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ULTRAFAST SUBORDINATORS
AND THEIR HITTING TIMES

Mihály Kovács and Mark M. Meerschaert

Abstract. Ultrafast subordinators are nondecreasing Lévy processes obtained
as the limit of suitably normalized sums of independent random variables with
slowly varying probability tails. They occur in a physical model of ultraslow
diffusion, where the inverse or hitting time process randomizes the time vari-
able. In this paper, we use regular variation arguments to prove that a wide
class of ultrafast subordinators generate holomorphic semigroups. We then use
this fact to compute the density of the hitting times. The density formula is
important in the physics application, since it is used to calculate the solutions
of certain distributed-order fractional diffusion equations.

1. Introduction

Ultrafast subordinators are connected with certain random walk models in
physics. In these models, waiting times with power-law probability tails are ran-
domized in terms of the power law exponent. The renewal process with these
waiting times is then the inverse or hitting time process of the random walk with
these jumps. The probability tails of these random variables are slowly varying, so
that the random walk grows vary fast, and the renewal (inverse) process very slow.
The random walk limits form an interesting new class of subordinators. The paper
[19] develops the limit theory for these ultrafast subordinators, together with some
results on their hitting times. The basic approach is to study the asymptotic be-
havior of the renewal process by first proving a limit theorem for the random walk,
and then inverting. The random walk converges to a subordinator (a Lévy process
with nondecreasing sample paths) and the renewal process converges to the inverse
or hitting time (or first passage time) process of the subordinator. The paper [19]
imposes a technical condition which is difficult to check. In this paper, we remove
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that technical condition using a deep result from the theory of semigroups [5, 10]
together with some regular variation arguments.

Regular variation is an asymptotic property of real functions that essentially
imposes a power law growth condition [12, 29]. It has found many applications
in probability theory [9] and other areas of pure and applied mathematics [4].
A real function g(r) varies regularly with index α if g(λr) ∼ λαg(r) as r → ∞
for any λ > 0. Regular variation for real-valued functions on Rd began with the
work of Stam [31], de Haan and Resnick [13], Stadtmüller and Trautner [30] and
Jakimiv [15]. Soon after this, Ostrogorski developed the theory of regularly varying
functions on R

d even further, proving a representation theorem along with Abelian
Theorems for Laplace transforms, Fourier transforms, and other integral transforms
[20, 21, 22, 23, 24, 25]. A real-valued function F (x) on R

d varies regularly if
F (λx) ∼ λαF (x) as ‖x‖ → ∞, uniformly on compact sets of x in some cone in R

d.
For some additional extensions and applications, see [17]. The main theorem in
this paper, Theorem 2.2, depends on establishing a multivariable regular variation
condition I(reiθ) ∼ g(r)eiθ uniformly in |θ| � θ0 as r → ∞ where I(z) is a complex
function and g(r) is regularly varying. Separating the real and imaginary parts,
and identifying the complex plane with the underlying two dimensional real vector
space, this amounts to regular variation on a cone in R

2. Hence the main technical
tool in this paper is the multivariable theory of regular variation.

2. Ultrafast subordinators

We begin by explaining the ultrafast subordinator model as a limit of certain
random walks. In this random walk model, we start with jumps having power-law
probability tails, and then we randomize the power law exponent. Let B1, B2, . . .
be i.i.d. with density p, where p(β) is a probability density on 0 < β < α for
some 0 < α < 1. For the purposes of this paper we make two regular variation
assumptions to control the growth behavior of the density p(β) at the endpoints
β = 0 and β = α. First we assume that p(β) is regularly varying at β = 0+ with
index b > 0, which means that

(2.1) lim
β↓0

p(λβ)
p(β)

= λb for all λ > 0.

Next we assume that p(β) is regularly varying at β = α− with index a−1 for some
a > 0, so that

(2.2) lim
β↓0

p(λ(α− β))
p(α− β)

= λa−1 for all λ > 0.

We remark that if f(x) varies regularly at infinity with index c ∈ R, meaning
that f(λx) ∼ λcf(x) as x → ∞ for all λ > 0, then it is easy to check that
F (x) = f(1/x) varies regularly at x = 0+ with index −c, and F (y − x) varies
regularly at x = y− with index −c. Furthermore, it is also easy to check that
f(x) = xcL(x) for some function L which is slowly varying at infinity, meaning
that L(λx) ∼ L(x) as x → ∞ for all λ > 0. Then we also have F (x) = x−cL(1/x)
and F (y−x) = (y−x)−cL(1/(y−x)). Since for any ε > 0 we have x−ε < L(x) < xε
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for all x sufficiently large (see, e.g., [9, VIII.8, Lemma 2]), we see that regularly
varying functions grow like power laws.

Recall that Bi are i.i.d. random variables taking values in 0 < β < α for some
0 < α < 1. Given any c � 1 let J (c)

1 , J
(c)
2 , . . . be nonnegative i.i.d. random variables

such that for any 0 < β < α we have

(2.3) P{J (c)
i > u|Bi = β} =

{ 1 0 � u < c−1/β

c−1u−β u � c−1/β .

Then the density ψc(u|β) of J (c)
i given Bi = β is

ψc(u|β) =
{ 0 0 � u < c−1/β

c−1βu−β−1 u � c−1/β .

If we define for 0 < β < α

P{J1 > t|B1 = β} =
{ 1 0 � t < 1
t−β t � 1

we get by letting u = c−1/βt that

P{c−1/βJ1 > u|B1 = β} =
{ 1 0 � u < c−1/β

c−1u−β u � c−1/β

so conditionally on B1 = β we have J (c)
1

d= c−1/βJ1. Moreover, for t � 1

P{J1 > t} =
∫ 1

0

t−βp(β)dβ

where we define p(β) = 0 for β � α. It turns out (see Remark 2.1) that P{J1 > t}
is slowly varying at infinity, so that the unconditional waiting times have infinite
moments of all orders. Limit theorems for renewal processes with these slowly
varying waiting times were developed in [18] by first proving limit theorems for
the associated random walk using nonlinear scaling, the usual approach for slowly
varying tails [7, 16, 32], and then inverting. A different approach in [19] uses
random rescaling. Let

(2.4) T (c)(0) = 0 and T (c)(t) =
[t]∑

i=1

J
(c)
i

be a sequence of random walks depending on the parameter c > 0.
The following result is essentially contained in [19] but is summarized here for

the convenience of the reader. The space D([0,∞), [0,∞)) consists of all nonneg-
ative real valued functions x(t) defined for t � 0 which are continuous from the
right with left-hand limits. Elements xn of this space converge to a limit x in the
Skorokhod J1-topology if the graph of xn(t) converges uniformly to the graph of
x(t) in a way that allows both the jump sizes and jump locations to vary with n,
for a precise definition see [3, 33]. A Lévy process X(t) is a random element of
this space such that X(0) = 0 with probability one, X(tn) ⇒ X(t) in distribution
when tn → t (stochastically continuous), X(t + s) − X(t) is independent of X(t)
(independent increments), and X(t+ s)−X(s) is identically distributed with X(t)
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(stationary increments), for more information see [2, 28]. A Lévy process X(t) is
called a subordinator if X(t) is a nondecreasing function of t with probability one.

Theorem 2.1. Define the triangular array {J (c)
i : 1 � i � [ct], c � 1} by (2.3).

If (2.1) holds, then for the partial sum process {T (c)(t)}t�0 defined by (2.4) we
have

(2.5) {T (c)(ct)}t�0 ⇒ {D(t)}t�0

as c → ∞ in the J1-topology on D([0,∞), [0,∞)), where D(t) is a subordinator
with E(e−sD(t)) = e−tI(s) and

(2.6) I(s) =
∫ 1

0

sβp(β)Γ(1 − β)dβ.

Proof. Theorem 3.4 and Corollary 3.5 in [19] show that (2.5) holds where
D(t) has Lévy representation E(e−sD(t)) = exp(− ∫

(e−su − 1)tφ(du)) with

(2.7) φ(u,∞) =
∫ 1

0

u−βp(β)dβ

as long as p varies regularly at zero with some index a − 1 for some a > 0 and
additionally

(2.8) J =
∫ 1

0

p(β)
1 − β

dβ <∞.

The Lévy representation uniquely determines the process, for more information see
[2, 17, 28]. Assumption (2.1) implies that p varies regularly at zero with an index
in the required range, and (2.8) follows from the fact that p(β) = 0 for β > α for
some α < 1. Then it follows from Theorem 30.1 of [28] along with (2.7) that the
subordinator D(t) has Laplace symbol

I(s) =
∫ ∞

0

(1 − e−su)φ(du) =
∫ 1

0

(∫ ∞

0

(1 − e−su)βu−β−1 du
)
p(β) dβ

=
∫ 1

0

Γ(1 − β)sβp(β) dβ.

so that (2.6) also holds. �

Let F (x, t) = P{D(t) � x} denote the family of distribution functions of the
subordinator D(t). Consider the Banach space X = C0(R) of continuous functions
u : R → C that satisfy u(x) → 0 as |x| → ∞, with the supremum norm ‖u‖ =
sup{|u(x)| : x ∈ R}. Let B(X) denote the Banach space of bounded linear operators
on X endowed with the operator norm ‖T‖B(X) := sup||u||�1 ||Tu||. The continuous
convolution (Feller) semigroup {T (t)}t�0 ⊂ B(X) associated with the subordinator
D(t) is defined for u ∈ X by

(2.9) [T (t)u](y) =
∫ ∞

0

u(y − x)F (dx, t) = E[u(y −D(t))].
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It is well known that {T (t)}t�0 defined in (2.9) is a strongly continuous semigroup
on X = C0(R) [14, Example 4.1.3]. The generator A of the semigroup {T (t)}t�0

is defined as follows. If for u ∈ C0(R) there is g ∈ C0(R) such that

lim
t↓0

∥∥∥∥T (t)u− u

t
− g

∥∥∥∥ = lim
t↓0

sup
y∈R

∣∣∣∣ [T (t)u](y) − u(y)
t

− g(y)
∣∣∣∣ = 0,

then we define Au := g. The domain D(A) of A consists of all u ∈ X such that
the Banach space limit limt↓0 t−1(T (t)u−u) exists. Since in C0(R) the norm is the
supremum norm, if u ∈ D(A), then [Au](y) is given by the pointwise limit

(2.10) [Au](y) = lim
t↓0

[T (t)u](y) − u(y)
t

= g(y), y ∈ R.

In this case it can be shown (as a special case of [27, Theorem 4.3]) that

(2.11) D := {u ∈ C0(R) : u is differentiable and u′ ∈ C0(R)} ⊂ D(A)

and

(2.12) [Au](y) =
∫ ∞

0

(u(y − z) − u(y)) φ(dz), u ∈ D.

Note that the term under the limit in (2.10) has Laplace transform

e−tI(s) − 1
t

ũ(s) → −I(s)ũ(s) as t ↓ 0

where ũ(s) =
∫ ∞
0
e−syu(y) dy denotes the Laplace transform of the function u. To

motivate the generator formula (2.12), note that formally we can invert the Laplace
transform

−I(s) ũ(s) =
∫ ∞

0

(e−sz − 1)φ(dz) ũ(s)

term by term using the fact that e−szũ(s) is the Laplace transform of the function
y 	→ u(y − z).

The semigroup defined in (2.9) is a special case of the following general con-
struction. Let X be a Banach space and let {S(t)}t�0 be a uniformly bounded
strongly continuous semigroup on X. Then the subordinated semigroup

(2.13) T (t)u =
∫ ∞

0

S(x)uF (dx, t), u ∈ X,

where the integral can be understood either in the Riemann–Stieltjes or in the
Lebesgue–Stieltjes (Bochner) sense, is strongly continuous on X (see, for exam-
ple, [14, Theorem 4.3.1] and [27]). If X = C0(R) and [S(x)u](y) = u(y − x),
then {T (t)}t�0 coincide with the semigroup defined in (2.9) since the translation
semigroup is strongly continuous on C0(R).

Next we introduce a special class of strongly continuous semigroups. Let X
be a complex Banach space and Ω ⊂ C be an open set. A function f : Ω → X is
holomorphic if the Banach space limit

f ′(w0) := lim
h→0

h∈C�{0}

f(w0 + h) − f(w0)
h
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exists for all w0 ∈ Ω. A strongly continuous semigroup {T (t)}t�0 is called a
bounded holomorphic semigroup if for some θ ∈ (0, π

2 ] the semigroup {T (t)}t�0

has a bounded holomorphic extension to a sectorial region Σθ′ := {w ∈ C � {0} :
| arg w| < θ′} for all θ′ ∈ (0, θ). That is, if for some θ ∈ (0, π

2 ] there exists
a family {T (w)}w∈Σθ

⊂ B(X) that extends {T (t)}t�0 such that the function
Σθ 
 w 	→ T (w) ∈ B(X) is holomorphic in Σθ and for all θ′ ∈ (0, θ) there ex-
ists Mθ′ such that supw∈Σθ′ ||T (w)||B(X) � Mθ′ (see, [1, Definition 3.7.3]).

Carasso and Kato [5] proved that if B denotes the Banach algebra of complex
valued functions of bounded total variation on [0,∞) (or complex Borel measures)
with convolution as multiplication and with the total variation norm || · ||TV on
[0,∞), then the following conditions are equivalent:

(1) The semigroup {T (t)}t�0 defined in (2.13) is analytic for every uniformly
bounded strongly continuous semigroup {S(t)}t�0 on X,

(2) F (dx, t), t > 0, is differentiable as a function (0,∞) → B and

lim sup
t→0+

[
t ·

∥∥∥∥∂F∂t
∥∥∥∥

TV

]
<∞.

In [5] the following, unfortunately only necessary condition is given. If (2) holds,
then the Laplace symbol I(s) of F (dx, t) maps Re s > 0 into a sector {s ∈
C, |arg s| � (π − ω)/2} for some ω < π, and there is a constant K and 0 < γ < 1
such that |I(s)| � K|s|γ for |s| � 1 and Re s � 0.

Fujita in [10], gives a checkable set of sufficient conditions for the Carasso–
Kato Theorem to hold, stated in terms of regular variation. For 0 < α < 1 let
θα = π/(1 + α), choose θα < Θ < π, and define the sectorial region Σ = {w ∈
C � {0} : arg w < Θ}. Let Σ̄ denote the closure of this region. The main theorem
in [10] states that Condition (2) holds if for some 0 < α < 1 the following three
conditions hold:

(A1) I(s) has a holomorphic extension to Σ and is continuous on Σ̄;
(A2) For some function g(r) that varies regularly at infinity with index α we

have I(reiθ) ∼ g(r)eiαθ uniformly in |θ| � θα as r → ∞;
(A3) The functions I(reiθ)/r are integrable on some neighborhood of 0+ for

every |θ| � θα.

With the above preparation we come to the main technical result of this pa-
per. In the next section, we will use this result to prove a general formula for the
hitting time density of the ultrafast subordinator D(t). The result may also be
useful in other applications, since it shows that these subordinators are smoothing.
For example, when time-discretizing the Cauchy problem u̇(t) = Au(t), u0 = u(0)
using rational approximation schemes, the fact that {T (t)}t�0 is analytic implies
stability of the scheme and faster convergence of the method for less smooth initial
data, see for example [6] and [26].

Theorem 2.2. Under the regular variation conditions (2.1) and (2.2), the
semigroup {T (t)}t�0 defined by (2.9) is holomorphic on C0(R).
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Proof. If conditions (A1)–(A3) are satisfied, then the semigroup {T (t)}t�0

defined by (2.9) is holomorphic on C0(R) by (2.13) and the Carasso–Kato theorem.
First we show that (A1) holds. To do this recall Montel’s theorem (see, for

example, [11, Theorem 6.5.3]), namely, if F := {fλ}λ∈Λ is a family of holomorphic
functions on an open set U ⊂ C such that |fλ(w)| � M (M > 0) for all w ∈ U
and fλ ∈ F , then every sequence {fj} ⊂ F has a subsequence {fnj

} that converges
uniformly on compact subsets of U to a holomorphic function f0. Let q(β) :=
Γ(1 − β)p(β) and Q(β) :=

∫ β

0
q(β′) dβ′ for 0 � β � 1. Then, since the function

β 	→ rβ is continuous on [0, 1],

I(r) =
∫ 1

0

rβq(β) dβ =
∫ 1

0

rβ dQ(β)

where the latter integral is a Riemann–Stieltjes integral.
The functions w 	→ wβ , 0 � β � 1, are holomorphic on C � (−∞, 0] and hence

so are the functions, defined by the Riemann–Stieltjes sums,

fn(w) :=
n∑

j=1

wj/n
[
Q

( j
n

)
−Q

(j − 1
n

)]
.

Let w0 ∈ C � (−∞, 0] and choose an open disc D(w0, r) with center w0 and radius
r > 0 such thatD(w0, r)∩(−∞, 0] = ∅. Then F := {fn}n∈N consists of holomorphic
functions on U := D(w0, r) and

|fn(w)| �
n∑

j=1

|w|j/n

∣∣∣∣Q
( j
n

)
−Q

(j − 1
n

)∣∣∣∣ � sup
0�β�1

w∈D(w0,r)

|w|β Var[Q]10

� max(1, 2|w0|)
∫ 1

0

q(β) dβ.

Therefore, by Montel’s theorem, there is a subsequence {fnj
} ⊂ {fn}n∈N that

converges uniformly on compact subsets of D(w0, r) to a holomorphic function f0.
But fn(w) → ∫ 1

0
wβ dQ(β) =

∫ 1

0
wβq(β) dβ as n → ∞ for all w ∈ D(w0, r) and

hence
∫ 1

0
wβq(β) dβ = f0(w) is holomorphic on D(w0, r) and hence on C� (−∞, 0].

Clearly, the function
∫ 1

0
wβq(β) dβ is an extension of I(s) and it follows that (A1)

holds for arbitrary θα < Θ < π.
Next we show that (A2) holds in the special case θ = 0. A change of variables

β′ = α− β shows that

r−αI(r) =
∫ 1

0

rβ−αq(β) dβ =
∫ α

0

rβ−αq(β) dβ

=
∫ α

0

r−β′
q(α− β′) dβ′ =

∫ 1

0

r−βh(β) dβ
(2.14)

where h(β) = q(α − β) = Γ(1 + β − α)p(α − β). Since (2.2) holds we can write
p(β) = (α−β)a−1L(α−β) for some function L that is slowly varying at 0+. Then
we have h(β) ∼ Γ(1−α)βa−1L(β) is regularly varying with index a− 1 at β = 0+.
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Now define H(β) =
∫ β

0
h(u)du the distribution of the finite Borel measure with

density h(u). A change of variables v = 1/u shows that

H(1/x) =
∫ ∞

x

h(1/v)
dv

v2

where h(1/v) varies regularly at infinity with index 1− a. Then the Lemma on [9,
p. 280, VIII.9] implies that H(1/x) varies regularly at infinity with index −a, and
hence H(β) varies regularly at 0+ with index a > 0. Furthermore, [9, Theorem 1,
VIII.9] implies that

x−1h(1/x)
H(1/x)

→ a as x→ ∞
which implies that aH(β) ∼ βh(β) as β → 0+, and hence H(β) ∼ βaL0(β) as β ↓ 0
where L0(β) = a−1Γ(1 − α)L(β). Since the Laplace transform

h̃(r) =
∫
e−rβh(β) dβ =

∫
e−rβH(dβ)

we can apply Karamata’s Tauberian Theorem (see, e.g., [9, Theorem 3, XIII.5]) to
conclude that h̃(r) varies regularly as r → ∞ with index −a and furthermore we
have h̃(r) ∼ Γ(1 + a)r−aL0(r−1). Then in view of (2.14) we have

(2.15) r−αI(r) =
∫ 1

0

r−βh(β) dβ = h̃(log r) ∼ Γ(1 + a)(log r)−aL0(1/ log r)

and hence I(r) ∼ rαΓ(1 + a)(log r)−aL0(1/ log r) varies regularly with index α as
r → ∞. This proves (A2) for the case θ = 0 and shows that in fact we can take
g(r) = I(r).

Next we consider an arbitrary |θ| � θα for some 0 < α < 1 and we write

I(reiθ) = rαeiαθ

∫ 1

0

rβ−αei(β−α)θq(β) dβ

= rαeiαθ

(∫ 1

0

rβ−α cos((β − α)θ)q(β) dβ + i

∫ 1

0

rβ−α sin((β − α)θ)q(β) dβ
)

= rαeiαθ(J1 + iJ2)

and we substitute β′ = α− β as before to get

J1 =
∫ α

0

rβ−α cos((β − α)θ)q(β) dβ =
∫ α

0

r−β′
cos(β′θ)q(α− β′) dβ′

=
∫ α

0

r−βh1(β) dβ = h̃1(log s)

with h1(β) = cos(βθ)q(α− β) = cos(βθ)p(α− β)Γ(1 − α+ β), and similarly

J2 =
∫ α

0

r−βh2(β) dβ

with h2(β) = − sin(βθ)p(α − β)Γ(1 − α + β). As β ↓ 0 we have h1(β) ∼ h(β) ∼
Γ(1− α)βa−1L(β) regularly varying with index a− 1 at β = 0+. If θα < π/2 then
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it follows as in the case θ = 0 that h̃1(r) ∼ Γ(1+ a)r−aL0(r−1) is regularly varying
as r → ∞, so that J1 ∼ r−αI(r) by (2.15). If not, then we write

J1 = J11 + J12 =
∫ β1

0

r−βh1(β) dβ +
∫ α

β1

r−βh1(β) dβ

where β1 = π/(2θ). Since h1(β) � 0 on 0 < β < β1 the same argument as before
yields J11 ∼ r−αI(r) as r → ∞. Noting that h2(β) < 0 on β1 < β < α we have
|J12| � Cr−β1 for all r � 1 where C =

∫ α

β1
h1(β)dβ. Then J12/J11 → 0 as r → ∞

and again it follows that J1 ∼ r−αI(r) as r → ∞. Furthermore, since J1 is an even
function of θ that is monotone on 0 < θ < θα this statement holds true uniformly
in |θ| � θα.

As for the imaginary part, note that | sin(βθ)| � β|θ| � βθα for all β > 0 and
|θ| � θα. Hence we have |J2| �

∫ α

0
r−βh3(β) dβ for all |θ| � θα where h3(β) =

βθαh(β) ∼ θαΓ(1 − α)βaL(β) is regularly varying with index a as β ↓ 0. Define
a finite Borel measure H3(β) =

∫ β

0
h3(u)du, and argue as before that H3(β) ∼

βa+1L3(β) as β ↓ 0 where L3(β) = θα(a + 1)−1Γ(1 − α)L(β). Then the Laplace
transform h̃3(r) ∼ Γ(1 + a)r−a−1L3(r−1) is regularly varying as r → ∞, so that

|J2| � h̃3(log r) ∼ Γ(1 + a)(log r)−a−1L3(1/ log r) as r → ∞.

Then it follows that J2/J1 → 0 and J1 + iJ2 ∼ r−αI(r) as r → ∞, uniformly in
|θ| � θα. Hence I(reiθ) = rαeiαθ(J1 + iJ2) ∼ eiαθI(r) as r → ∞ uniformly in
|θ| � θα where I(r) varies regularly with index α, which completes the proof of
(A2).

Finally we establish (A3) by considering the real and imaginary parts sepa-
rately. Using (2.1) we can write p(β) = βbL1(β) where L1 varies slowly at zero.
Fix θ ∈ [−θα, θα] and substitute t = 1/r to obtain

I(reiθ) =
∫ 1

0

rβeiβθq(β) dβ =
∫ 1

0

t−βeiβθq(β) dβ = I1 + iI2

where

Ij =
∫ 1

0

t−βqj(β) dβ for j = 1, 2

with q1(β) = cos(βθ)q(β), while q2(β) = sin(βθ)q(β). In either case we have
|qj(β)| � q(β) so that |Ij | � I0 =

∫ 1

0
t−βq(β) dβ where q(β) = p(β)Γ(1 − β) ∼

βbL1(β) as β ↓ 0. The function Q(β) =
∫ β

0
q(u)du varies regularly with index b+ 1

at zero with Q(β) ∼ (b+ 1)−1βb+1L1(β) as β ↓ 0, and then Karamata’s Tauberian
theorem implies that q̃(s) ∼ Γ(b + 2)(b + 1)−1s−b−1L1(1/s) as s → ∞. Then we
have I0 = q̃(log t) ∼ Γ(b+1)(log t)−b−1L1(1/ log t) as t→ ∞ so that, recalling that
t = 1/r, we have

I0 ∼ Γ(b+ 1)(− log r)−b−1L1(−1/ log r) as r ↓ 0.

Hence for any ε > 0 and any δ > 0, for some C > 0 we have I0 � C(− log r)δ−b−1

for all 0 < r < ε. Substituting u = − log r we conclude that the absolute values
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of the real and imaginary parts of the integral
∫ ε

0
r−1I(reiθ)dr are each bounded

above by∫ ε

0

r−1I0 dr �
∫ ε

0

r−1C(− log r)δ−b−1 dr = C

∫ ∞

− log ε

uδ−b−1 du <∞

as long as 0 < δ < b and 0 < ε < 1. This shows that (A3) holds, which concludes
the proof of Theorem 2.2. �

Remark 2.1. Recall that the ultrafast subordinator is the limit of a random
walk whose jumps Ji satisfy P{Ji > t} =

∫ 1

0
t−βp(β)dβ for t > 1. If assumption

(2.1) holds, then it follows as in the proof of condition (A3) of Theorem 2.2 that
this probability tail is slowly varying, and furthermore, if we write p(β) = βbL1(β)
where L1 varies slowly at zero then P{Ji > t} ∼ Γ(b+ 1)(log t)−b−1L1(1/ log t) as
t→ ∞.

Remark 2.2. It is clear from the proof of condition (A3) in Theorem 2.2 that
we can weaken the assumption (2.1) to say that for some β1 > 0, C > 0 and b > 0
we have p(β) � Cβb for all 0 < β < β1. We cannot relax the assumption that
p(β) vanishes in a neighborhood of β = 1 since, as we have already mentioned,
|I(s)| � C|s|α for all |s| � 1 with Re s � 0 for some α < 1 is a necessary condition
for the semigroup to be holomorphic, see [5, Theorem 4].

Corollary 2.1. Under the assumptions of Theorem 2.2, if D(t) has a density
ft(x) := f(x, t) and ft ∈ C0(R), then ft ∈ D(An) for all t > 0 and n ∈ N.
Moreover, the function t 	→ f(x, t) is C∞ for all x ∈ R and

(2.16)
∂nf(x, t)
∂tn

= [Anft](x), x ∈ R, t > 0.

Proof. Since {T (t)}t�0 is holomorphic it follows that T (t)u ∈ D(An) for all
u ∈ C0(R), t > 0 and n ∈ N and

(2.17)
dn

dtn
[T (t)u] = AnT (t)u,

see, for example [8, p. 104]. Note that (2.17) means that T (t)u ∈ D(An) for all
u ∈ C0(R), t > 0, n ∈ N and

(2.18) lim
h→0+

∥∥∥∥A
n−1T (t+ h)u−An−1T (t)u

h
−AnT (t)u

∥∥∥∥ = 0.

Let t > 0 and choose 0 < ε < t. Then

(2.19) ft(x) = f(x, t) = [T (t− ε)fε](x)

and hence ft ∈ D(An) for all n ∈ N. We will show (2.16) by induction. If s := t−ε,
then

d

dt
ft =

d

dt
[T (t− ε)fε] =

d

ds
[T (s)fε] = AT (s)fε = AT (t− ε)fε = Aft.

That is,

(2.20) lim
h→0

sup
x∈R

∣∣∣∣ft+h(x) − ft(x)
h

− [Aft](x)
∣∣∣∣ = 0 for all t > 0
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and hence

[Aft](x) = lim
h→0

ft+h(x) − ft(x)
h

= lim
h→0

f(x, t+ h) − f(x, t)
h

=
∂f(x, t)
∂t

,

for x ∈ R, t > 0. This shows (2.16) for n = 1. Assume that

(2.21)
∂kf(x, t)
∂tk

= [Akft](x), x ∈ R, t > 0.

Then, by (2.18), for any s > 0 we have

lim
h→0+

sup
x∈R

∣∣∣∣ [A
kT (s+ h)u](x) −Ak[T (s)u](x)

h
− [Ak+1T (s)u](x)

∣∣∣∣ = 0.

Let u := fε with 0 < ε. Then, by (2.19),

lim
h→0+

sup
x∈R

∣∣∣∣ [A
kfs+ε+h](x) −Ak[fs+ε](x)

h
− [Ak+1fs+ε](x)

∣∣∣∣ = 0

which yields, by the induction hypothesis (2.21) and the change of variable t := s+ε,

(2.22) lim
h→0+

sup
x∈R

∣∣∣∣ 1h
[
∂kf(x, t+ h)

∂tk
− ∂kf(x, t)

∂tk

]
− [Ak+1ft](x)

∣∣∣∣ = 0.

Since 0 < ε is arbitrary, (2.22) yields

∂k+1f(x, t)
∂tk+1

= [Ak+1ft](x), x ∈ R, t > 0,

which finishes the proof. �

3. Hitting times for ultrafast subordinators

If D(t) is an ultrafast subordinator from Theorem 2.1 we define the inverse (or
hitting time, or first passage time) process E(x) = inf{t � 0 : D(t) > x}. Then it
is easy to see that for t, x � 0

(3.1) {E(x) � t} = {D(t) � x}.
Since the subordinator D(t) grows at a very fast rate, the inverse process grows

very slowly. The process E(x) plays a crucial role in physical models of ultraslow
diffusion [19]. The next result shows that the hitting time process E(x) has a
smooth density for all x > 0, and shows how this density can be explicitly com-
puted in terms of the generator of the semigroup associated with the ultrafast
subordinator D(t). This resolves an open problem in [19].

Theorem 3.1. If D(t) is an ultrafast subordinator from Theorem 2.1 with
distribution function F (x, t) = P{D(t) � x}, and if A is the generator (2.10) of
the associated semigroup (2.9) on C0(R), then the inverse process E(x) has a C∞

density h(t, x) for any x > 0 and furthermore this density can be computed from
the formula

(3.2) h(t, x) = −
∫ x

0

[Aft](y)dy =
∫ 1

0

∫ x

0

(x− y)βf(y, t) dy p(β) dβ

where ft(x) := f(x, t) = (∂/∂x)F (x, t) is the density of D(t).
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Proof. It follows from [19, Corollary 3.7 ] that D(t) has a density ft(x) =
f(x, t) = ∂F (x, t)/∂x for any t > 0 and that ft ∈ C0(R). Theorem 2.2 shows
that the semigroup (2.9) is holomorphic on C0(R), and hence, by Corollary 2.1, the
function t 	→ f(x, t) is C∞ for all x ∈ R. We can use (3.1) to write

(3.3) P{E(x) � t} = P{D(t) � x} =
∫ ∞

x

f(y, t)dy = 1 − F (x, t).

By (3.3) and Corollary 2.1,

h(t, x) =
∂

∂t
P{E(x) � t} =

∂

∂t
(1 − F (x, t))

= − ∂

∂t

∫ x

0

f(y, t)dy = −
∫ x

0

∂

∂t
f(y, t)dy = −

∫ x

0

[Aft](y)dy
(3.4)

where we use the bounded convergence theorem to move ∂
∂t inside the integral.

Indeed, the difference quotient (ft+h(y) − ft(y))/h = (f(y, t+ h) − f(y, t))/h con-
verges uniformly in y ∈ R to [Aft](y) by (2.20). By Corollary 2.1, Aft ∈ C0(R) and
hence is uniformly bounded for y ∈ [0, x]. This certainly implies the boundedness
of the difference quotient for h � h0 and y ∈ [0, x].

By a similar argument, using Corollary 2.1 and (2.22), it follows that

∂k

∂tk
h(t, x) = −

∫ x

0

∂k+1

∂tk+1
f(y, t)dy = −

∫ x

0

[Akft](y)dy

for all x > 0 and t > 0, so that t 	→ h(t, x) is C∞ for all x > 0.
Define f1 = ∂f/∂x. Corollary 3.7 in [19] also shows that the function x 	→

f(x, t) is C∞ for all t > 0 and x 	→ ∂n

∂xn f(x, t) ∈ C0(R) for all n ∈ N. Therefore,
we may apply (2.12) to the integrand in (3.4), noting that f(x, t) = 0 for x < 0,
integrate by parts, and apply (2.7) to obtain

h(t, x) =
∫ x

0

∫ y

0

(f(y, t) − f(y − z, t))φ(dz) dy =
∫ x

0

∫ y

0

f1(y − z, t)φ(z,∞) dz dy

=
∫ x

0

∫ x

z

f1(y − z, t)φ(z,∞) dy dz =
∫ x

0

f(x− z, t)φ(z,∞) dz

=
∫ x

0

∫ 1

0

f(x− z, t)z−βp(β) dβ dz =
∫ 1

0

∫ x

0

(x− y)−βf(y, t) dy p(β) dβ

which agrees with (3.2). Note that |f(y, t)−f(y−z, t)| � Cz uniformly in y ∈ [0, x]
since f1 is bounded on this compact set. Also φ(z,∞) � z−α so it is easy to see
that [f(y, t)−f(y−z, t)]φ(z,∞) → 0 as z → 0+ which justifies the first integration
by parts. �

Remark 3.1. The integral formula in (3.2) was first derived in [19, (5.3)].
Theorem 3.1 strengthens that result by removing the technical assumption [19,
(5.7)], and by showing that the density is C∞ in t > 0 for all x > 0.

Remark 3.2. It is not hard to show that Theorems 2.2 and 3.1 also hold,
with the obvious change in notation, under the somewhat weaker assumption that
the random variables 0 < Bi < α in (2.3) are i.i.d. with distribution function
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P (β) = P{Bi � β} where P (β) varies regularly at zero with index b + 1 and
1 − P (β) varies regularly at β = α− with index a. Then (3.2) also holds with
p(β)dβ replaced by P (dβ).

Remark 3.3. The fractional derivative Dβu(y) is defined as the function with
Laplace transform sβũ(s). Since a β-stable subordinator has Laplace transform
e−tsβ

, fractional derivatives of order 0 < β < 1 are the negative generators of
the associated semigroups. Similarly, the negative generator of the semigroup as-
sociated with an ultrafast subordinator is a distributed-order fractional derivative
Dpu(y), defined as the function whose Laplace transform is

I(s)ũ(s) =
∫ 1

0

sβp(β)Γ(1 − β)dβ ũ(s).

The density function g(y, t) ≡ gt(y) of the stable subordinator solves the initial
value problem ∂g(x, t)/∂t = −Dβgt(y), g(y, t0) = gt0(y), y ∈ R, and similarly the
density f(y, t) ≡ ft(y) of an ultrafast subordinator solves the initial value problem
∂f(y, t)/∂t = −Dpft(y), f(y, t0) = ft0(y), y ∈ R. Laplace transform arguments in
[19] show that densities h(t, y) ≡ ht(y) of the ultraslow hitting time process solve
the boundary value problem ∂h(t, y)/∂t = −Dpht(y), h(t0, y) = ht0(y), y � 0,
noting that here the roles of t and y are reversed.

Remark 3.4. A somewhat different proof of the density formula (3.2) can be
obtained without using Theorem 2.2. Assume as in [19] that p varies regularly at
zero with index a−1 for some a > 0 and (2.8) holds. Then [19, Corollary 3.7] shows
that the density ft(x) of D(t) and its first derivative in x are elements of C0(R)
for any t > 0, and hence (2.11) implies that ft ∈ D(A) for any t > 0. Then (2.20)
holds, and (3.2) follows as in the proof of Theorem 3.1. However, this approach
does not establish the smoothness of t 	→ ft(x).
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