
PUBLICATIONS DE L’INSTITUT MATHÉMATIQUE
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LIMIT DISTRIBUTIONS FOR THE RATIO
OF THE RANDOM SUM OF SQUARES

TO THE SQUARE OF THE RANDOM SUM
WITH APPLICATIONS TO RISK MEASURES

Sophie A. Ladoucette and Jef J. Teugels

Abstract. Let {X1, X2, . . .} be a sequence of independent and identically
distributed positive random variables of Pareto-type and let {N(t); t � 0} be
a counting process independent of the Xi’s. For any fixed t � 0, define:

TN(t) :=
X2

1 + X2
2 + · · · + X2

N(t)

(X1 + X2 + · · · + XN(t))
2

if N(t) � 1 and TN(t) := 0 otherwise. We derive limits in distribution for
TN(t) under some convergence conditions on the counting process. This is
even achieved when both the numerator and the denominator defining TN(t)

exhibit an erratic behavior (EX1 = ∞) or when only the numerator has an
erratic behavior (EX1 < ∞ and EX2

1 = ∞). Armed with these results, we
obtain asymptotic properties of two popular risk measures, namely the sample
coefficient of variation and the sample dispersion.

1. Introduction

Let {X1,X2, . . .} be a sequence of independent and identically distributed pos-
itive random variables with distribution function F and let {N(t); t � 0} be a
counting process independent of the Xi’s. For any fixed t � 0, define the random
variable TN(t) by:

(1.1) TN(t) :=
X2

1 + X2
2 + · · · + X2

N(t)(
X1 + X2 + · · · + XN(t)

)2
if N(t) � 1 and TN(t) := 0 otherwise.

The limiting behavior of arbitrary moments of the ratio TN(t) is derived in
Ladoucette [8] under the conditions that the distribution function F of X1 is of
Pareto-type with index α > 0 and that the counting process {N(t); t � 0} is
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mixed Poisson. In this paper, we focus on weak convergence in deriving limits in
distribution for the appropriately normalized TN(t). We still assume that F is of
Pareto-type with index α > 0 except in one result where we assume that the fourth
moment of X1 exists. Our results are derived under the additional condition that
the counting process either D-averages in time or p-averages in time according to
the range of α. We therefore generalize results established by Albrecher et al. [1]
where the counting process is non-random (deterministic case). The appropriate
definitions along with some properties are given in Section 2.

The results of the paper rely on the theory of functions of regular variation (e.g.,
Bingham et al. [4]). Recall that a distribution function F on (0,∞) of Pareto-type
with index α > 0 is defined by:

(1.2) 1 − F (x) ∼ x−α�(x) as x → ∞
for a slowly varying function �, and therefore has a regularly varying tail 1−F with
index −α < 0.

Let µβ denote the moment of order β > 0 of X1, i.e.:

µβ := EXβ
1 = β

∫ ∞

0

xβ−1 (1 − F (x)) dx � ∞.

Clearly, both the numerator and the denominator defining TN(t) exhibit an erratic
behavior if µ1 = ∞, whereas this is the case only for the numerator if µ1 < ∞ and
µ2 = ∞. When X1 (or equivalently F ) is of Pareto-type with index α > 0, it turns
out that µβ is finite if β < α but infinite whenever β > α. In particular, µ1 < ∞
if α > 1 while µ2 < ∞ as soon as α > 2. Since the asymptotic behavior of TN(t)

is influenced by the finiteness of µ1 and/or µ2, different limiting distributions will
consequently show up according to the range of α. This is expressed in our main
results given in Section 3. In Section 4, we use our results to study the asymptotic
behavior of the sample coefficient of variation and the sample dispersion through
limits in distribution.

The coefficient of variation of a positive random variable X is defined by:

CoVar(X) :=

√
VX

EX

where VX denotes the variance of X. This risk measure is frequently used in
practice and is very popular among actuaries. From a random sample X1, . . . , XN(t)

from X of random size N(t) from a nonnegative integer-valued distribution, the
coefficient of variation CoVar(X) is naturally estimated by the sample coefficient
of variation defined by:

(1.3) ̂CoVar(X) :=
S

X

where X := 1
N(t)

∑N(t)
i=1 Xi is the sample mean and S2 := 1

N(t)

∑N(t)
i=1

(
Xi − X

)2
is the sample variance. The properties of the sample coefficient of variation are
usually studied under the tacite assumption of the finiteness of sufficiently many
moments of X. However, the existence of moments of X is not always guaranteed
in practical applications. It is therefore useful to investigate the limiting behavior
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of ̂CoVar(X) also in these cases. It turns out that this can be achieved by using
results on TN(t). Indeed, the quantity TN(t) appears as a basic ingredient in the
study of the sample coefficient of variation due to:

(1.4) ̂CoVar(X) =
√

N(t)TN(t) − 1.

In Subsection 4.1, we take advantage from this link to derive asymptotic properties
of the sample coefficient of variation under the same assumptions on X and on the
counting process as in Section 3. Note that this is done even when the first moment
and/or the second moment of X do not exist.

Another risk measure of the positive random variable X that is very popular
is the dispersion defined by:

D(X) :=
VX

EX
.

For instance, in a (re)insurance context, the value of the dispersion is used to
compare the volatility of a portfolio with respect to the Poisson case for which the
dispersion equals 1. Similarly to the coefficient of variation, the dispersion D(X)
is typically estimated by the sample dispersion defined by:

(1.5) D̂(X) :=
S2

X
.

Defining the random variable CN(t) for any fixed t � 0 by:

(1.6) CN(t) :=
X2

1 + X2
2 + · · · + X2

N(t)

X1 + X2 + · · · + XN(t)

if N(t) � 1 and CN(t) := 0 otherwise, leads to the following link with the sample
dispersion:

(1.7) D̂(X) = CN(t) − X.

It turns out that results from Section 3 can be used to derive asymptotic properties
of the sample dispersion from those of CN(t). The results are given in Subsection 4.2
under the same conditions on X and on the counting process as in Section 3. As
for the sample coefficient of variation, cases where the first moments of X do not
exist are also considered.

2. Preliminaries

Though standard notations, we mention that a.s.−→,
p−→, D−→ stand for conver-

gence almost surely, in probability and in distribution, respectively. Equality in
distribution is denoted by D=. For two measurable functions f and g, we write
f(x) = o(g(x)) as x → ∞ if limx→∞ f(x)/g(x) = 0 and f(x) ∼ g(x) as x → ∞ if
limx→∞ f(x)/g(x) = 1. Finally, Γ(·) denotes the gamma function.

Let {N(t); t � 0} be a counting process. For any fixed t � 0, the probability
generating function of the random variable N(t) is defined by:

Qt(z) := E
{
zN(t)

}
=

∞∑
n=0

P[N(t) = n] zn, |z| � 1.
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Most of our results are obtained by assuming that the counting process satisfies
the following condition:

N(t)
t

D−→ Λ as t → ∞
where the limiting random variable Λ is such that P[Λ > 0] = 1. The counting
process is then said to D-average in time to Λ. In two cases however, we will need
to require the stronger condition that the above convergence holds in probability
rather than in distribution, i.e.:

N(t)
t

p−→ Λ as t → ∞

in which case the counting process is said to p-average in time to Λ. Whether the
counting process D-averages in time or p-averages in time, we have N(t) a.s.−→ ∞
as t → ∞. Very popular counting processes D-average in time. The deterministic
case provides a first example for which Λ is degenerate at the point 1. Any mixed
Poisson process obviously D-averages in time to its mixing random variable. We
refer to the monograph by Grandell [7] for a very thorough treatment of mixed
Poisson processes and their properties. Finally, any renewal process generated by a
positive distribution with finite mean µ also D-averages in time with Λ degenerate
at the point 1/µ.

The convergence in distribution being equivalent to the pointwise convergence
of the corresponding Laplace transforms, a counting process that D-averages in
time or p-averages in time to Λ satisfies:

(2.1) lim
t→∞ E

{
e−θN(t)/t

}
= E

{
e−θΛ

}
, θ � 0.

For every θ � 0, define uθ(x) := e−θx for x � 0. The family of functions
{uθ}θ�0 being equicontinuous provided θ is restricted to a finite interval, the con-
vergence in (2.1) holds uniformly in every finite θ-interval (e.g., Corollary page 252
of Feller [6]).

As specified above, most of our results are derived under the condition that
the tail of F satisfies (1.2), i.e. that 1 − F is regularly varying with index −α < 0.
Recall that a measurable function f : (0,∞) → (0,∞) is regularly varying with
index γ ∈ R (written f ∈ RVγ) if for all x > 0, limt→∞ f(tx)/f(t) = xγ . When
γ = 0, the function f is said to be slowly varying. For a textbook treatment on
the theory of functions of regular variation, we refer to Bingham et al. [4]. It is
well-known that the tail condition (1.2) appears as the essential condition in the
Fréchet-Pareto domain of attraction problem of extreme value theory. For a recent
treatment, see Beirlant et al. [2]. When α ∈ (0, 2), the condition is also necessary
and sufficient for F to belong to the additive domain of attraction of a non-normal
α-stable distribution (e.g., Theorem 8.3.1 of Bingham et al. [4]). Recall that a
stable random variable X is positive if and only if X

D= cUγ for some c > 0 and
γ ∈ (0, 1), where the random variable Uγ has the following Laplace transform:

(2.2) E
{
e−θUγ

}
= e−θγΓ(1−γ), θ � 0.
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Any random variable Uγ having the Laplace transform (2.2) with γ ∈ (0, 1) is then
positive γ-stable.

Finally, we give a general result that will prove to be very useful later on.

Lemma 2.1. Let {Yn; n � 1} be a general sequence of random variables and
{M(t); t � 0} be a process of nonnegative integer-valued random variables. Assume
that {Yn; n � 1} and {M(t); t � 0} are independent and that M(t)

p−→ ∞ as
t → ∞. If Yn

D−→ Y as n → ∞ then YM(t)
D−→ Y as t → ∞.

Proof. Let y be a continuity point of the distribution function FY of Y . For
every ε ∈ (0, 1), there exists n0 = n0(ε, y) ∈ N such that |P[Yn � y] − FY (y)| � ε

for all n > n0, since Yn
D−→ Y as n → ∞. By using conditioning and independence

arguments, we then obtain:∣∣P[YM(t) � y] − FY (y)
∣∣ =

∣∣∣∣
( n0∑

n=0

+
∞∑

n=n0+1

)
{P[Yn � y] − FY (y)}P[M(t) = n]

∣∣∣∣
�

n0∑
n=0

|P[Yn � y] − FY (y)|P[M(t) = n]

+
∞∑

n=n0+1

|P[Yn � y] − FY (y)|P[M(t) = n]

� P[M(t) � n0] + ε P[M(t) > n0].

Since M(t)
p−→ ∞ as t → ∞, it follows that lim supt→∞

∣∣P[YM(t) � y] − FY (y)
∣∣ � ε.

The claim is proved upon letting ε ↓ 0. �

3. Convergence in Distribution for TN(t)

We derive asymptotic distributions for the properly normalized ratio TN(t)

defined in (1.1) under the condition that the distribution function F of X1 is of
Pareto-type with index α > 0 as defined in (1.2). The last result is even established
by assuming that µ4 < ∞ and consequently holds in the cases α = 4 if µ4 < ∞
and α > 4. Throughout the section, the counting process {N(t); t � 0} is assumed
to D-average in time except for two results where we need to make the stronger
assumption that it p-averages in time.

Theorem 3.1. Assume that X1 is of Pareto-type with index α ∈ (0, 1) and that
{N(t); t � 0} D-averages in time to the random variable Λ. Then:

TN(t)
D−→ Uα/2

U2
α

as t → ∞

where the random vector (Uα/2, Uα)′ has the Laplace transform:

(3.1) E
{
e−rUα/2−sUα

}
= exp

(
−
∫ ∞

0

e−ru2−su (2ru + s) u−α du

)
, r � 0, s � 0.

In particular, the marginal random variables Uα/2 and Uα are positive stable with
respective exponent α/2 and α and have the Laplace transform (2.2) with γ = α/2
and γ = α respectively.
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Proof. Let 1 − F (x) ∼ x−α�(x) as x → ∞ for some � ∈ RV0 and α ∈ (0, 1).
Define a sequence (at)t>0 by 1−F (at) ∼ 1/t as t → ∞, i.e. limt→∞ t a−α

t �(at) = 1.
Notice that at ∈ RV1/α.

Let r � 0 and s � 0 be fixed. By using conditioning and independence argu-
ments, we obtain:

E

{
exp

(
− r

1
a2

t

N(t)∑
i=1

X2
i − s

1
at

N(t)∑
i=1

Xi

)}
= Qt

(
e−δα,t(r,s)/t

)
with δα,t(r, s) := −t log

∫∞
0

e−r(x/at)
2−sx/at dF (x) ∈ [0,∞). We know from the

proof of Theorem 2.1 of Albrecher et al. [1] that:

lim
t→∞ δα,t(r, s) =

∫ ∞

0

e−ru2−su (2ru + s)u−α du =: δα(r, s) ∈ [0,∞)

and that: (
1
a2

n

n∑
i=1

X2
i ,

1
an

n∑
i=1

Xi

)′
D−→ (Uα/2, Uα)′ as n → ∞

where the Laplace transform of (Uα/2, Uα)′ is given by:

E
{
e−rUα/2−sUα

}
= e−δα(r,s), r � 0, s � 0.

It follows in particular that Uα/2 and Uα each have the Laplace transform (2.2)
with γ = α/2 for the former and γ = α for the latter, meaning that Uα/2 is positive
α/2-stable and that Uα is positive α-stable.

Define ϕt(θ) := Qt

(
e−θ/t

)
= E

{
e−θN(t)/t

}
for θ � 0 so that limt→∞ ϕt(θ) =

E
{
e−θΛ

}
=: ϕ(θ) by (2.1). Write the following triangular inequality:

|ϕt(δα,t(r, s)) − ϕ(δα(r, s))| � |ϕt(δα,t(r, s)) − ϕ(δα,t(r, s))| + |ϕ(δα,t(r, s)) − ϕ(δα(r, s))| .
On the one hand, limt→∞ |ϕ(δα,t(r, s)) − ϕ(δα(r, s))| = 0 by continuity of ϕ. On
the other hand, for t large enough, there exist reals a, b with 0 � a � δα(r, s) < b
such that δα,t(r, s) ∈ [a, b]. Then, limt→∞ |ϕt(δα,t(r, s)) − ϕ(δα,t(r, s))| = 0 if and
only if limt→∞ supθ∈[a,b] |ϕt(θ) − ϕ(θ)| = 0. The latter is true since (2.1) holds uni-
formly in every finite θ-interval. As a consequence, we have limt→∞ ϕt(δα,t(r, s)) =
ϕ(δα(r, s)), that is:

lim
t→∞ E

{
exp

(
− r

1
a2

t

N(t)∑
i=1

X2
i − s

1
at

N(t)∑
i=1

Xi

)}
= E

{
e−δα(r,s) Λ

}
, r � 0, s � 0.

However, since Λ is independent of Uα/2 and Uα, we readily compute by using
conditioning arguments:

(3.2) E

{
e−rUα/2Λ

2/α−sUαΛ1/α
}

= E

{
e−δα(r,s) Λ

}
, r � 0, s � 0.

Hence, we have proved the following:

(3.3)
(

1
a2

t

N(t)∑
i=1

X2
i ,

1
at

N(t)∑
i=1

Xi

)′
D−→ (Uα/2 Λ2/α, Uα Λ1/α)′ as t → ∞
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where (Uα/2 Λ2/α, Uα Λ1/α)′ has the Laplace transform (3.2). The Continuous Map-
ping Theorem (CMT), see e.g. Corollary 1 page 31 of Billingsley [3], finally gives:

TN(t) =
(

1
a2

t

N(t)∑
i=1

X2
i

)(
1
at

N(t)∑
i=1

Xi

)−2
D−→ Uα/2

U2
α

as t → ∞

where (Uα/2, Uα)′ has the Laplace transform (3.1). This concludes the proof. �

Theorem 3.2. Assume that X1 is of Pareto-type with index α = 1 and µ1 = ∞.
Assume that {N(t); t � 0} D-averages in time to the random variable Λ. Then:(

a′
t

at

)2

TN(t)
D−→ U1/2 as t → ∞

where U1/2 is a positive 1/2-stable random variable with Laplace transform (2.2)
for γ = 1/2 and where the sequences (at)t>0 and (a′

t)t>0 are respectively defined by
limt→∞ t a−1

t �(at) = 1 and limt→∞ t a′−1
t �̃(a′

t) = 1 with �̃(x) :=
∫ x

0
�(u)

u du ∈ RV0.

Proof. Let 1−F (x) ∼ x−1�(x) as x → ∞ for some � ∈ RV0 such that µ1 = ∞.
Define a sequence (at)t>0 by 1−F (at) ∼ 1/t as t → ∞, i.e. limt→∞ t a−1

t �(at) = 1,
and a sequence (a′

t)t>0 by limt→∞ t a′−1
t �̃(a′

t) = 1 with �̃(x) :=
∫ x

0
�(u)

u du. Note
that �̃ ∈ RV0 and limx→∞ �(x)/�̃(x) = 0 (e.g., Proposition 1.5.9a of Bingham et
al. [4]).

Let r � 0 and s � 0 be fixed. We readily compute:

E

{
exp
(
−r

1
a2

t

N(t)∑
i=1

X2
i − s

1
a′

t

N(t)∑
i=1

Xi

)}
= Qt

(
e−δt(r,s)/t

)
with δt(r, s) := −t log

∫∞
0

e−r(x/at)
2−sx/a′

t dF (x) ∈ [0,∞). The Dominated Con-
vergence Theorem (DCT) gives limt→∞

∫∞
0

e−r(x/at)
2−sx/a′

t dF (x) = 1, so that:

δt(r, s) ∼
t↑∞

2r

∫ ∞

0

y e−ry2−syat/a′
t t (1 − F (aty)) dy

+
s2t

a′
t

∫ ∞

0

e−sy

∫ a′
ty

0

(1 − F (x)) e−r(x/at)
2
dx dy.

Since limx→∞ �(x)/�̃(x) = 0, we obtain with de Bruijn conjugate arguments that
limt→∞ at/a′

t = 0. Note however that at/a′
t ∈ RV0 since at ∈ RV1 and a′

t ∈ RV1.
Applying Potter’s theorem (e.g., Theorem 1.5.6 of Bingham et al. [4]) and the DCT
then leads to:

lim
t→∞ 2r

∫ ∞

0

y e−ry2−syat/a′
t t (1 − F (aty)) dy = 2r

∫ ∞

0

e−ry2
dy =

√
rπ.

Since µ1 = ∞, we have �̃(x) ∼ ∫ x

0
(1 − F (u)) du as x → ∞. For any y > 0, we then

obtain as t → ∞:∫ a′
ty

0

(1 − F (x)) e−r(x/at)
2
dx ∼

∫ a′
ty

0

(1 − F (x)) dx ∼ �̃(a′
ty) ∼ �̃(a′

t) ∼
a′

t

t
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so that the DCT leads to:

lim
t→∞

s2t

a′
t

∫ ∞

0

e−sy

∫ a′
ty

0

(1 − F (x)) e−r(x/at)
2
dx dy = s.

It follows that limt→∞ δt(r, s) =
√

rπ + s. A similar argument as in the proof of
Theorem 3.1 applied to the convergence of Qt

(
e−δt(r,s)/t

)
then yields:

lim
t→∞ E

{
exp

(
− r

1
a2

t

N(t)∑
i=1

X2
i − s

1
a′

t

N(t)∑
i=1

Xi

)}
= E

{
e−

√
rπ Λ−sΛ

}
, r � 0, s � 0.

Repeating the proof of Theorem 3.1 with s = 0 shows that a−2
t

∑N(t)
i=1 X2

i
D−→

U1/2 Λ2 as t → ∞, where U1/2 is a positive 1/2-stable random variable independent
of Λ with Laplace transform (2.2) for γ = 1/2. From this independence, we get by
using conditioning arguments:

(3.4) E

{
e−rU1/2 Λ2−sΛ

}
= E

{
e−

√
rπ Λ−sΛ

}
, r � 0, s � 0.

It then follows that:

(3.5)
(

1
a2

t

N(t)∑
i=1

X2
i ,

1
a′

t

N(t)∑
i=1

Xi

)′
D−→ (U1/2 Λ2,Λ)′ as t → ∞

where (U1/2 Λ2,Λ)′ has the Laplace transform (3.4). The CMT finally gives:(
a′

t

at

)2

TN(t) =
(

1
a2

t

N(t)∑
i=1

X2
i

)(
1
a′

t

N(t)∑
i=1

Xi

)−2
D−→ U1/2 as t → ∞

and the proof is complete. �

Theorem 3.3. Assume that X1 is of Pareto-type with index α ∈ (1, 2) (includ-
ing α = 1 if µ1 < ∞) and that {N(t); t � 0} D-averages in time to the random
variable Λ.

(a) Then:
(N(t)

at

)2

TN(t)
D−→ 1

µ2
1

Uα/2 Λ2/α as t → ∞.

(b) Then:
( t

at

)2

TN(t)
D−→ 1

µ2
1

Uα/2

Λ2−2/α
as t → ∞.

In (a) and (b), Uα/2 is a positive α/2-stable random variable independent of Λ with
Laplace transform (2.2) for γ = α/2. Moreover, the sequence (at)t>0 is defined by
limt→∞ t a−α

t �(at) = 1.

Proof. Let 1 − F (x) ∼ x−α�(x) as x → ∞ for some � ∈ RV0 and α ∈ (1, 2)
or α = 1 if µ1 < ∞. Define a sequence (at)t>0 by 1 − F (at) ∼ 1/t as t → ∞, i.e.
limt→∞ t a−α

t �(at) = 1. Note that at ∈ RV1/α.
(a) Since µ1 < ∞ and N(t) a.s.−→ ∞ as t → ∞, we get 1

N(t)

∑N(t)
i=1 Xi

p−→ µ1 as
t → ∞ by Lemma 2.1. Repeating the proof of Theorem 3.1 with s = 0 shows that
a−2

t

∑N(t)
i=1 X2

i
D−→ Uα/2 Λ2/α as t → ∞, where Uα/2 is a positive α/2-stable random
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variable independent of Λ with Laplace transform (2.2) for γ = α/2. Slutsky’s
theorem (e.g., Corollary page 97 of Chung [5]) and the CMT then yield:(

N(t)
at

)2

TN(t) =
(

1
a2

t

N(t)∑
i=1

X2
i

)(
1

N(t)

N(t)∑
i=1

Xi

)−2
D−→ 1

µ2
1

Uα/2 Λ2/α as t → ∞.

(b) Let r � 0 and s � 0 be fixed. We readily compute:

E

{
exp

(
− r

1
a2

t

N(t)∑
i=1

X2
i − s

1
t

N(t)∑
i=1

Xi

)}
= Qt

(
e−δα,t(r,s)/t

)

with δα,t(r, s) := −t log
∫∞
0

e−r(x/at)
2−sx/t dF (x) ∈ [0,∞). By virtue of the DCT,

we have limt→∞
∫∞
0

e−r(x/at)
2−sx/t dF (x) = 1. It then follows that:

δα,t(r, s) ∼
t↑∞

2r

∫ ∞

0

y e−ry2−syat/t t (1 − F (aty)) dy

+ s

∫ ∞

0

(1 − F (x)) e−r(x/at)
2−sx/t dx.

If α = 1, we have �(x) = o(1) as x → ∞ since µ1 < ∞ so that at/t ∼ �(at) → 0 as
t → ∞. If α ∈ (1, 2), we have at/t ∼ a1−α

t �(at) → 0 as t → ∞ since 1−α ∈ (−1, 0).
In both cases, we obtain that limt→∞ at/t = 0. Applying Potter’s theorem and the
DCT then leads to:

lim
t→∞ 2r

∫ ∞

0

ye−ry2−syat/tt (1 − F (aty)) dy = 2r

∫ ∞

0

y1−αe−ry2
dy = rα/2Γ(1−α/2).

Since µ1 < ∞, an application of the DCT gives:

lim
t→∞ s

∫ ∞

0

(1 − F (x)) e−r(x/at)
2−sx/t dx = sµ1.

It follows that limt→∞ δα,t(r, s) = rα/2Γ(1 − α/2) + sµ1. A similar argument as in
the proof of Theorem 3.1 applied to the convergence of Qt

(
e−δα,t(r,s)/t

)
then yields:

lim
t→∞ E

{
exp
(
−r

1
a2

t

N(t)∑
i=1

X2
i − s

1
t

N(t)∑
i=1

Xi

)}
= E

{
e−rα/2Γ(1−α/2) Λ−sµ1Λ

}
,

r � 0,
s � 0.

We know from (a) that a−2
t

∑N(t)
i=1 X2

i
D−→ Uα/2 Λ2/α as t → ∞, where Uα/2 is a

positive α/2-stable random variable independent of Λ with Laplace transform (2.2)
for γ = α/2. From this independence, we get by using conditioning arguments:

(3.6) E

{
e−rUα/2 Λ2/α−sµ1Λ

}
= E

{
e−rα/2Γ(1−α/2) Λ−sµ1Λ

}
, r � 0, s � 0.

It then follows that:

(3.7)
(

1
a2

t

N(t)∑
i=1

X2
i ,

1
t

N(t)∑
i=1

Xi

)′
D−→ (Uα/2 Λ2/α, µ1Λ)′ as t → ∞
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where (Uα/2 Λ2/α, µ1Λ)′ has the Laplace transform (3.6). The proof is finished since
the CMT gives:(

t

at

)2

TN(t) =
(

1
a2

t

N(t)∑
i=1

X2
i

)(
1
t

N(t)∑
i=1

Xi

)−2
D−→ 1

µ2
1

Uα/2

Λ2−2/α
as t → ∞.

Note that (t/at)2 ∈ RV2−2/α. �

Theorem 3.4. Assume that X1 is of Pareto-type with index α = 2 and µ2 = ∞.
Assume that {N(t); t � 0} D-averages in time to the random variable Λ.

(a) Then:
(N(t)

a′
t

)2

TN(t)
D−→ 2

µ2
1

Λ as t → ∞.

(b) Then:
( t

a′
t

)2

TN(t)
D−→ 2

µ2
1

1
Λ

as t → ∞.

In (a) and (b), the sequence (a′
t)t>0 is defined by limt→∞ t a′−2

t �̃(a′
t) = 1 with �̃(x) :=∫ x

0
�(u)

u du ∈ RV0.

Proof. Let 1−F (x) ∼ x−2�(x) as x → ∞ for some � ∈ RV0 such that µ2 = ∞.
Define a sequence (a′

t)t>0 by limt→∞ t a′−2
t �̃(a′

t) = 1 with �̃(x) :=
∫ x

0
�(u)

u du ∈ RV0.
Note that a′

t ∈ RV1/2 and then (t/a′
t)

2 ∈ RV1.
(b) Let r � 0 and s � 0 be fixed. We readily compute:

E

{
exp
(
−r

1
a′2

t

N(t)∑
i=1

X2
i − s

1
t

N(t)∑
i=1

Xi

)}
= Qt

(
e−δt(r,s)/t

)

with δt(r, s) := −t log
∫∞
0

e−r(x/a′
t)

2−sx/t dF (x) ∈ [0,∞). By virtue of the DCT,

we have limt→∞
∫∞
0

e−r(x/a′
t)

2−sx/t dF (x) = 1. It then follows that:

δt(r, s) ∼
t↑∞

2r2t

a′2
t

∫ ∞

0

e−ry

∫ a′
t

√
y

0

x (1 − F (x)) e−sx/t dx dy

+s

∫ ∞

0

(1 − F (x)) e−r(x/a′
t)

2−sx/t dx.

Since µ2 = ∞, we have �̃(x) ∼ ∫ x

0
u (1 − F (u)) du as x → ∞. For any y > 0, we

then obtain as t → ∞:∫ a′
t

√
y

0

x (1 − F (x)) e−sx/t dx ∼
∫ a′

t

√
y

0

x (1 − F (x)) dx ∼ �̃
(
a′

t

√
y
) ∼ �̃(a′

t) ∼
a′2

t

t

so that the DCT leads to:

lim
t→∞

2r2t

a′2
t

∫ ∞

0

e−ry

∫ a′
t

√
y

0

x (1 − F (x)) e−sx/t dx dy = 2r.

Since µ1 < ∞, we have by virtue of the DCT:

lim
t→∞ s

∫ ∞

0

(1 − F (x)) e−r(x/a′
t)

2−sx/t dx = sµ1.
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It follows that limt→∞ δt(r, s) = 2r + sµ1. A similar argument as in the proof of
Theorem 3.1 applied to the convergence of Qt

(
e−δt(r,s)/t

)
then yields:

lim
t→∞ E

{
exp
(
−r

1
a′2

t

N(t)∑
i=1

X2
i − s

1
t

N(t)∑
i=1

Xi

)}
= E

{
e−2rΛ−sµ1Λ

}
, r � 0, s � 0

or equivalently:

(3.8)
(

1
a′2

t

N(t)∑
i=1

X2
i ,

1
t

N(t)∑
i=1

Xi

)′
D−→ (2Λ, µ1Λ)′ as t → ∞.

The CMT finally gives:(
t

a′
t

)2

TN(t) =
(

1
a′2

t

N(t)∑
i=1

X2
i

)(
1
t

N(t)∑
i=1

Xi

)−2
D−→ 2

µ2
1

1
Λ

as t → ∞.

(a) Since µ1 < ∞ and N(t) a.s.−→ ∞ as t → ∞, we get 1
N(t)

∑N(t)
i=1 Xi

p−→ µ1 as

t → ∞ by Lemma 2.1. Moreover, it follows from (3.8) that (a′
t)

−2
∑N(t)

i=1 X2
i

D−→ 2Λ
as t → ∞. Slutsky’s theorem and the CMT then lead to:(

N(t)
a′

t

)2

TN(t) =
(

1
a′2

t

N(t)∑
i=1

X2
i

)(
1

N(t)

N(t)∑
i=1

Xi

)−2
D−→ 2

µ2
1

Λ as t → ∞

and this ends the proof. �

When X1 is of Pareto-type with index α > 2, we have µ2 < ∞ so that
N(t)TN(t)

p−→ µ2/µ2
1 as t → ∞ by the law of large numbers and Lemma 2.1

since N(t) a.s.−→ ∞ as t → ∞. In the sequel, we then derive second-order weak
convergence results.

Theorem 3.5. Assume that X1 is of Pareto-type with index α ∈ (2, 4) (includ-
ing α = 2 if µ2 < ∞) and that {N(t); t � 0} p-averages in time to the random
variable Λ. Then:

t1−2/α

�#1 (t2/α)

(
N(t)TN(t) − µ2

µ2
1

)
D−→ 1

µ2
1

Wα/2

Λ1−2/α
as t → ∞

where Wα/2 is an α/2-stable random variable independent of Λ and where �#1 ∈ RV0

is the de Bruijn conjugate of �1(x) := �−2/α
(√

x
) ∈ RV0.

Proof. Let 1 − F (x) ∼ x−α�(x) as x → ∞ for some � ∈ RV0 and α ∈ (2, 4)
or α = 2 if µ2 < ∞. Since N(t) a.s.−→ ∞ as t → ∞, we combine Lemma 2.1 and
Theorem 2.5 of Albrecher et al. [1] to obtain:

(3.9)
N(t)1−2/α

�#1 (N(t)2/α)

(
N(t)TN(t) − µ2

µ2
1

)
D−→ 1

µ2
1

Wα/2 as t → ∞

where Wα/2 is a stable random variable with exponent α/2 and �#1 ∈ RV0 is the de
Bruijn conjugate of �1(x) := �−2/α(

√
x) ∈ RV0.
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Let us prove the independence of Wα/2 and Λ. We condition on N(t), use the
independence of {N(t); t � 0} and {Xi; i � 1} and finally apply (3.9) to get:

Yt := P

[
N(t)

t
� x,

N(t)1−2/α

�#1 (N(t)2/α)

(
µ2

1 N(t)TN(t) − µ2

)
� y

∣∣∣∣N(t)
]

= 1{N(t)/t�x} P

[
N(t)1−2/α

�#1 (N(t)2/α)

(
µ2

1 N(t)TN(t) − µ2

)
� y

]
D−→ 1{Λ�x} P

[
Wα/2 � y

]
as t → ∞

at any continuity points x of the distribution function of Λ and y of that of Wα/2.
The sequence of random variables {Yt; t > 0} being uniformly integrable, we apply
Theorem 5.4 of Billingsley [3] to obtain:

lim
t→∞ P

[
N(t)

t
� x,

N(t)1−2/α

�#1 (N(t)2/α)

(
µ2

1 N(t)TN(t) − µ2

)
� y

]
= P[Λ � x] P[Wα/2 � y].

Now, since �#1 ∈ RV0 and N(t)
t

p−→ Λ as t → ∞ with P[Λ > 0] = 1, we have
�#1 (N(t)2/α)

�#1 (t2/α)

p−→ 1 as t → ∞ by the uniform convergence theorem for slowly varying

functions (e.g., Theorem 1.2.1 of Bingham et al. [4]), the CMT and the subsequence
principle. Recalling (3.9), Slutsky’s theorem and the CMT therefore yield as t → ∞:

t1−2/α

�#1 (t2/α)

(
N(t)TN(t) − µ2

µ2
1

)

=
�#1 (N(t)2/α)

�#1 (t2/α)

(
t

N(t)

)1−2/α
N(t)1−2/α

�#1 (N(t)2/α)

(
N(t)TN(t) − µ2

µ2
1

)
D−→ 1

µ2
1

Wα/2

Λ1−2/α

thanks to the independence of Wα/2 and Λ. The proof is complete. �
Theorem 3.6. Assume that X1 is of Pareto-type with index α = 4 and µ4 = ∞.

Assume that {N(t); t � 0} p-averages in time to the random variable Λ. Then:√
t

�#2
(√

t
) (N(t)TN(t) − µ2

µ2
1

)
D−→ 1

µ2
1

N(0, 1)√
Λ

as t → ∞

where N(0, 1) is a standard normal random variable independent of Λ and where
�#2 ∈ RV0 is the de Bruijn conjugate of �2(x) := 1

2
√

�̃(
√

x)
∈ RV0 with �̃(x) :=∫ x

0
�(u)

u du ∈ RV0.

Proof. Let 1−F (x) ∼ x−4�(x) as x → ∞ for some � ∈ RV0 such that µ4 = ∞.
The proof is akin to that of Theorem 3.5. Since N(t) a.s.−→ ∞ as t → ∞, we combine
Lemma 2.1 and Theorem 2.6 of Albrecher et al. [1] to obtain:

(3.10)

√
N(t)

�#2
(√

N(t)
) (N(t)TN(t) − µ2

µ2
1

)
D−→ 1

µ2
1

N(0, 1) as t → ∞

where N(0, 1) is a standard normal random variable and �#2 ∈ RV0 is the de Bruijn
conjugate of �2(x) := 1

2
√

�̃(
√

x)
∈ RV0 with �̃(x) :=

∫ x

0
�(u)

u du ∈ RV0.
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The random variables N(0, 1) and Λ are independent. This is proved as for the
independence of Wα/2 and Λ in the proof of Theorem 3.5. Since �#2 ∈ RV0 and
N(t)

t

p−→ Λ as t → ∞ with P[Λ > 0] = 1, we also have �#2 (
√

N(t))

�#2 (
√

t)

p−→ 1 as t → ∞.

Recalling (3.10), Slutsky’s theorem and the CMT therefore yield as t → ∞:
√

t

�#2
(√

t
) (N(t)TN(t) − µ2

µ2
1

)

=
�#2
(√

N(t)
)

�#2
(√

t
)

√
t

N(t)

√
N(t)

�#2
(√

N(t)
) (N(t)TN(t) − µ2

µ2
1

)
D−→ 1

µ2
1

N(0, 1)√
Λ

and the proof is finished. �

The following theorem covers the remaining α-cases since the result applies in
particular when X1 is of Pareto-type with index α = 4 if µ4 < ∞ or α > 4.

Theorem 3.7. Assume that X1 satisfies µ4 < ∞ and that {N(t); t � 0} D-
averages in time to the random variable Λ. Then:

√
t

(
N(t)TN(t) − µ2

µ2
1

)
D−→ N(0, σ2

∗)√
Λ

as t → ∞

where N(0, σ2
∗) is a normal random variable independent of Λ with mean 0 and

variance σ2
∗ defined by:

(3.11) σ2
∗ :=

µ4

µ4
1

−
(

µ2

µ2
1

)2

+ 4
(

µ2

µ2
1

)3

− 4µ2µ3

µ5
1

.

Proof. Let the distribution function F of X1 be such that µ4 < ∞. From
the bivariate Lindeberg-Lévy central limit theorem (e.g., Theorem 1.9.1B of Ser-
fling [9]), one deduces that:

(3.12)
√

n

(
1
n

n∑
i=1

Yn − µ

)
D−→ N(0,Σ) as n → ∞

where Yn :=
(
Xi,X

2
i

)′, µ := (µ1, µ2)′ and N(0,Σ) is a normal random vector with
mean 0 := (0, 0)′ and covariance matrix Σ defined by:

Σ :=
(

µ2 − µ2
1 µ3 − µ1µ2

µ3 − µ1µ2 µ4 − µ2
2

)
.

Following the notation in Serfling [9], we write (3.12) as 1
n

∑n
i=1 Yn is AN

(
µ, n−1Σ

)
.

By virtue of the multivariate delta method, the asymptotic normality carries over
to the random variable g

(
1
n

∑n
i=1 Yn

)
= g

(
1
n

∑n
i=1 Xi,

1
n

∑n
i=1 X2

i

)
for any func-

tion g : (0,∞)×(0,∞) → R that is continuously differentiable in a neighborhood of
µ, so that g

(
1
n

∑n
i=1 Yn

)
is AN

(
g(µ), n−1JΣJ ′) with J :=

(
∂g
∂x (µ), ∂g

∂y (µ)
)
. With

the choice g(x, y) = y/x2, we find that nTn is AN
(

µ2
µ2

1
,

σ2
∗

n

)
with σ2

∗ given by (3.11).
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Since N(t) a.s.−→ ∞ as t → ∞, it consequently follows by Lemma 2.1 that:√
N(t)

(
N(t)TN(t) − µ2

µ2
1

)
D−→ N(0, σ2

∗) as t → ∞

where N(0, σ2
∗) is a normal random variable with mean 0 and variance σ2

∗. The
CMT together with the independence of N(0, σ2

∗) and Λ (which is proved using the
same arguments as for the independence of Wα/2 and Λ in the proof of Theorem 3.5)
finally gives as t → ∞:

√
t

(
N(t)TN(t) − µ2

µ2
1

)
=

√
t

N(t)

√
N(t)

(
N(t)TN(t) − µ2

µ2
1

)
D−→ N(0, σ2

∗)√
Λ

.

This completes the proof. �

4. Applications to Risk Measures

Assume that X is a positive random variable with distribution function F
and let X1, . . . , XN(t) be a random sample from F of random size N(t) from a
nonnegative integer-valued distribution. Thanks to the limiting results derived in
Section 3 and the relations (1.4) and (1.7), we investigate the asymptotic behavior
of two popular risk measures through their distributions. Subsection 4.1 deals with
the sample coefficient of variation ̂CoVar(X) defined in (1.3) and Subsection 4.2
concerns the sample dispersion D̂(X) defined in (1.5). The results are obtained
under the same assumptions on X and on the counting process {N(t); t � 0} as in
Section 3.

4.1. Sample Coefficient of Variation. We determine limits in distribution
for the appropriately normalized random variable ̂CoVar(X) by using the distri-
butional results derived in Section 3 for TN(t) and thanks to (1.4). Consequently,
different cases will arise according to the range of α and the (non)finiteness of the
first few moments. We assume that X is of Pareto-type with index α > 0 as de-
fined in (1.2) in Cases 1-6 and that X satisfies µ4 < ∞ in Case 7. Moreover, the
counting process is supposed to D-average in time to the random variable Λ except
in Cases 5-6 where it p-averages in time to Λ.

Case 1: α ∈ (0, 1). Since N(t) a.s.−→ ∞ as t → ∞, it follows from Theorem 3.1,
Slutsky’s theorem and the CMT that as t → ∞:

̂CoVar(X)√
N(t)

=

√
TN(t) − 1

N(t)
D−→
√

Uα/2

Uα

where the distribution of the random vector (Uα/2, Uα)′ is determined by (3.1).
Case 2: α = 1, µ1 = ∞. Define (at)t>0 by limt→∞ t a−1

t �(at) = 1 and (a′
t)t>0

by limt→∞ t a′−1
t �̃(a′

t) = 1 with �̃(x) :=
∫ x

0
�(u)

u du ∈ RV0. Since a′
t

at
∼ (1/�̃)#

(t)

(1/�)#(t)
as

t → ∞, where (1/�̃)# ∈ RV0 and (1/�)# ∈ RV0 are the de Bruijn conjugates of
1/�̃ ∈ RV0 and 1/� ∈ RV0 respectively, it follows that a′

t/at ∈ RV0 and then that
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limt→∞ 1
t

(a′
t

at

)2 = 0. Moreover, N(t)
t

D−→ Λ as t → ∞. Hence, Theorem 3.2 together
with Slutsky’s theorem and the CMT gives as t → ∞:

a′
t

at

̂CoVar(X)√
N(t)

=

√(
a′

t

at

)2

TN(t) − 1
t

(
a′

t

at

)2
t

N(t)
D−→
√

U1/2

where the distribution of the random variable U1/2 is determined by (2.2) with
γ = 1/2.

Case 3: α ∈ (1, 2) or α = 1, µ1 < ∞. Define (at)t>0 by limt→∞ t a−α
t �(at) = 1.

Since t
a2

t
∼ aα−2

t

�(at)
→ 0 and N(t)

t

D−→ Λ as t → ∞, it follows from Theorem 3.3(a),
Slutsky’s theorem and the CMT that as t → ∞:

√
N(t)
at

̂CoVar(X) =

√(
N(t)
at

)2

TN(t) − t

a2
t

N(t)
t

D−→ 1
µ1

√
Uα/2 Λ1/α

where the random variable Uα/2 is independent of Λ and has a distribution deter-
mined by (2.2) with γ = α/2.

Repeating the same arguments as above but using Theorem 3.3(b) instead of
Theorem 3.3(a), we also get as t → ∞:

t

at

̂CoVar(X)√
N(t)

=

√(
t

at

)2

TN(t) − t

a2
t

t

N(t)
D−→ 1

µ1

√
Uα/2

Λ1−1/α
.

Case 4: α = 2, µ2 = ∞. Define (a′
t)t>0 by limt→∞ t a′−2

t �̃(a′
t) = 1 with �̃(x) :=∫ x

0
�(u)

u du ∈ RV0. From µ2 = ∞, it follows that limx→∞ �̃(x) = ∞ so that t/a′2
t ∼

1/�̃(a′
t) → 0 as t → ∞. Moreover, N(t)

t

D−→ Λ as t → ∞. Theorem 3.4(a), Slutsky’s
theorem and the CMT then yield as t → ∞:

√
N(t)
a′

t

̂CoVar(X) =

√(
N(t)
a′

t

)2

TN(t) − t

a′2
t

N(t)
t

D−→
√

2
µ1

√
Λ.

By using Theorem 3.4(b) and the arguments above, we also get as t → ∞:

t

a′
t

̂CoVar(X)√
N(t)

=

√(
t

a′
t

)2

TN(t) − t

a′2
t

t

N(t)
D−→

√
2

µ1

1√
Λ

.

Case 5: α ∈ (2, 4) or α = 2, µ2 < ∞. Assume that {N(t); t � 0} p-averages
in time to the random variable Λ. Let �#1 ∈ RV0 be the de Bruijn conjugate of
�1(x) := �−2/α(

√
x) ∈ RV0. Note that �#1 (x) = o(1) as x → ∞ if α = 2 and µ2 < ∞

since �(x) = o(1) as x → ∞. Since N(t)TN(t)
p−→ µ2/µ2

1 as t → ∞, the CMT gives:

̂CoVar(X)
p−→ CoVar(X) as t → ∞.
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Now, define a sequence (bt)t>0 by bt := t1−2/α

�#1 (t2/α)
. Let σ2 := VX < ∞ and consider:

bt

(
̂CoVar(X) − CoVar(X)

)
=

µ1

2σ
bt

(
N(t) TN(t) − µ2

µ2
1

)
︸ ︷︷ ︸

=:At

−
µ1bt

(
N(t) TN(t) − µ2

µ2
1

)2

2σ
(

̂CoVar(X) + CoVar(X)
)2

︸ ︷︷ ︸
=:Bt

.

From Theorem 3.5 and using Slutsky’s theorem and the CMT, we easily deduce
that At

D−→ 1
2µ1σ

Wα/2

Λ1−2/α and Bt
p−→ 0 as t → ∞, leading by virtue of another

application of Slutsky’s theorem to:

t1−2/α

�#1 (t2/α)

(
̂CoVar(X) − CoVar(X)

) D−→ 1
2µ1σ

Wα/2

Λ1−2/α
as t → ∞

where Wα/2 is an α/2-stable random variable independent of Λ.
Case 6: α = 4, µ4 = ∞. Assume that {N(t); t � 0} p-averages in time to

the random variable Λ. Since N(t)TN(t)
p−→ µ2/µ2

1 as t → ∞, we deduce by an
application of the CMT that:

̂CoVar(X)
p−→ CoVar(X) as t → ∞.

Now, let �2(x) := 1

2
√

�̃(
√

x)
∈ RV0 with �̃(x) :=

∫ x

0
�(u)

u du ∈ RV0. Define a sequence

(ct)t>0 by ct :=
√

t

�#2 (
√

t)
where �#2 ∈ RV0 is the de Bruijn conjugate of �2. Consider

the following equality:

ct

(
̂CoVar(X) − CoVar(X)

)
=: At − Bt

where the random variables At and Bt are defined as in Case 5 but with bt replaced
by ct. Theorem 3.6, Slutsky’s theorem and the CMT give At

D−→ 1
2µ1σ

N(0,1)√
Λ

and

Bt
p−→ 0 as t → ∞, leading by another application of Slutsky’s theorem to:

√
t

�#2 (
√

t)

(
̂CoVar(X) − CoVar(X)

) D−→ 1
2µ1σ

N(0, 1)√
Λ

as t → ∞

where N(0, 1) is a standard normal random variable independent of Λ.
Case 7: µ4 < ∞. The proof of Theorem 3.7 can be repeated using the transfor-

mation g(x, y) =
√

y/x2 − 1 and this leads to:

(4.1)
√

t
(

̂CoVar(X) − CoVar(X)
) D−→

N
(
0,

σ2
∗µ2

1
4σ2

)
√

Λ
as t → ∞

where N
(
0, σ2

∗µ
2
1/(4σ2)

)
is a normal random variable independent of Λ with mean

0 and variance σ2
∗µ

2
1/(4σ2), with σ2

∗ defined in (3.11) and σ2 := VX < ∞.
Assume that E{Λ−1} < ∞. When t

(
̂CoVar(X) − CoVar(X)

)2 is uniformly
integrable, the first two moments of the limiting distribution in (4.1) permit to
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determine the limiting behavior of CoVar
(

̂CoVar(X)
)
. Indeed, on the one hand:

lim
t→∞

√
t
(
E

{
̂CoVar(X)

}
− CoVar(X)

)
= lim

t→∞ E

{√
t
(

̂CoVar(X)− CoVar(X)
)}

= 0

which leads to:

(4.2) lim
t→∞ E

{
̂CoVar(X)

}
= CoVar(X).

On the other hand, we also get:

lim
t→∞ t V

{
̂CoVar(X)

}
= lim

t→∞ V

{√
t
(

̂CoVar(X)− CoVar(X)
)}

=
σ2
∗µ

2
1 E
{
Λ−1

}
4σ2

so that:

V

{
̂CoVar(X)

}
∼ σ2

∗µ
2
1 E
{
Λ−1

}
4σ2

1
t

as t → ∞.

Consequently, under the above uniform integrability condition, the coefficient of
variation of the sample coefficient of variation asymptotically behaves as:

CoVar
(

̂CoVar(X)
)
∼ σ∗µ2

1

√
E{Λ−1}

2σ2

1√
t

as t → ∞.

In addition, it results from (4.1) and (4.2) that ̂CoVar(X) is a consistent and
asymptotically unbiased estimator for CoVar(X).

4.2. Sample Dispersion. Adapting the results of Section 3 to the random
variable CN(t) defined in (1.6) permits us to derive limiting distributions for the

appropriately normalized sample dispersion D̂(X) from (1.7). Different cases are
considered as for the sample coefficient of variation. We assume that X is of Pareto-
type with index α > 0 as defined in (1.2) in Cases 1-6 and that X satisfies µ4 < ∞
in Case 7. Moreover, the counting process is supposed to D-average in time to the
random variable Λ except in Cases 5-6 where it p-averages in time to Λ.

Case 1: α ∈ (0, 1). Define (at)t>0 by limt→∞ t a−α
t �(at) = 1. It follows from the

CMT and (3.3) that as t → ∞:

1
at

CN(t)
D−→ Uα/2

Uα
Λ1/α

where the random vector (Uα/2, Uα)′ is independent of Λ and has a distribution

determined by (3.1). Since N(t) a.s.−→ ∞ and a−1
t

∑N(t)
i=1 Xi

D−→ Uα Λ1/α as t → ∞,
Slutsky’s theorem and the CMT then yield as t → ∞:

1
at

D̂(X) =
1
at

CN(t) − 1
N(t)

1
at

N(t)∑
i=1

Xi
D−→ Uα/2

Uα
Λ1/α.
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Case 2: α = 1, µ1 = ∞. Define (at)t>0 by limt→∞ t a−1
t �(at) = 1 and (a′

t)t>0

by limt→∞ t a′−1
t �̃(a′

t) = 1 with �̃(x) :=
∫ x

0
�(u)

u du ∈ RV0. It follows from (3.5) and
the CMT that as t → ∞:

a′
t

a2
t

CN(t)
D−→ U1/2 Λ

where the random variable U1/2 is independent of Λ and has a distribution deter-
mined by (2.2) with γ = 1/2.

Since a′
t

at
∼ (1/�̃)#

(t)

(1/�)#(t)
as t → ∞, where (1/�̃)# ∈ RV0 and (1/�)# ∈ RV0 are

the de Bruijn conjugates of 1/�̃ ∈ RV0 and 1/� ∈ RV0 respectively, it follows
that a′

t/at ∈ RV0 and then that limt→∞ t−1(a′
t/at)2 = 0. Moreover, using the

same independence and conditioning arguments as in the proof of Theorem 3.5, we
obtain that at any continuity points x and y of the distribution function of Λ:

lim
t→∞ P

[
N(t)

t
� x,

1
a′

t

N(t)∑
i=1

Xi � y

]
= P[Λ � x] P[Λ � y]

i.e., since N(t)
t

D−→ Λ and (a′
t)

−1
∑N(t)

i=1 Xi
D−→ Λ as t → ∞, that:(

N(t)
t

,
1
a′

t

N(t)∑
i=1

Xi

)′
D−→ (Λ,Λ
)′ as t → ∞

where Λ
 is an independent copy of Λ. Using the CMT, we then deduce:

t

N(t)

∑N(t)
i=1 Xi

a′
t

D−→ Λ


Λ
as t → ∞.

Hence, Slutsky’s theorem gives as t → ∞:

a′
t

a2
t

D̂(X) =
a′

t

a2
t

CN(t) − 1
t

(
a′

t

at

)2
t

N(t)

∑N(t)
i=1 Xi

a′
t

D−→ U1/2 Λ.

Case 3: α ∈ (1, 2) or α = 1, µ1 < ∞. Define (at)t>0 by limt→∞ t a−α
t �(at) = 1.

Since X
p−→ µ1 as t → ∞, we get from Theorem 3.3(a) and Slutsky’s theorem that:

N(t)
a2

t

CN(t) = X

(
N(t)
at

)2

TN(t)
D−→ 1

µ1
Uα/2 Λ2/α as t → ∞

where the random variable Uα/2 is independent of Λ and has a distribution deter-

mined by (2.2) with γ = α/2. Since t
a2

t
∼ aα−2

t

�(at)
→ 0 and N(t)

t

D−→ Λ as t → ∞,
Slutsky’s theorem gives as t → ∞:

N(t)
a2

t

D̂(X) =
N(t)
a2

t

CN(t) − t

a2
t

N(t)
t

X
D−→ 1

µ1
Uα/2 Λ2/α.

By using (3.7) and the arguments above, we also get as t → ∞:

t

a2
t

D̂(X) =
t

a2
t

CN(t) − t

a2
t

X
D−→ 1

µ1

Uα/2

Λ1−2/α
.
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Case 4: α = 2, µ2 = ∞. Define (a′
t)t>0 by limt→∞ t a′−2

t �̃(a′
t) = 1 with �̃(x) :=∫ x

0
�(u)

u du ∈ RV0. Since X
p−→ µ1 as t → ∞, it follows from Theorem 3.4(a) and

Slutsky’s theorem that as t → ∞:

N(t)
a′2

t

CN(t) = X

(
N(t)
a′

t

)2

TN(t)
D−→ 2

µ1
Λ.

From µ2 = ∞, we get limx→∞ �̃(x) = ∞ so that t
a′2

t
∼ 1

�̃(a′
t)

→ 0 as t → ∞. Since
N(t)

t

D−→ Λ as t → ∞, Slutsky’s theorem then yields as t → ∞:

N(t)
a′2

t

D̂(X) =
N(t)
a′2

t

CN(t) − t

a′2
t

N(t)
t

X
D−→ 2

µ1
Λ.

By using (3.8) and the arguments above, we also get as t → ∞:

t

a′2
t

D̂(X) =
t

a′2
t

CN(t) − t

a′2
t

X
D−→ 2

µ1
.

Case 5: α ∈ (2, 4) or α = 2, µ2 < ∞. Assume that {N(t); t � 0} p-averages in
time to the random variable Λ. Define a sequence (bt)t>0 by bt := t1−2/α

�#1 (t2/α)
where

�#1 ∈ RV0 is the de Bruijn conjugate of �1(x) := �−2/α(
√

x) ∈ RV0. Note that if
α = 2 and µ2 < ∞, we have �#1 (x) = o(1) as x → ∞. Consider the decomposition:

bt

(
D̂(X) − D(X)

)
=

bt

X

(
1

N(t)

N(t)∑
i=1

X2
i − µ2

)
︸ ︷︷ ︸

=:At

− bt√
t

√
t

(
1

N(t)

N(t)∑
i=1

Xi − µ1

)(
1 +

µ2

µ1

1

X

)
︸ ︷︷ ︸

=:Bt

.

By using (3.9), it is readily proved that:

N(t)1−2/α

�#1 (N(t)2/α)

(
1

N(t)

N(t)∑
i=1

X2
i − µ2

)
D−→ Wα/2 as t → ∞

where Wα/2 is an α/2-stable random variable independent of Λ. Since X
p−→ µ1,

N(t)
t

p−→ Λ and �#1 (N(t)2/α)

�#1 (t2/α)

p−→ 1 as t → ∞, Slutsky’s theorem and the CMT
therefore give as t → ∞:

At =
1

X

(
t

N(t)

)1−2/α
�#1 (N(t)2/α)

�#1 (t2/α)

N(t)1−2/α

�#1 (N(t)2/α)

(
1

N(t)

N(t)∑
i=1

X2
i − µ2

)
D−→ 1

µ1

Wα/2

Λ1−2/α
.

Using that N(t) a.s.−→ ∞ as t → ∞, we combine the central limit theorem and
Lemma 2.1 to obtain:

√
N(t)

(
1

N(t)

N(t)∑
i=1

Xi − µ1

)
D−→ N(0, σ2) as t → ∞

where the random variable N(0, σ2) is normally distributed with mean 0 and vari-
ance σ2 := VX < ∞. The CMT together with the independence of N(0, σ2) and Λ
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(which is easily proved using the same kind of arguments as for the independence
of Wα/2 and Λ in the proof of Theorem 3.5) then yields as t → ∞:

(4.3)
√

t

(
1

N(t)

N(t)∑
i=1

Xi − µ1

)
=

√
t

N(t)

√
N(t)

(
1

N(t)

N(t)∑
i=1

Xi − µ1

)
D−→ N(0, σ2)√

Λ
.

Since limt→∞ bt/
√

t = 0 and X
p−→ µ1 as t → ∞, Slutsky’s theorem and the CMT

then imply that Bt
p−→ 0 as t → ∞. By virtue of another application of Slutsky’s

theorem, we finally obtain:

t1−2/α

�#1 (t2/α)

(
D̂(X) − D(X)

) D−→ 1
µ1

Wα/2

Λ1−2/α
as t → ∞.

The latter relation shows in particular that:

D̂(X)
p−→ D(X) as t → ∞.

Case 6: α = 4, µ4 = ∞. Assume that {N(t); t � 0} p-averages in time to the
random variable Λ. Define a sequence (ct)t>0 by ct :=

√
t

�#2 (
√

t)
where �#2 ∈ RV0 is

the de Bruijn conjugate of �2(x) := 1

2
√

�̃(
√

x)
∈ RV0 with �̃(x) :=

∫ x

0
�(u)

u du ∈ RV0.

Consider the following equality:

ct

(
D̂(X) − D(X)

)
=: At − Bt

where the random variables At and Bt are defined as in Case 5 but with bt replaced
by ct. By using (3.10), we get:√

N(t)

�#2 (
√

N(t))

(
1

N(t)

N(t)∑
i=1

X2
i − µ2

)
D−→ N(0, 1) as t → ∞

for a standard normal random variable N(0, 1) independent of Λ. Since X
p−→ µ1,

N(t)
t

p−→ Λ and �#2 (
√

N(t))

�#2 (
√

t)

p−→ 1 as t → ∞, Slutsky’s theorem and the CMT then
give as t → ∞:

At =
1
X

√
t

N(t)
�#2 (
√

N(t))

�#2 (
√

t)

√
N(t)

�#2 (
√

N(t))

(
1

N(t)

N(t)∑
i=1

X2
i − µ2

)
D−→ 1

µ1

N(0, 1)√
Λ

.

Since limx→∞ �̃(x) = ∞, we have limx→∞ �2(x) = 0 so that limx→∞ �#2 (x) = ∞.
Since X

p−→ µ1 as t → ∞ and by using (4.3), we therefore have by virtue of
Slutsky’s theorem and the CMT that:

Bt =
1

�#2 (
√

t)

√
t

(
1

N(t)

N(t)∑
i=1

Xi − µ1

)(
1 +

µ2

µ1

1
X

)
p−→ 0 as t → ∞.

Another application of Slutsky’s theorem finally gives:
√

t

�#2 (
√

t)

(
D̂(X) − D(X)

) D−→ 1
µ1

N(0, 1)√
Λ

as t → ∞.
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It follows in particular from the latter relation that:

D̂(X)
p−→ D(X) as t → ∞.

Case 7: µ4 < ∞. Using g(x, y) = y
x − x in the proof of Theorem 3.7 yields:

(4.4)
√

t
(
D̂(X) − D(X)

) D−→ N
(
0, σ2

∗∗
)

√
Λ

as t → ∞

where N
(
0, σ2

∗∗
)

is a normal random variable independent of Λ with mean 0 and
variance σ2

∗∗ defined by:

σ2
∗∗ := µ2 − µ2

1 +
µ3

2

µ4
1

− 2
µ3

µ1
− 2

µ2µ3

µ3
1

+ 2
(

µ2

µ1

)2

+
µ4

µ2
1

.

Assume that E{Λ−1} < ∞. When t
(
D̂(X) − D(X)

)2 is uniformly integrable, the
first two moments of the limiting distribution in (4.4) permit to determine the
limiting behavior of D

(
D̂(X)

)
. Indeed, on the one hand:

lim
t→∞

√
t
(
E

{
D̂(X)

}
− D(X)

)
= lim

t→∞ E

{√
t
(
D̂(X)− D(X)

)}
= 0

leading to:

(4.5) lim
t→∞ E

{
D̂(X)

}
= D(X).

Note that (4.4) together with (4.5) implies that D̂(X) is a consistent and asymp-
totically unbiased estimator for D(X). On the other hand, we also get:

lim
t→∞ t V

{
D̂(X)

}
= lim

t→∞ V

{√
t
(
D̂(X) − D(X)

)}
= σ2

∗∗ E
{
Λ−1

}
so that:

V

{
D̂(X)

}
∼ σ2

∗∗ E
{
Λ−1

} 1
t

as t → ∞.

Consequently, under the above uniform integrability condition, the dispersion of
the sample dispersion asymptotically behaves as:

D
(
D̂(X)

)
∼ σ2

∗∗ µ1 E
{
Λ−1

}
σ2

1
t

as t → ∞

where σ2 := VX < ∞.
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