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THIRD ORDER EXTENDED REGULAR VARIATION
Isabel Fraga Alves, Laurens de Haan, and Tao Lin

ABSTRACT. A theory of third order extended regular variation is developed,
somewhat similar to the corresponding theories of first and second order.

1. Introduction

The theory of regularly varying functions initiated by J. Karamata (1930, 1933)
has turned out to be very useful and in fact indispensable in the probabilistic and
statistical theory of extreme values.

An extended form of regular variation serves as necessary and sufficient con-
dition for the domain of attraction of extreme value distributions. The same con-
ditions are sufficient for the consistency of the estimators of the extreme value
index 7.

Second order extended regular variation has proven very useful (almost indis-
pensable) for establishing asymptotic normality of estimators of -+, in particular
for calculating the asymptotic variance and bias. In second order extended regu-
lar variation an extra parameter shows up that we call p. Then asymptotic bias
depends on this parameter.

One way of reducing the (asymptotic) bias of an estimator is subtracting the
estimated bias from the estimator. In order to do so one needs an estimator for
the second order parameter p. Such estimators have been developed. They are
generally consistent under second order extended regular variation. But for proving
asymptotic normality of a p-estimator third order extended regular variation comes
into play.

It has been proved (Fraga Alves, de Haan, and Lin, 2003) that indeed third
order extended regular variation is sufficient for the asymptotic normality of p-
estimators. The cited paper also gives a sketch of the third order theory but this
sketch had to be so short that it is extremely difficult to understand.

This paper offers full proofs of the main results for third order extended regular
variation.
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110 FRAGA ALVES, DE HAAN, AND LIN

2. The results

A measurable function f is said to satisfy the extended regular variation prop-
erty if there is a positive function a such that for x > 0,

(2.1) Jim 08 S 271

t=ooa(t) gl

where 7 is a real parameter (Notation f € ERV or f € ERV,).

The speed of convergence in this limit relation can be captured by a relation
of second order. The measurable function f is said to satisfy the second extended
regular variation property if there exist functions a > 0 and A, positive or negative,

with tlim A(t) = 0, such that for all x > 0
—00
/ i 1/ uf " du dy

lim 1 (f(t;v) -t 27— 1)
B P -1 a¥ -1
p( Y+p 2 )’

t—oo A(t) a(t) gl
where p < 0 is the second order parameter (Notation f € 2FRV or
f €2ERV, ,).
Now the third order relation becomes obvious. The function f satisfies the
third order extended regular variation property if it satisfies (2.2) and there exists
a positive or negative function B, with hm B(t) = 0, such that for all z > 0

28 Jim o [Ait) (f(twi(;)f(ﬂ aﬂ—l) / - / e 1dudy}

:/ y'y_l/ u”_l/ s ds du dy,
1 1 1

where 7 < 0 is the third order parameter (Notation f € 3ERV or f € 3ERV,, , ).
One of the results established in the Theorem is that only in trivial cases the
limit function in (2.3) is not of the stated form.

)

(2.2)

THEOREM 2.1. Whrite

x Yo 1
D, (z) ::/1 Yy = xT and

Z/Iypy_l/yup_ldudyz ! (mv+p_1 — x”—l)-
1 1 p\ Ytp 2

Suppose f is a measurable function and there exist functions ag (positive) and a;
and ag (positive or negative) with tlim a;(t) =0 fori=1,2 such that for allx >0
— 00

(2.4) Jim {f(t) = f(t) — ao(t) Dy (2) — ar(t) Hy (2) } /a2 (t) =: R(x),

exists (t — 00), then for a judicious choice of ag, a1 and ay and given that D, H
and R are not linearly dependent, the limit function R will be of the form

(2.5) Ry pnl / i 1/ uf” 1/ s tds du dy,
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with p < 0, n < 0. Moreover,

az(tr) o ioin
(2.6) t=00 ag(t) =z,
g @) —a @, a1
(27) t1—>oo ag(t) n 7
I

and for each € > 0 there exists tg such that for t > tg, tx >ty
(2.9)
676‘ logm\xf'yfpfn f(tit) — f(t) — ao(t)ny(l') — a’l(t)H’Y»P(x)
as(t)

- R%p,n(m) S e

PRrROOF. We write for t,z,y > 0
fltwy) = f(t) = (f (tzy) — f(tx)) + (f(tx) = f(2))
and we connect the three parts to (2.4) as follows
{f(tey) — f(t) = ao(t) Dy (y) — ar(t) H, ,(xy) } /as(t)
= [{f(tzy) — f(tz) — ao(tz)Dy(y) — ar(tz)H, ,(y) } /as(tz)] az(tz) /as(t)
(2.10)  +{f(tx) = f(t) — ao(t)Dy(x) — a1 (t)Hy,p(2)} /az(t)
+ {—ao(t) (D (zy) — Dy(x)) + ao(tz) Dy(y)} /ax(t)
+{—a1(t) (Hy p(zy) — Hy p(2)) + a1 (tx) Hy o (y)} /az(t).
Note that
—ao(t) (Dy(zy) — Dy(2)) 4 ao(tx) D (y) = (ao(tz) — z7ao(t)) Dy (y)

and
— a1 (t) (H'y,p(xy) - H’y,p(l')) +a; (tx)H'y,p(y)
= (a1 (tz) — 27" Pay (1)) Hy p(y) — ar(t) 27

so that the sum of the last two terms of (2.10) is
ay(tx) — ay (£)x7 P ) agp(tx) — ap(t)x? + a1 ()27 (z° — 1)
ax(1) e (1)

Let t — oo in both sides of the equation (2.10) with the last two terms substi-
tuted by (2.11). We get for z,y > 0

-1y’ —1
P Y

(2.11) 2D ).

L as(tx) ay(tx) —ay(t) - VTP
Rlay) = B = Jim | R+ o) 20 4 11, 208
ag(tz) — ap(t)xY —ay(t)x? - (zP — 1) /p
(2.12) + Dy (y)— < 0 :

We have required that there do not exist constants ¢y and c3 such that
R(y) = caHy p(y) + csD, (y).
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Consequently, the set of vectors {(R(y), H(y), D(y))},~ is not contained in a plane,
hence there are y1,y2, y3 such that the matrix

R(y1) H(y1) D(yr)
R(y2) H(yz) D(ya)
R(ys) H(ys) D(ys)

has rank 3. Then also the transposed matrix has rank 3. So there are no z1, 22, 23,
not all of them zero, such that Y z;R(y;) =Y z:H (y;) = >_ 2z:D(y;) = 0.

Now take z1, 29, 23 such that
(2.13) > zH(y) = zD(y:) = 0;
i i

then we must have > z; R(y;) # 0.

Now multiply the two sides of (2.12) by z;, i = 1,2,3, and add the three
equations. The resulting equation (use (2.13)) shows that lim; o a2(tz)/az(t)
exists for > 0. The limit could be zero (but that is not possible here) or else a
power of x, say TP+, This is the definition of . Similarly (repeating the above
reasoning for this case)

oy @ (tz) —ay(t) - 27+
(2.14) Jim =0

and

i ap(tx) —ap(t) - 27 —ay(t) -7 - (x? = 1)/p
(2.15) Jim =0

must exist. The limits in (2.14) and (2.15) must be [de Haan and Stadtmiiller 1996,
Theorem 1]

g’ (2" =1)/n and 27 (c1H,y(x) + c2Dy(x)) -

By replacing as with ¢jas and a; with a3 + ceas in (2.4) the limits become
VP (2" —1)/n and 27 H,, ,,(z), respectively.
Now (2.12) leads to the functional equation (z,y > 0)
y’ -1 " —1
.

The reader may want to check that the function R, ,, is a solution of (2.16). Let
R’ be any other solution and define V := R, , , — R'. Then V satisfies the equation

(2.16) 27" R(y) = R(zy) — R(x) — 27 - H,,(x) -2 H, ,(y)-

2TV (y) = V(wy) - V(2),
hence (as in de Haan 1970, section 1.4),
pytetn _q

V(iz)=c ———.
Y+
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Next we get rid of V. Suppose the limit in (2.4) is R := R, ,, + V. Note that by
changing the functions ag, a; and as in (2.4) into

Qg = cglag
(2.17) ap :=ai +caz

ELO =aqag + C()Elg
the limit function R changes into coR—coD~ —c1H,,. Also note that if both n # 0
and 1+ p # 0,

Rypyle) = L Ay L b
- — T)— —— z),
B nm+p) yv+p+n n " n(n+p) "
ie.,
S it o) {Ropalo) + L)+ D 0
———=n1n+p on\T)+ —Hy o) + ————= x}
Y+p+n e n nm+p) "
If n =0, then
T L HL (@) + Dy ()
——— = pHy (x) + T
,y_’_p_'_n Y0P Y
and if n + p = 0, then
ytetn 1
- D(2)
Y+p+n

Hence by the device (2.17) we can make sure that the limit function in (2.4) is
exactly Ry px -
In order to prove (2.9) we distinguish various cases.

1. v = p=1n=0. The proof is similar to Omey and Willekens (1988). For
z,y >0

f(tey) = flty) = f(tx) = £(t) = ar(t) (og 2)(log y)
= f(tzy) = f(t) - ao(t) log(wy) — a1(1)} (log(wy))’
—{(ty) — £(8) = ao(t) logy — ar(8)} (log(y))* |
—{ft2) = £() ~ ao(t)logz — a1 (1)} (log())* } .
Hence by (2.4) and (2.5) for the function g, (t) .= f(tz) — f(t), we have

S (ty) = g:(t) —ax(t) log = logy
t—00 ao(t)

L (log(ay))® - é (logy)® — é (log z)°

DO = Cn\

(logz)* logy + = (log y)’logx
for all z,y > 0, i.e.,

lim ga(ty) — {al (logx) — ao(t )% log x) }logy

1 2
— (1 .
t—00 ( )loga: 2 ( Ogy)
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Hence g, is second order Il-varying for each z > 0. It follows from Omey and
Willekens (1988), that the function h, () := g.(t) — %fot 9x(8)ds is in the class TI
with auxiliary function ag(t) logz, i.e., for y >0

h:p (ty) - hw (t)

=1 .
t—oo ag(t)logx o8y

The theory of II-variation applies, hence by Geluk and de Haan (1987)

(2.18) lim W(hx(t) - % /0 t hm(s)ds> =1

Now note that
1 t
ha(t) = AV (tz) — RO()  with AV (2) := f(t) — - / f(u) du.
0

Consequently, it follows from (2.18) that

tx t
fim — L <h<1>(m) O 1 / AV (s)ds + % / A (s) ds) =1,
0 0

t—oo ag(t) log x tx
ie.,
R (tz) — K (¢
(2.19) lim 7 (2 ® _y
t—oo  ag(t)logx
with
1 t
R (t) := bW (t) — - / RV (s)ds.
0

Again by the theory of II-variation, relation (2.19) implies

(2) A )
B () —hO ()

=logz
with
1 t
WO(t) = W (1) — / 13 (5)ds.
0
Then by Drees’ inequalities (1998), for any e1,ea > 0, there exists to = to(€1,€2)
such that for t > tg, tx > tg
R (tz) — K2 (t)
hB)(t)
It is easily checked using the definition of h(?) that
t
d
RO (1) = K (1) + / B ()L

0 S

(2.20) e~ c2llogel —logz| < ;.

hence
A (tz) — KO () = K (tz) — K (1) + / W(m)ﬁ,
1 S
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ie.,
(2.21)

AV (tz) — KD () — P () logz = KD (tz) — KD (1) + / ' (h<2>(ts) R (¢ )) ds

S

and consequently

) (tz) — KW (t) — (R (t) + B (t)) logz  (logx)?

K3 (t) 2
R (tz) — K3 (t) = () (ts) — K3 (1) ds
= (D) —logx + /1 ( (1) — log 5) R

Integrating (2.21) with respect to x we get
v d d
(2.22) / (h<1>(ts) - h<1>(t)) S h®) / (1og 5) 5
1 S

:/ (h®(ts) - nO(e ds / B (1) <>(t))§ﬂ
1 S U

Also we have the following obvious analogue of (2.21):
(2.23)

Ftz) — () — BV (1) loga = (h(l)(tx) - h<1>(t)) + / (h<1>(ts) - h(l)(t)> ds

1 s
Combining (2.22) and (2.23) we get

f(tz) — f(t) = BV (t) log z + B (t)(log x)? /2

/ / (h®ts) —n@ (1)) ds du / ’ (n@(ts) — @) ds
1 S
+ (W () — nOW)),
which by (2.21) equals

(h<1>(t) + h<2>(t)) logz + h®(t)(log )2/2 + /1 ' /1 ' (h@)(ts) - h<2>(t)) %%‘

42 / ’ (h<2> (ts) — h® (t)) % + 2@ (ta) — B (2).

Hence

ftx) — f(t) — (h(l)(t) +h@ () + (¢t (t)) logz — ( )(t) + 23 (¢ ) (log )?/2
hG)(t)

(log x)? /x /" R (ts) — h(t) ds du
—_ e —logs | ——
6 1 1 h(3)(t) S u

T (@ (ts) — h(t) ds  hP(tz) — 3 (1)
+ 2/1 ( W) — log s) 5 + Bl —logz.
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Hence by (2.20) for any e1,e9 > 0, t > to(e1, €2), tx = to(er, €2)

fltx) — f() — (M) + AP () + O (t)) logz — (R (t) + 2h3) (1)) (log x)?/2
@) (t)

(log z)*

6

T pu d T
s du ds
< 61/ / 652“0g5‘ +2€1/ 652“0g5‘ +€1662|10gm‘

1 1
< €1 (]. + — + 2) 662\10g$|.
€2 €3

2. n < 0: By Theorem 1.10 of Geluk and de Haan (1987) relation (2.7), that
is,
lim (tx)~OFPay (tr) — t=OFPay(t) a1
t—00 t=(rtP)ay(t) n

with 7 < 0, implies that for some constant ¢ > 0
c— t_(””)al(t) ~ —n_lt_(””)ag(t),

that is, a1(t) = 7™ + n~tas(t)(1 + o(1)) as t — oo. Hence we can replace a; in
(2.8) with a} defined by af(t) := "™ +n~tas(t).
By inserting this choice in (2.8) and rearranging we get for = > 0

— DY — etV TPxY (P — 1 pP_1
i 20(2) = ao)a? =t ay - (@P —V/p _ 5 Hy,(z) -2~
t—o0 as(t) 7 p
which is the same as
. (tz) Yao(tr) —tVag(t) —ct? - (P —1)/p 1 zPt1 -1
im —_-.z_ =
t—00 t~Vas(t) n o p+n

We can rewrite this as

i ((tx)Vao(tx) — c((tx)” —1)/p) — (tVao(t) — c(t” — 1)/p) 1 2t
fee t=7as(t) noop+n

where p+1n < 0. Again by Theorem 1.10 of Geluk and de Haan (1987) this implies
that for some constant cy,
tP 1

c1 —t Vag(t) —c— ~

———t Yas(t), t— oo,
p nlp+n)

hence in (2.4) we can replace ag with af defined by

1

n(p+mn) a2(t).

at(t) == et + itw -
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Inserting the special choices a} and af in (2.4) we get

1 tr) —1 e (te)tr —1
(2.24) lim [f(tx) B G N (D)
t—oo ag(t) noy+tp
-1 ctrtP—1\ ctrtPar —1
(et )
v vEe non Y
1 1 -1

’YaP,TI( ) n %P( ) 77(,0 + 77) v
1 1 27-1 17t 1
=+ pualo) - )-i i
U] ptn v ny+e+n

Relation (2.24) is a second order relation for which uniform bounds are well
known (Drees, 1998). Hence for some functions d; and as

[ (- S

tr—1 ctrtP—1\ a7 —1] 1
—<f(t)—01 - = >—a1(t) ]A ‘ge
T vt v Jaa(t)
provided t > to(€) and tx > to(€). This gives (2.9) for n < 0.
3. p<0,n=0. We start from (2.8), i.e.,

lim (tx)Yag(tx) —t Yao(t) —t Var(t) - (x* —1)/p

t—oo t77a2 (t)
This relation is discussed in de Haan and Stadtmiiller (1996), Theorem 2,(ii). Re-
lation (2.11) of that paper gives

- {(t2) Tao(te) — S (t2) Tar(tw)} — {t7ao(t) — jt 7@ ()} 1 a1
oo t=Tay(t) o o

e—¢cllogz| .—v—p—n

= Hp70(x).

The latter relation is discussed in Proposition 2(ii) of the same paper. It follows
that for some ¢ > 0
tVag(t) — St 7ai(t) — ¢ 1

lim =——
t—o0 t=7Yas (t) P2 )

i.e., relation (2.4) holds with a; replaced by a] defined by
1
ai(t) == —cpt” + pao(t) + ;a2(t)-

After some rearranging we get

(7002 = =) = (0= P ) = e o) T

1 1
=Ry po(z) + ;H%p(x) = ;H'erp,O(x)'

i
500 az(t)

This is a second order relation for which uniform bounds are well known (Drees,
1998). This gives (2.9) for n =0, p < 0.
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4. In the case v # 0, p = n = 0 we have, as t — oo:

f(t:r)_f(t)—ao(t)(z;’(z)l)/’y—al(t)H%O(x)  Rogo() = ! 1207g z % 1, o).
Hence
fte) = f(t) —ac(®)(@” = D)/y = (a1(t) — a2(t)/7) Hyo(x) _ a7 log”x
as(t) 2y
Note that | )
_ z7logw _ x7 —
H,Y,Q(SL‘) = ~ 72 .
We have
1 1 1 7 —1 1 z7 logx
=10~ (a0 Ss 0+ Z0a0) L (a0~ Tty THEE
27 log?
Define ) ) )
do(t) = ao(t) — ;al (t) + ?(Iz(t), &1(t) = al(t) — ;ag(t)
Then
i ) = 50 = a0 — ) T — TR

which can be rewritten as
(f(tz) =y Lao(tz)) — (f(t) — v ao(t)) N ao(tx) — ap(t)x? — a1 (t)x7 log
as(t) yaz(t)

(2.25) =

7 log?
2y
Relations (2.6), (2.7) and (2.8) imply
ao(tz) — ag(t)zY —ay(t)z"loge a7 log’x
—
as (t) 2

(2.26)

From (2.25) and (2.26) we have

(f(tx) =y~ ao(tz)) — (f(t) =y~ ao(t))

() — 0.

(2.27)

e If~y <0, by Theorem 3.1.10 of Bingham, Goldie and Teugels (1987, due to Ash,
Erdos and Rubel, 1974), the limit

c:= lim f(t) — v tao(t)

t—o0

exists, finite, and

p 6= £+ o)

=0
t—o0 as (t) ’



ie.,
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ao(t) = v (f(t) = ¢) + o(az(t)),

as t — oco. Combining this with (2.26) gives

(2.28)

ie.,

yf(tz) —vf(t)xY —ay(t)z logz 7 log’z
as(t) R

(tz) 7 f(tz) —t 7V f(t) — ar(t)a" (logx)/y _ logz
— .
az(t)/y 2
Note that this is just a second order condition for which uniform inequalities

have been derived in Drees (1998). They can be rewritten as follows: one can find
functions a7 and aj such that for any € > 0, ¢,tx > to(¢),

(2.29) 77 exp{—|logz|e}

1 . .y
a5 19 10 =0T e loge] - TS

For v > 0, Theorem 3.1.12 of of Bingham, Goldie and Teugels (1987, due to

Bojanic and Karamata, 1963), applied to (2.27) implies

ie.,

as t

£t = ao(t)
a(0) 0

ao(t) = vf(t) + oaz(t)),
— 00. Combining this with (2.26) gives (2.28) once again and hence (2.29) is

obtained. O

1]
2]
3]

[4]

(10]
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