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ABSTRACT. In the literature one can find links between the 2k-th moment of
the Riemann zeta-function and averages involving di(n), the divisor function
generated by g’k(s) There are, in fact, two bounds: one for the 2k-th moment
of ¢(s) coming from a simple average of correlations of the dg; and the other,
which is a more recent approach, for the Selberg integral involving di(n), ap-
plying known bounds for the 2k-th moment of the zeta-function. Building
on the former work, we apply an elementary approach (based on arithmetic
averages) in order to get the reverse link to the second work; i.e., we obtain
(conditional) bounds for the 2k-th moment of the zeta-function from the Sel-
berg integral bounds involving dj (n).

1. Introduction and statement of the result

We shall link the 2k-th moment of the Riemann ¢-function {(s) on the (critical)
line (¢ = Res = 1), see [10]:

T
.(T) déf/ IC(L + it) |t
0

(which we shall abbreviate with I, not to be confused with the similar 2k-th
moment off the line, i.e.,

T
Ii(0,T) dzef/ (o +it)*Rat (X <o <),
0
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compare with [10]), with the Selberg integral of the k-divisor function, di(n) (hav-
ing the generating Dirichlet series ¢*(s))

#@m@/
h

€

2

> di(n) = My(t,h)| dt,

t<n<t+h

(compare with [1]; henceforth we abbreviate Ji(x, h) by Jj) where, say, My(t, h) is
the “expected value” of the (inner) sum.

This gives dj, over the (say) “short interval" [t,t+ h] (as h = o(t) Vt € [ha®, x]);
here and in the sequel € > 0 may be arbitrarily small, but not necessarily the same
at each occurrence.

Actually, Ivié gave in [12] a nontrivial bound for Ji(x, h) when the width of the

s.i. (abbreviation for short interval), namely 6 := lg’ggx}; is greater than 6y, def 20, —1

(with o) the Carlson’s abscissa, i.e., inf{o € |1/2,1[: I(0,T) < T}, here):

xh?
0 >0, = 3(5:(5(/€) >02Jk($,h) < F

(with the trivial bound: Jx(z,h) < zh?*(logx)®, where ¢ = c(k) > 0, see the
following).

This result clearly gives nontrivial bounds for Ji, using the information for
zeta-moments off the critical line. For example, 03 = %, 0, = %, 05 = é—(l), ... (from
the known values of oy).

Thus the knowledge of the moments of {(s) provides information on di(n) in

almost all short intervals (a.a.s.i.).

(See: Ji, nontrivial = Z di(n) ~ My(t, h), a.a.s.i.)
t<n<t+h
However, we can also go in the opposite direction: if we have some kind of nontrivial
information about the distribution of di(n), we can improve our knowledge (at least,
on the 2k-th moments) of the Riemann (-function. Actually, this idea is due to
Ivié, who linked I}, to the “(auto-)correlation” of dj, with “shift-parameter” a, i.e.,

Cr(a) dzedek(n)dk(n—l—a), a €N (herez €N, z — 00)

n<x

(the shift is a positive integer: Cr(—a) is close enough to C(a) and C(0) is rela-
tively easy to compute).

Here it comes into play the idea of Ivié (see [11]) of linking the estimate of the
2k-th moment, I;,(T), to a sum of correlations Cy(a) performed over a (the shift),

up to (roughly, we avoid technicalities), say, h := % (the s.i. comes in!), where

< TF2,
In order to be more precise, we need to abbreviate (with z, X or even T our
main variables, all independent and — 00):

A« BE&E ve>0A4A<.2°B

i.e., the modified Vinogradov notation < allows us to ignore all the arbitrarily
small powers. We shall also say that the arithmetic function (a.f.) f: N — R is
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essentially bounded, write f < 1, when Ve > 0 f(n) <. n° (as n — o0). For
example, all the di (Vk € N) are essentially bounded:

VkeN dp «1,

whence they contribute individually small powers, which for our purposes may be
ignored. Shiu [19] obtains (see Jj for trivial estimate above) a kind of Brun—
Titchmarsh estimate for (suitable multiplicative a.f., like) dj, and these give, on
average over (all) s.i., powers of log. By the way,

L:=logT (or L:=logz)

is the abbreviation for the logarithm of our main variable.
We quote the formula (proved Vk < 2, see §3) for the dj, correlations:

(1.1) Cr(a) = xPap_2(logz) + Ap(x,a), Ax(z,a) = o(x);

here, the (conjectured, Yk > 2) main term is zPoy,_2(logz) < xL**~2 << z (since
Pyi—2(2) is a polynomial of degree 2k — 2 in z, see the following).

Here, it seems that the first to propose explicitly this form for (1.1) is Ivié, who
also gave explicitly the polynomial Psj_o, that is essentially bounded (w.r.t. x).
However, as we shall see in a moment, it depends, also, on the shift a > 0.

We shall sketch now, avoiding technicalities, Ivi¢’ s argument. After some work
(expand the square & mollify, take relevant ranges, ...) he gets that I}(T) is

Ii(T) = I{(T) + O:(T°T)

with
def 1 T ;
B LSS i ta) [ o0,
a<h M<n<M’ /2

where M < M’ < 2M, with M <« T*/2, say h << M/T, the smooth (i.e., € C)
test-function ¢ has support in |7/2, 2T, ¢([31/4,4T/3]) = 1, and has good decay

o (t) <r T, YReN.

From now on (see the reason in next section) we can ignore (in bounds for i) all
terms which are << T'.

We give an idea of the shape of Ps_o, given by Ivié, before we proceed. It is
(see [11] for details)

of 1 [T = cqla
ng,g(log LL‘) d:f 5/ Z qq(2 )Rﬁ(log t)dt,
0 q=1

with, say,

det C—k(q) k—1 Cik(q) | k2

= 1 t+ —>=1 t+---
G- Tty Tt

depending on ¢, but not on a (this is vital); also, w.r.t. x, Ri(logt) <« 1 and this

is very useful. We shall see in a moment that the shape of these C;(g) is important

Ry (log t)

C_
% logt +C_1(q)
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only in the case ¢ = 1. By the way, here c¢4(a) is the Ramanujan sum, defined as
(>=" denotes summation over j (< q) coprime with q)

@)= Y egia) =Y du(d).

j (mod q) d|q

Hence, say, S(a) o max (0, h — |a|) (S is Fejér’s kernel) gives (J, is coming soon)

5(2) 3 S(@eaia) > 0= 3 S(w)ela) >

and from the elementary identity, Vd € N, (hereon n = r(q) is n = r (mod q)
abbreviation)

> s@=h+e2 3 (i-an =BV (1 - (1Y),
a=0 (d) b<ch/d

we get (apply ¢q(a), above), writing 1, = 1 if p holds, = 0 else:
S stane 1ot {5)0- 4]

(It is here evident that ¢ = 1 has a greater importance.) Thus, (see Ivié¢ [11] and
compare [1]):

x
(1.2) ZS(a)ngk,g(log x) = h2/ R2(1,logt)dt + tails,

hax®
where we mean, by “tails", remainders which are << h3. Here, the part of Ry (logt)
term with ¢ = 1 is, say,
def C_(1) Cr1-x(1)

(k=1 (k—2)!

and gives (see the above) the term My (logt) into the Selberg integral; as it should
be, since (from an elementary version of Linnik’s Dispersion method, compare [1,
Lemmas)), assuming (1.1) with this Pog_2, we get

(1.3) Jr(z,h) ~ > S(a)Ci(a) —h* [ M(logt)dt ~ Zs VAg(z, a)

C_5(1
log" 2t + -+ 12,()

Ri(1,logt) = logh 14— logt + C_1(1)

hxe

where ~ means ignoring “tails" (see above) and “diagonals" i.e., remainders <« zh.
We remark that both these errors are negligible (at least, for k = 3,4, see Section
5), since they both contribute <« T to I (T).

Then, due to the expression for I} , Ivi¢ [11] made a hypothesis about (avoiding
technicalities) the sums of A (z,a) (remainders into (1.1) above), performed over
the shift a, say Gy, which implies the bound Iy (T) << T (for the same k > 2).
Henceforth we assume that k& > 2.

Of course, he does not need (1.1) to hold individually Ya (< h, here), but he
observes that he is summing up, into Gy, without the modulus over the remainder,
Ag(z,a), so some a-cancellation can take place.
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So far, he passes from an asymptotic formula (1.1) to an a-averaged form of it,
which is easier to prove (however, nobody has done it yet!).

Here, with applications in mind, we pass from a single average to a double
average.

Building on his expression for I}/, it is possible to make a less stringent hypoth-
esis, to have a more flexible procedure for the remainders Ag(z, a).

We use, also, our previous work on the Selberg integral of the a.f. f (essentially
bounded and real), compare [1], in order to let the Selberg integral of dy, i.e.,
Ji(x, h), come into play. (It is a kind of “double average" of Ay (z,a).)

Unfortunately, due to an exponential factor multiplying di(n)dk(n + a) into
Cx(a) we cannot get a link with Iy, (T") using only Ji(x, h) (with h << F, v << T*/?),
but we also need to make a hypothesis on another double average of remainders
Ag(z,a). Furthermore, our bounds are also affected by the limitation k < 4, due to
some error terms arising from the Linnik method (compare (5.1) proof in Section
5).

We shall formulate our original Theorem in Section 4, and then present its
proof.

There is a way to improve the result (with a different proof, see Section 5) as
follows.

THEOREM 1.1. Let T — oo and, Ye > 0, T'* < M < T*/2. Then Vk > 2 we
have

T
(I <«T (1 +  max

— max J(M,h)|.
T M<T 2 M2 0<h<M/T (M h)

In the next two sections we shall briefly mention some history of I, and the
(related) additive divisor problems. Then, we shall prove our result in the subse-
quent section, before some remarks, and in the concluding section we shall prove
Theorem 1.1.

Acknowledgement. The author wishes to express his gratitude to the referee
for pointing out how to obtain the improved version of Theorem 1.1.

2. A concise history of moments of the Riemann zeta-function

We should keep in mind, here, that for fixed k € N we seek the bound

T
I(T) = / I¢(3 +it)|*"dt << T (2k-th moment problem)
0

(it is “on the line", since o = % is the critical line: “off the line" means with
% < o < 1) that (for £ > 2) is our aim; in fact, the English school gave first

2 cases: first Hardy and Littlewood [5] in 1916 gave asymptotics for £ = 1 (not
too difficult!) and then Ingham [8] in 1927 for k = 2 (actually, for both k = 1,2
he gave only Pai_o leading term, hence error logz better than main term); then,
Heath-Brown in 1979 [7] gave, for k = 2 (solved 2-add.div.pbm., i.e., the binary
additive divisor problem, see Section 3, using Weil’s bound for the Kloosterman
sums), Ps (not explicitly!) plus error By << T7/8,
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In a series of papers from the early '90’s, Ivi¢ and Motohashi (applying consid-
erations from SL(Z,?2) for the binary add.div.pbm.) obtained Ey < T?/3L¢ and,
in the mean-square, even Ey(T) < /T log® T. Tvi¢ explicited Paj,_o (when k = 2).
Like the binary additive divisor problem, this is not the whole story.

The case k = 3 (recall C3(a) problem), is again unsolved.

The bound I3(T) < T is called the “sixth moment" problem (actually, this
is the weak version and has a link (see Ivi¢ [13]) with the ternary additive divisor
problem.

Another interesting result on higher moments is (Heath-Brown [6]): Is(T) <
T?Le.

One glimpse at the higher moments (for k < 2, see [14]): the predicted asymp-
totics is Iy, ~ C(k)TLk2, Vk > 1 by applying the methods from Random Matrix
Theory in the 2000’s seminal works (early 2000’s) of Keating and Snaith [15] (at
Bristol); many others (Conrey, Ghosh [2] to name two).

3. A history of some additive divisor problems

The problem of proving (1.1) (at least fized a > 0) is called the k-ary additive
divisor problem: trivial case k = 1 (C1(a) = x Va € Z) and the binary additive
divisor problem, k = 2, are the only solved problems.

The case k = 3 is the ternary additive divisor problem (sometimes called Lin-
nik problem): some time ago, Vinogradov and Takhtadzhjan (see below k = 2)
announced its solution but with, as yet, unfilled holes in their (very technical)
“proof". Their approach still suffers from our lack of information about SL(Z, 3);
while our (enough good) state of the art about, instead, SL(Z,2) (actually, through
the application of the Kuznetsov trace formula, see [20]) allowed (starting from [18]
approach) Ivié, Motohashi and Jutila to solve satisfactorily, see especially [14] (and
recent Meurman’s [16]), the binary additive divisor problem (different approaches
work, with weaker remainders). We mention (still & = 2), in passing, Kloosterman
sums bounds (like Weil’s) in the d-method of Duke-Friedlander—Iwaniec for “deter-
minantal equations" (especially [4]). An even more general problem than this last
one has been solved by Ismoilov [9].

Thus, so far, no one has proved (for k > 2), given a € N,

Cr(a) = zPop—2(logx) + Ap(z,a), Ag(z,a) = o(x),
as x — oo (the k-ary additive divisor problem), not even for a single shift a > 0
(already k = 2 has delicate “uniformity" issues: see [14]).
4. Statement and proof of the original theorem
We state here our original theorem, together with its proof.

THEOREM 4.1. Let M < M’ < 2M, T'* < M < T*/? and H = M'*¢/T,
with double average G, = G(M,T) defined as

ZZAkxa

~, def
G = sup < Ji(z, t)
h<t h<a<t

M<a< M t<H
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Then for k = 3,4 we have

I(T) < T(l +  sup  GR(M,T) /M).
TKMKLTk/2

PRrOOF. First of all, the main terms in (1.2), with Psg_o, are treated like Ivié
does [11]; actually, since his Gy, is the supremum (see [11, Theorem 1]) of (the

absolute value of)
Z Ak (:L‘, a)a

a<t

LD IDINERINED DI DI CROL

h<t a<h h<t h<a<t

we split it as

whence

ZAk(x,a)

a<t

)

< '%ZZAk(x,a)

h<t a<h

XY Ao

h<t h<a<t

where the second (double) sum is in our CT;C; in the sequel, we shall let the Selberg
integral appear from the other term; that is, in fact, the arithmetic mean

% Z Z Ag(z,a)
h<t a<h

(a kind of average, something like the C! process in Fourier series) and can be
expressed as (on exchanging summations)

1 1 1
- —a+1)A = - —a)A NN .
F L=+ D) = 3 T - Ak + 5 T ulai)

Before we proceed further, we need to express how the diagonal remainders into
the estimate of Jy(x,1), i.e., the terms <& xt, and the tails, i.e., << t3, appear in
our final estimate for I: compare the calculations soon after this proof. This last
equation especially has a term

1
7 Z Az, 0) K x,
a<t

from the trivial estimate Ag(z,a) < z, giving diagonal terms; and the easily
proved relation Ag(z,—a) = Ag(z,a) + O-(z°a) gives tails (another diagonal:
Ar(z,0) << 2):

1 1
IS -k~ Y (¢ DA a)
a<t 0<al<t
(the ~ means “+ diagonals and tails"); in all, the term in G, with Jj, is

%ZZAk(m,a)N% Z (t —lal)Ak(z,a)

h<t a<h 0<]al<t
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and, since S(a) = max(t — |a|,0), V0 < |a| < ¢, applying (1.3) (compare [1]),

Y (t—lahAw(z,a) ~ Ji(z, 1),

0<|al<t
we obtain the desired bound with the Selberg integral (and the double average). O

We remark that, in spite of the fact that our “new" theorem holds Vk > 2
(integer), we have here some trouble in handling Selberg’s integral tails, since they
contribute to Gy, as (in the sup above)

2

1 M
K P K H < 5

which gives to I (T) a Contrlbutlon (the other sup above)
2

M M
<« T( M—l) K Tk/2=1,

T2
This is <« T only when k/2 < 2, i.e., k < 4 (diagonals give <« T', good Vk.)
The tails arise naturally when applying the Linnik method and even a more
careful analysis will almost surely not eliminate them. While they are negligible
for the Selberg integral, they are not negligible for our present approach.

We remark, in passing, that the “additional" double average, in this approach,
cannot be dispensed with.

5. Proof of Theorem 1.1

First of all, we may restrict ourselves to the following definitions of Iy, Ji :

T 1 3M 2
14(T) ::/ KERRDIES AT ::/ d(n) — Mi(t, B dt.
T/2 2 M/2

t<n<t+h

In fact, we can combine a dissection argument (for Ij) and (for Ji) a positivity
and monotonicity argument to reduce these integrals to the ones defined in the
introduction. The logarithmic factor(s) will be in the <« (let us fix ¢ > 0). In
order to keep the exposition clearer, we write <& even when it is only <, in the
sequel.

We start by choosing a Dirichlet series (C; is not to be confused with Cj(q)
above)

oo k-1
= Z ar(n)n™? o Z C;¢9(s), with ¢¥(s) — fx(s) holomorphic at s = 1.
n=1 j

This is done, in order to give the expected main term of the short sum ) dy(n),
that comes from the residue of 2¢#(s)Z- at s = 1; like (we shall see in a moment)
for the other short sum ) ax(n), which is this main therm, together with <« 1,
remainder terms. Here we obtain the coefficients ax(n) = 3_; Cj(—log n)?, since

we recall .
Z logn)in

n=1
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and we still have to calculate the coeflicients C; . This can be done using the
Laurent expansion at s = 1 of the Riemann zeta-function:

(s) =

(s—1)"

and (taking k-th powers) we get, from this, that
Co¢(s) + Ci¢'(s) + -+ + Cr_1 ¢V (),

here, has to have the same principal at s = 1 as ¢(¥(s). This is accomplished by
studying a linear system in k equations and unknowns Cy, ..., Ci_1, which has a
unique solution.

Then we isolate the mean-square of fj:

T T

I(T) < / IC(3 +it)F — fu(3 +it)|2dt+/ | fr(3 + it)|?dt,
T/2 T/2

since it is relatively easy to bound (analogously as the mean square of the zeta-

function, compare with Section 2):

/ |fi(% +it))Pdt << T
T/2

and, in the following, we shall ignore (see why in Sections 1 and 2) all such kind
of remainders. We wish to express (¥ — f at s = 1/2 +it, with t < T (ie.,
T < t < T now on), as ( < logT') smoothed Dirichlet polynomials such that there
holds (leaving < T')

di(n) — ax(n)

2
nl/2+it dt,

(5.1) /T/Q‘c’“ +it) — fr(: —Ht)‘ dt <« /T

T/2

M<n<2M

where T+ < M < T*/? and w here is a C'' weight supported in [M, 2M], with

1
wr) <1, w(r) <K i Va € [M,2M].

This can be done applying the functional equation (Vk > 2) for ¢¥, as in [10]; plug
t=<T, o= % +1/logT, Y = M =< T*?2 h =1log?T (do not confuse with our h at
1ast), into [10, Theorem 4.4] to obtain

—|—Zt Z dk _(n/Y)long’l’L_l/Q_it—FXk(%—l—it) Z dk(n)n—l/Q—H‘t

n<2Y n<M
1 . w dw
—Tﬁe(w)zmoﬂxk(%+zt+w)z dy,(n)n®~ 1/2+”ywr(1+1 T) o(1).
™ | Im(w)|<log* T n<M og

Subtracting fx(1/2 4+ it) from the left-hand side and inserting ax(n) into n—sums
we get that

CF(E +it) — fu(d +it)
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can be expressed (apart from the < 1-terms) by sums of the following types:

(5.2) Z ak(n)ef(n/Y)1og2Tn—1/27it — fe(X +it),

n<2Y
(5.3) Z ap(n)n =Y/t

n<M

(5.4) 3 ap(n)nmeT Y2 (y] < log! T),

n<M
(5.5) Y (de(n) — ar(n))e” " log? Tn="27" N " (dy(n) — ax(n))n /2T,

n<L2Y n<{M
(5.6) 37 (d(n) — ax(n))nm T2 (] <log! T).
n<M

For our purposes, the bounds x*(% +it) < 1 and x*(1 + loéT + it) < 1 suffice
(see e.g., [10]), with uniform constants Vk. Also, we can transform the n-sums into
integrals, which (apart from these sums) give an essentially bounded contribution.
We first treat the terms (5.2), (5.3), (5.4) like remainders, while (5.5) and (5.6) will
be into our final (5.1). Recall that there will be < logT (i.e., <« 1) of such sums.
Analogously as in Theorem 4.11 of Titchmarsh’s book [21]

. M1
Z ap(n)n =2 = Res(fk(s +1- it’)T, 3T it') + fu(d —it") + O (M?);

n<M

here t’ =t or t' = t+ (1/log T) 4 u, with |u| < log* T, an eventual perturbatlon to
w of the kind n'/1°8 T+ which gives w’ < (logT)* /M, into our w’ <« 1/M.

We perform & times an M-average over these (5.3), (5.4) terms to let the residue
term Og(1), while (see above) f mean-square is negligible, like O, (M¢) < 1. The
other terms are managed like these, with a (k times) M-average (Y =< M), on
writing

Z ak(n)e—(n/Y)log2 T,—1/2-it _ fk(% + it) _ Z ak(n)n—l/Q—it o fk(% + it)

nL2Y n<A

+Zak(n) ( ) —1/2— zt+ Z ak —(n/Y)log®T ,1/2 zt
n<A Yiog" T A<n<2Y

where the difference on the right-hand side is treated as above; also,

Zak(n)O(Ylog T) n~l27 Z St

n<A

while partial summation allows to isolate the exponential factor, in order to average
(like before) the inner sums, and, with the choice A < Y?2/3 we get << 1, so that
even (5.2) can be neglected. Next, we M-average and use a dyadic dissection
(to arrive to [M,2M], there) for the remaining sums. (In the other proof, not-
averaged residue terms in (5.2)—(5.4) correspond to tails, giving the limit k& < 4,
see Section 4.) Collecting all these sums and estimates, we get (5.1).
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Now we apply Gallagher’s Lemma (see e.g., Lemma 1.10 in [17]) to the sum
>, w(n)(di(n) — ag(n)) n=1/27% to obtain

T v _ |’ 2 [¥|§~ w) _ dy
/T;ﬁ(dk(n) ax(n))n dt<<T/0 zy:ﬁ(dk(n) ar(n))| ==,

with 7 := exp(1/T) (see that 7 —1 < 1/T). Here, since w is supported in [M, 2M],

> M - aw)

T2 3M
dy
y<n<Ty

(5.7) I(T) «

max -—
Titec MTk/2 M M/2

(again, leaving <« T'). Let us now denote p:=7—1~1/T.
In order to avoid the inner dependence on y, applying the partial summation

we have
y+py ,
> cmft <, ma |5 e (It [ 17 0)
h<<max(py) y
y<n<y+py y<n<y+h

(where we can assume y integer, the difference giving <« 1 in the sum), with the
(local) definitions ¢(n) := di(n) — ax(n) and f(v) := w(v)/\/v, where

1 1 1
— and |’ —t—— ¥ M <2M
T < = and £/ 0)] <€ "= 7o Y0 [y +pu] (M <y <2M)
we have
2 1 2
-1/2 _ _ _
> w2 (de(n) —an()| << max ol D (dk(n) ~ ai(n)
y<n<y+py y<n<y+h

Finally, inserting this in (5.7) we obtain

T M
(T <T max max —2/
Tite KMLTH/2 0<haM/T M? Jrp/0

2
d(n) — My(z, )| da,

z<n<x+h

where it is evident that the main term My(z, k) is the ay(n)—short sum in |a, x+h].
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