EMIS ELibM Electronic Journals Publications de l'Institut Mathématique, Nouvelle Série
Vol. 90(105), pp. 111–123 (2011)

Previous Article

Next Article

Contents of this Issue

Other Issues


ELibM Journals

ELibM Home

EMIS Home


Pick a mirror

 

SETS AND POSETS WITH INVERSIONS

Arpad Szaz

Department of Mathematics, University of Debrecen, H–4010 Debrecen, Pf. 12, Hungary

Abstract: We investigate unary operations $\lor$, $\land$ and $\lozenge$ on a set $X$ satisfying $x=x^{\lor\lor}=x^{\land\land}$ and $x^{\lozenge}=x^{\lor\land}=x^{\land\lor}$ for all $x\in X$. Moreover, if in particular $X$ is a meet-semilattice, then we also investigate the operations defined by $$ \alignat 3 x_{\blacktriangledown}&=x\land x^{\lor},& x_{\blacktriangle}&=x\land x^{\land},& x_{\blacklozenge}&=x\land x^{\lozenge};
x_{\bullet}&=x^{\lor}\land x^{\land},\quad& x_{\clubsuit}&=x^{\lor}\land x^{\lozenge},\quad& x_{\spadesuit}&=x^{\land}\land x^{\lozenge}; \endalignat $$ and $x_{\bigstar}=x\land x^{\lor}\land x^{\land}\land x^{\lozenge}$ for all $x\in X$. Our prime example for this is the set-lattice $\Cal{P}(U,V)$ of all relations on one group $U$ to another $V$ equipped with the operations defined such that $$ F^{\lor}(u)=F(-u), \quad F^{\land}(u)=-F(u) \quad \text{and} \quad F^{\lozenge}(u)=-F(-u) $$ for all $F\subset X\times Y$ and $u\in U$.

Classification (MSC2000): 06A06, 06A11; 06A12, 20M15

Full text of the article: (for faster download, first choose a mirror)


Electronic fulltext finalized on: 16 Nov 2011. This page was last modified: 30 Nov 2011.

© 2011 Mathematical Institute of the Serbian Academy of Science and Arts
© 2011 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition