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Abstract. The distance or D-eigenvalues of a graph G are the eigenvalues
of its distance matrix. The distance or D-energy ED(G) of the graph G is
the sum of the absolute values of its D-eigenvalues. Two graphs G1 and G2
are said to be D-equienergetic if ED(G1) = ED(G2). Let F1 be the 5-vertex
path, F2 the graph obtained by identifying one vertex of a triangle with one
end vertex of the 3-vertex path, F3 the graph obtained by identifying a vertex
of a triangle with a vertex of another triangle and F4 be the graph obtained by
identifying one end vertex of a 4-vertex star with a middle vertex of a 3-vertex
path. In this paper we show that if G is r-regular, with diam(G) � 2, and
Fi, i = 1, 2, 3, 4, are not induced subgraphs of G, then the k-th iterated line
graph Lk(G) has exactly one positive D-eigenvalue. Further, if G is r-regular,
of order n, diam(G) � 2, and G does not have Fi, i = 1, 2, 3, 4, as an induced
subgraph, then for k � 1, ED(Lk(G)) depends solely on n and r. This result
leads to the construction of non D-cospectral, D-equienergetic graphs having
same number of vertices and same number of edges.

1. Introduction

Let G be a simple, undirected graph without loops and multiple edges. Let n
be the number of vertices and m the number of edges of G. The vertices of G are
labelled as v1, v2, . . . , vn. The distance between the vertices vi and vj is the length
of a shortest path between them, and is denoted by d(vi, vj). The diameter of G,
denoted by diam(G), is the maximum distance between any pair of vertices of G
[6, 15].

The adjacency matrix of a graph G is the square matrix A = A(G) = [aij ],
in which aij = 1 if vi is adjacent to vj and aij = 0, otherwise. The eigenvalues
of the adjacency matrix A(G) are the (adjacency or ordinary) eigenvalues of G,
forming the (adjacency or ordinary) spectrum of G [8]. These will be labelled as
λ1 � λ2 � · · · � λn.
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The distance matrix of a graph G is the square matrix D = D(G) = [dij ], in
which dij is the distance between the vertices vi and vj in G. The eigenvalues of the
distance matrix D(G), labelled as µ1 � µ2 � · · · � µn, are said to be the distance
or D-eigenvalues of G and to form the distance or D-spectrum of G [6, 7].

Two connected graphs G and H are said to be D-cospectral if they have same
D-spectra. The characteristic polynomial and eigenvalues of the distance matrix of
graphs have been considered in [9, 10, 11, 16, 17, 18, 19, 34].

The distance or D-energy of a connected graph G is defined as

(1) ED = ED(G) =
n∑
i=1
|µi| .

The D-energy was first time introduced by Indulal et al. [19], and was con-
ceived in full analogy with the ordinary graph energy E(G), defined as [12, 13, 14]

(2) E = E(G) =
n∑
i=1
|λi| .

Various bounds for the D-energy have been communicated in [19, 27].
Two graphs G1 and G2 are said to be equienergetic if E(G1) = E(G2). A

large number of constructions of non-cospectral, equienergetic graphs was recently
reported [1, 2, 3, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 32, 33].

Two graphs G1 and G2 are said to be D-equienergetic if ED(G1) = ED(G2).
Of course D-cospectral graphs are D-equienergetic. We are interested in non D-
cospectral, D-equienergetic graphs having same number of vertices. Recently In-
dulal et al. [19] constructed pairs of D-equienergetic graphs on n vertices for n ≡ 1
(mod 3) and n ≡ 0 (mod 6). In this paper we give one more class ofD-equienergetic
graphs.

We need the following results.

Theorem 1. [8] If G is an r-regular graph, then its maximum adjacency eigen-
value is equal to r.

Theorem 2. [7, 19] Let G be an r-regular graph of order n and diam(G)�2. If
r, λ2, . . . , λn are the adjacency eigenvalues of G, then its D-eigenvalues are 2n−r−2
and −(λi + 2), i = 2, 3, . . . , n.

2. On the line graph of a regular graph

The line graph of G will be denoted by L(G) [15]. For k = 1, 2, . . ., the
k-th iterated line graph of G is Lk(G) = L(Lk−1(G)), where L0(G) = G and
L1(G) = L(G).

The line graph of a regular graph is a regular graph. In particular, the line
graph of a regular graph G of order n0 and of degree r0 is a regular graph of order
n1 = (r0n0)/2 and of degree r1 = 2r0 − 2. Consequently, the order and degree of
Lk(G) are [4, 5]:

nk = 1
2 rk−1nk−1 and rk = 2rk−1 − 2
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where ni and ri stand for the order and degree of Li(G) , i = 1, 2, . . .. Therefore,

(3) rk = 2kr0 − 2k+1 + 2

and

(4) nk = n0

2k
k−1∏
i=0
ri = n0

k−1∏
i=0

(2i−1r0 − 2i + 1) .

Theorem 3. [31] If λ1, λ2, . . . , λn are the adjacency eigenvalues of a regular
graph G of order n and of degree r, then the adjacency eigenvalues of L(G) are

λi + r − 2, i = 1, 2, . . . , n, and
−2, n(r − 2)/2 times.

For any set S of vertices (edges) of G, the induced subgraph < S > is the
maximal subgraph of G with vertex set (edge set) S.

Let F1 be the 5-vertex path, F2 the graph obtained by identifying a vertex
of a triangle with one end vertex of the 3-vertex path, F3 the graph obtained by
identifying a vertex of a triangle with a vertex of another triangle and F4 be the
graph obtained by identifying one end vertex of a 4-vertex star with a middle vertex
of a 3-vertex path, see Fig. 1.
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Figure 1. The forbidden subgraphs.

Theorem 4. If diam(G) � 2 and if none of the three graphs F1, F2 and F3 of
Fig. 1 is an induced subgraph of G, then diam(L(G)) � 2.

Proof. The results can be easily verified for n � 4. We thus assume that
n > 4.
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Let e1, e2, . . . , em be the edges of a graph G. These are the vertices of L(G). If
the edges ei and ej are adjacent in G, then the vertices ei and ej are adjacent in
L(G). Therefore the distance between ei and ej in L(G) is 1.

If the edges ei and ej are not adjacent in G, then we consider two cases.
Case 1: Suppose diam(G) = 1. Then G ∼= Kn a complete graph on n vertices.

In Kn, if the edges ei and ej are not adjacent then, because every vertex of Kn is
adjacent to the remaining vertices, there exists an edge ek in Kn adjacent to both
ei and ej . Therefore in L(Kn), d(ei, ej) = d(ei, ek) + d(ek, ej) = 1 + 1 = 2. Hence
diam(L(G)) = 2, for all n � 4.

Case 2: Suppose diam(G) = 2. Consider the conditions under which L(G) will
have diameter greater than 2. For this G must possess two independent edges say
ei = (uv) (connecting the vertices u and v) and ej = (xy) (connecting the vertices
x and y), such that neither u nor v are adjacent to either x or y. If so, then because
G has diameter 2, there must exist a vertex w adjacent to u and x. If w is not
adjacent to either v or y, then G has F1 as induced subgraph (spanned by the
vertices u, v, x, y and w). If w is adjacent to v, but not to y (or, what is the same,
adjacent to y but not to v), then G has F2 as induced subgraph. If w is adjacent to
both v and y, then G has F3 as induced subgraph. Hence, if none of Fi i = 1, 2, 3,
is an induced subgraph of G, then diam(L(G)) � 2. �

Theorem 5. If diam(G) � 2 and if none of the four graphs of Fig. 1 is an
induced subgraph of G, then none of the four graphs of Fig. 1 is an induced subgraph
of L(G).

Proof. If diam(G) � 2 and none of the four graphs of Fig. 1 is an induced
subgraph of G, then any 5-edge subset of the edges of G induces one of the graphs
depicted in Fig. 2.

None of the line graphs of graphs depicted in Fig. 2 has Fi, i = 1, 2, 3, 4, as an
induced subgraph. Hence the proof. �

Combining Theorems 4 and 5 we have following Theorem.

Theorem 6. If diam(G) � 2 and if none of the four graphs of Fig. 1 is an
induced subgraph of G, then for k � 1,

(i) diam(Lk(G)) � 2 and
(ii) none of the four graphs of Fig. 1 is an induced subgraph of Lk(G).

Theorem 7. If G is an r-regular graph of order n with diam(G) � 2 and if
none of the three graphs F1, F2 and F3 of Fig. 1 is an induced subgraph of G, then
L(G) has exactly one positive D-eigenvalue, equal to nr − 2r.

Proof. Let r, λ2, λ3, . . . , λn be the adjacency eigenvalues of a regular graph
G. Then from Theorem 3, the adjacency eigenvalues of of L(G) are

(5)
λi + r − 2, i = 1, 2, . . . , n, and

−2, n(r − 2)/2 times
The graph G is regular of degree r and has order n. Therefore L(G) is a regular

graph on nr/2 vertices and of degree 2r−2. As diam(G) � 2 and none of the three
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Figure 2. 5-edge graphs.

graphs F1, F2 and F3 of Fig. 1 is an induced subgraph of G, from Theorem 4,
diam(L(G)) � 2. Therefore from Theorem 2 and Eq. (5), the D-eigenvalues of
L(G) are

(6)

⎧⎪⎨
⎪⎩

nr − 2r, and
−(λi + r), i = 2, 3, . . . , n and

0, n(r − 2)/2 times .

All eigenvalues of a regular graph of degree r satisfy the condition −r � λi � r
[8]. Therefore λi + r � 0, i = 1, 2, . . . , n. The theorem follows from Eq. (6). �

Corollary 7.1. Let G be an r-regular graph on n vertices with diam(G) � 2
and let none of the four graphs of Fig. 1 be an induced subgraph of G. Let nk and
rk be the order and degree, respectively, of the k-th iterated line graph Lk(G) of G,
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k � 1. Then Lk(G) has exactly one positive D-eigenvalue equal to

nk−1rk−1 − 2rk−1 = 2nk − rk − 2 = 2n
k−1∏
i=0

[2i−1r − 2i + 1]− [2kr − 2k+1 + 4].

3. Distance energy

The D-energy ED(G) of a graph G is defined via Eq. (1).

Theorem 8. If G is an r-regular graph of order n with diam(G) � 2 and if
none of the three graphs F1, F2 and F3 of Fig. 1 is an induced subgraph of G, then
ED(L(G)) = 2nr − 4r.

Proof. Bearing in mind Theorem 7 and Eq. (6), the D-energy of L(G) is
computed as:

ED(L(G)) = nr − 2r +
n∑
i=2

(λi + r) + |0| × n(r − 2)
2

= 2nr − 4r

since
n∑
i=2
λi = −r. �

Corollary 8.1. Let G be an r0-regular graph of order n0 with diam(G) � 2
and let none of the four graphs of Fig. 1 be an induced subgraph of G. Let nk and
rk be the order and degree, respectively, of the k-th iterated line graph Lk(G) of G,
k � 1. Then

ED(Lk(G)) = 2nk−1rk−1 − 4rk−1 = 4nk − 2rk − 4.

Corollary 8.2. Under the same conditions as in the previous corollary,

ED(Lk(G)) = 4n0

k−1∏
i=0

(2i−1r0 − 2i + 1)− 2(2kr0 − 2k+1 + 4).

From Corollary 8.2 we see that the D-energy of the k-th iterated line graph of
a regular graph G of diameter less than or equal to 2, that does not contain Fi,
i = 1, 2, 3, 4, as an induced subgraph is fully determined by the order n0 and degree
r0 of G.

4. Distance-equienergetic graphs

Lemma 9. Let G1 and G2 be two regular graphs of the same order and of the
same degree. Let diam(Gi) � 2, and none of the four graphs of Fig. 1 be an induced
subgraph of Gi, i = 1, 2. Then for any k � 1 the following holds:

(i) Lk(G1) and Lk(G2) are of the same order, same degree and have the same
number of edges.

(ii) Lk(G1) and Lk(G2) are D-cospectral if and only if G1 and G2 are cospectral.

Proof. Statement (i) follows from Eqs. (3) and (4), and the fact that the
number of edges of Lk(G) is equal to the number of vertices of Lk+1(G). Statement
(ii) follows from Eqs. (5) and (6), and Theorem 6. �
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Theorem 10. Let G1 and G2 be two non D-cospectral regular graphs of the
same order and of the same degree. Let diam(Gi) � 2 and let none of the four
graphs of Fig. 1 be an induced subgraphs of Gi, i = 1, 2. Then for any k � 1,
the iterated line graphs Lk(G1) and Lk(G2) form a pair of non D-cospectral, D-
equienergetic graphs of equal order and of equal number of edges.

Proof. follows from Lemma 9 and Corollary 8.2. �
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