definition 2.7) if
and only if (7.8) holds.

Condition (7.9) means that the functionG is a PRV function (see Definition 2.1)
and, by Theorem 2.1, this condition is equivalent to the condition that G preserves
the equivalence of functions. The set of conditions (7.7), (7.8) and (7.9) means that
both G and µ preserve the equivalence of functions.

Next, we consider some sufficient conditions for (7.8) (Proposition 7.1) and
(7.9) (Proposition 7.2), which can be expressed in terms of the function g, and thus
are more suitable for practical use.
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Proposition 7.1. Let g be a positive and continuous function such that (7.7)
holds. Assume that at least one of the following conditions holds:

(i) lim supt→∞ g(t)G(t)/t <∞;
(ii) g is eventually nonincreasing;
(iii) there exists α < 1 such that 0 < infs�1 g(s)s−α, sups�1 g(s)s−α <∞;
(iv) g∗(c) < c for all c > 1, with g∗(c) = lim supt→∞ g(ct)/g(t);
(v) g is an RV function with index α < 1.

Then, g satisfies condition (7.8).

Remark 7.2. Under (7.7), condition (i) of Proposition 7.1 is equivalent to
(7.8), if the function g is eventually nondecreasing.

Remark 7.3. Substituting t→ G(t), we get from (7.3)

lim
t→∞

X(G(t))
t

= 1 a.e. on
{

lim
t→∞X(t) = ∞

}
.

This means that, under the conditions of Theorem 7.1, if (7.6) holds, then

lim
t→∞

G(X(t))
t

= lim
t→∞

X(G(t))
t

= 1 a.e. on
{

lim
t→∞X(t) = ∞

}
,

that is, G is an asymptotic inverse function for the process X a.e. on the set
{limt→∞X(t) = ∞}.

Remark 7.4. Condition (i) of Proposition 7.1 does not hold for any regularly
varying function g of index 1, that is, for functions g(t) = t�(t), where � is slowly
varying. This is due to a result of Parameswaran [43], which proves that

lim
t→∞ �(t)

∫ t

1

ds

s�(s)
= ∞.

Proposition 7.2. Let g be a positive and continuous function such that (7.7)
holds. Assume that at least one of the following conditions holds:

(i) lim inft→∞ g(t)G(t)/t > 0;
(ii) g is eventually nondecreasing;
(iii)

∫ 1

0+
dc/g∗(c) > 0, with g∗(c) = lim supt→∞ g(ct)/g(t);

(iv) the set {c ∈ (0, 1] : g∗(c) <∞} has positive Lebesgue measure;
(v) at least one of conditions (iii), (iv), or (v) of Proposition 7.1 holds.

Then, g satisfies condition (7.9).

Remark 7.5. Under (7.7), condition (i) of Proposition 7.2 is equivalent to
(7.9), if the function g is eventually nonincreasing.

Asymptotic behavior of the solution of a stochastic differential equa-
tion. Specific statements. The next two theorems contain sufficient conditions
for relation (7.3). The following one is a condition from Gihman and Skorohod [24,
§17].
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(GS) Let g and σ be positive and continuous functions such that (7.1) has a.e.
a unique and continuous solution X with arbitrary initial condition and
with limt→∞X(t) = ∞ a.e., as well as (7.2) has a unique and continuous
solution with arbitrary positive initial condition. Let σ/g be bounded and
let g′(x) exist for all x > 0 with g′(x) → 0 as x→ ∞.

Remark 7.6. Under (GS), relation (7.6) holds true a.e., that is

lim
t→∞

G(X(t))
t

= 1 a.e.

(see Gihman and Skorohod [24, §17, Theorem 4 and Remark 1]).

Theorem 7.2. Assume condition (GS) and let g be such that (7.7) holds. If
(7.8) or at least one of the conditions (i)–(v) of Proposition 7.1 holds, then relation
(7.3) follows a.e., that is limt→∞

X(t)
µ(t) = 1 a.e.

Observe that Theorem 7.2 provides conditions in terms of the functions g and
σ only, under which relation (7.3) holds, and, from this point of view, Theorem 7.2
complements Theorem 4 in Gihman and Skorohod [24, §17].

Asymptotic stability of SDE’s with respect to initial conditions. We
start with a discussion of the deterministic differential equation (7.2) with positive
initial condition, that is, we consider the Cauchy problem

(7.10) dµb(t) = g(µb(t))dt, t � 0, µb(0) = b > 0,

where g(u), u > 0, is a positive and continuous function such that (7.10) has a
unique and continuous solution µb for all fixed b > 0. We say that the Cauchy
problem (7.10) is asymptotically stable with respect to the initial condition if

(7.11) lim
t→∞

µb1(t)
µb2(t)

= 1,

for all positive b1 and b2. Note, for example, that the problem (7.10) is not asymp-
totically stable with respect to the initial condition, if g(u) = u, u > 0, while it
is asymptotically stable for g(u) = ur, u > 0, with r < 1. Observe also that a
solution reaches infinity in finite time, if g(u) = ur, u > 0, with r > 1, so that we
do not discuss this case here.

Given b > 0, consider the function

Gb(s) =
∫ s

b

du

g(u)
, s � b,

and note that Gb is a strictly increasing and continuous function, and it is the
inverse of µb. Conditions for the asymptotic stability (7.11) can be obtained in
terms of the function G = G1.

Theorem 7.3. Let g be a positive and continuous function such that (7.10)
has a unique and continuous solution µb for all fixed b > 0, and assume (7.7) and
(7.8). Then, the Cauchy problem (7.10) is asymptotically stable with respect to the
initial condition.
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Remark 7.7. In view of Definition 2.5 above, condition (7.8) means that the
function G is a PMPV function. Observe that, by Corollary 5.2, condition (7.7) im-
plies that the function µb preserves the equivalence of functions (see Definition 2.7)
if and only if condition (7.8) holds. Observe also, that there are different conditions
under which the Cauchy problem (7.10) is asymptotically stable with respect to the
initial condition, but later on, in particular, condition (7.8) will serve our purposes.

Next, we consider the SDE (7.1) with a positive initial condition, i.e.

(7.12) dX(t) = g(X(t))dt+ σ(X(t))dW (t), t � 0, X(0) ≡ b > 0.

Let problem (7.12) have a.e. a unique continuous solution Xb and problem
(7.10) have a unique continuous solution µb for any positive initial condition, i.e.
Xb(0) ≡ µb(0) = b > 0. Note that Theorems 7.1 and 7.2 remain true in this case.
We study the problem of asymptotic stability with respect to the initial condition
for the SDE (7.12).

Theorem 7.4. Under (GS), assume condition (7.7) holds, and let (7.8) or at
least one of the conditions (i)–(v) of Proposition 7.1 be satisfied for g. Then, for
all positive b1 and b2, one has

lim
t→∞

Xb1(t)
Xb2(t)

= 1 a.e.

Asymptotic behavior of generalized renewal processes. As above we
assume that both functions g and σ are positive and continuous and such that
problem (7.1) has a.e. a unique continuous solution X, as well as problem (7.2) has
a unique continuous solution µ. Let us consider the following generalized renewal
processes for the process X:

F (s) = inf{t � 0 : X(t) = s}, s > 1,

i.e. the first time when the stochastic process X crosses the level s,

L(s) = sup{t � 0 : X(t) = s}, s > 1,

the last time when the process X crosses the level s, and

T (s) = meas({t � 0: X(t) � s}) =
∫ ∞

0

I(X(t) � s)dt, s > 1,

the total time spent by the process X in (−∞, s], where “meas” denotes the
Lebesgue measure.

The next theorems describe the asymptotic behavior of the generalized renewal
processes introduced above.

Theorem 7.5. Let g and σ be positive and continuous functions such that
problem (7.1) has a.e. a unique continuous solution, as well as problem (7.2)
has a unique continuous solution. Assume relation (7.6). Then it holds, a.e. on
{limt→∞X(t) = ∞},

lim
t→∞

F (t)
G(t)

= lim
t→∞

T (t)
G(t)

= lim
t→∞

L(t)
G(t)

= 1,



94 BULDYGIN, KLESOV, AND STEINEBACH

and

lim
t→∞

F (µ(t))
t

= lim
t→∞

T (µ(t))
t

= lim
t→∞

L(µ(t))
t

= 1.

Moreover, if condition (7.7) holds and (7.8) or at least one of the conditions (i)–(v)
of Proposition (7.1) is satisfied, then, a.e. on {limt→∞X(t) = ∞},

lim
t→∞

µ(F (t))
t

= lim
t→∞

µ(T (t))
t

= lim
t→∞

µ(L(t))
t

= 1.

Theorem 7.6. Under condition (GS) we have that

lim
t→∞

F (t)
G(t)

= lim
t→∞

T (t)
G(t)

= lim
t→∞

L(t)
G(t)

= 1 a.e.,

and

lim
t→∞

F (µ(t))
t

= lim
t→∞

T (µ(t))
t

= lim
t→∞

L(µ(t))
t

= 1 a.e.

Moreover, if condition (7.7) holds and (7.8) or at least one of the conditions (i)–(v)
of Proposition (7.1) is satisfied, then

lim
t→∞

µ(F (t))
t

= lim
t→∞

µ(T (t))
t

= lim
t→∞

µ(L(t))
t

= 1 a.e.
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