Publications de l'Institut Mathématique, Nouvelle Série Vol. 85(99), pp. 1–17 (2009) |
|
ON THE MEAN SQUARE OF THE RIEMANN ZETA-FUNCTION IN SHORT INTERVALSAleksandar IvicKatedra Matematike RGF-a, Universitet u Beogradu, Beograd, SerbiaAbstract: It is proved that, for $T^{\varepsilon}\leq G=G(T)\leq\frac12\sqrt{T}$, \begin{align*} \int_T^{2T}\Bigl(I_1(t+G,G)-I_1(t,G)\Bigr)^2dt &= TG\sum_{j=0}^3a_j\log^j\biggl(\frac{\sqrt{T}}{G}\biggr)
Keywords: The Riemann zeta-function; the mean square in short intervals; upper bounds Classification (MSC2000): 11M06; 11N37 Full text of the article: (for faster download, first choose a mirror)
Electronic fulltext finalized on: 23 Apr 2009. This page was last modified: 22 Oct 2009.
© 2009 Mathematical Institute of the Serbian Academy of Science and Arts
|