Publications de l'Institut Mathématique, Nouvelle Série Vol. 96[110], pp. 85–102 (2014) |
|
THE COBURN–SIMONENKO THEOREM FOR SOME CLASSES OF WIENER–HOPF PLUS HANKEL OPERATORSVictor D. Didenko and Bernd SilbermannFaculty of Science, Universiti Brunei Darussalam, Bandar Seri Begawan, BE1410 Brunei; and Fakultät für Mathematik, Technische Universität Chemnitz, 09107 Chemnitz, GermanyAbstract: Wiener–Hopf plus Hankel operators $W(a)+H(b):L^p(\mathbb{R}^+)\to L^p(\mathbb{R}^+)$ with generating functions $a$ and $b$ from a subalgebra of $L^\infty(\mathbb{R})$ containing almost periodic functions and Fourier images of $L^1(\mathbb{R})$-functions are studied. For $a$ and $b$ satisfying the so-called matching condition $$ a(t)a(-t)=b(t)b(-t),\quad t\in\mathbb{R}, $$ we single out some classes of operators $W(a)+H(b)$ which are subject to the Coburn–Simonenko theorem. Keywords: Wiener–Hopf plus Hankel operator, Coburn–Simonenko theorem, invertibility Classification (MSC2000): 47B35, 47B38; 47B33, 45E10 Full text of the article: (for faster download, first choose a mirror)
Electronic fulltext finalized on: 30 Oct 2014. This page was last modified: 24 Nov 2014.
© 2014 Mathematical Institute of the Serbian Academy of Science and Arts
|