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ON THE CONVERGENCE OF A CLASS OF

THE REGULARIZATION METHODS FOR

ILL-POSED QUADRATIC MINIMIZATION

PROBLEMS WITH CONSTRAINT

Milojica Jaćimović, Izedin Krnić, and Oleg Obradović

Abstract. We study a class of regularization methods for solving least-squares
ill-posed problem with a convex constraint. Convergence and convergence rate
results are proven for the problems which satisfy so called power source condi-
tion. All the results are obtained under the assumptions that, instead of exact
initial data, only their approximations are known.

1. Introduction

We consider an ill-posed quadratic minimization problem

(1.1) J(u) =
1

2
‖Au − f‖2 → inf, u ∈ U,

where A : H → F is a bounded linear operator mapping between Hilbert spaces H
and F , U ⊆ H is a closed convex set and f ∈ F is fixed. We will deal with this
problem assuming that the sets U∗ and U∞ of the solutions of the given problem
and of the corresponding problem without constraints

(1.2) J(u) =
1

2
‖Au − f‖2 → inf , u ∈ H,

are nonempty. In this case the problems

(1.3) ‖u‖2 → inf , u ∈ U∗, ‖u‖2 → inf, u ∈ U∞

have unique solutions, which we will denote by u∗ and u∞ and call normal solutions
of problems (1.1) and (1.2).

Let us observe that problem (1.1) is equivalent to the variational inequality

find u ∈ U such that 〈A∗Au − A∗f, v − u〉 > 0, ∀v ∈ U .

while the operator equation (which is equivalent to the problem (1.2)) A∗Au = A∗f ,
is a specific case of the previous variational inequality for U = H .
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Problems (1.1) and (1.2) in the literature (see [9, 11, 12, 18]) are regularly
studied under the assumptions that, instead of the exact operator A and instead of
the element f , one actually deals with their approximations Aη ∈ L(H, F ), fδ ∈ F ,
such that

(1.4) ‖A − Aη‖ 6 η, ‖f − fδ‖ 6 δ, ‖Aη‖2 6 a,

where η, delta > 0 are small positive real numbers and a > 0.
In general, problems (1.1) and (1.2) are ill-posed. Therefore, it is necessary

to apply some methods of regularization [1, 5, 18, 19] that will produce good and
stable sequence of approximate solutions of the problems.

Methods of regularization considered here are based on a modification of the
family of regularizing functions from [18]. Note that the Tikhonov method and the
iterated Tikhonov method of regularization belong to this class of methods.

The bounds of the accuracy of the regularization methods for solving ill-posed
problems (1.1) and (1.2) are usually obtained for classes of problems defined by cer-
tain conditions concerning their normal solutions. The conditions that we discuss
here and that were discussed in the cited papers belong to the class of so-called
source conditions or sourcewise representable conditions. The well known condi-
tions of this type are power source conditions that were widely used in [18] for
obtaining the estimates of the convergence rate of regularization methods for solv-
ing linear operator equations.

Our main goal is to construct the methods of regularization of some classes
of ill-posed problems (1.1) (minimization of quadratic function with convex con-
straints), with the convergence rate that can be compared with the convergence
rate of regularization of linear operator equation (see for example [18]). However,
it is not possible to obtain such convergence rates without additional conditions.
In [11] an example was constructed that shows the rate of convergence, depends
on the boundary of the set U ⊆ R2, and it can be arbitrarily slow.

The paper is organized as follows. In Section 2 we present and discuss the
roles and the meanings of the source conditions for problems (1.1) and (1.2) and
describe one class of regularization methods. The key relation of the method for
solving (1.2 is presented in two forms: as a variational inequality and as a problem
of minimization. The proposed methods are inspired by the regularization methods
for solving linear operator equation without constraints, studied in [1,5,17,18] and
developed e.g., in [3,7,8,13–18], in a way that is different from the one presented
here. Taking into account the presence of the constraints, for the functions that
define the regularization method, we had to include new conditions, and to use new
techniques other than those used in [9–12].

The main results of the paper are contained in Section 3 where we prove conver-
gence of the regularization method for ill-posed problems (1.1). In two theorems
we show that the typical (power) source condition or projected source condition
is sufficient for the convergence rate (of regularized solutions of (1.1) to normal
solution) of the same order as in the case of minimization problem (1.2) without
constraints.
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2. Source conditions and regularization method

2.1. Power source conditions and unconstrained regularization. The
first source conditions we consider here is the so-called power source condition or
power sourcewise representable condition for problem (1.2), which can be presented
in the form

(2.1) u∞ = |A|ph∗, where h∗ ∈ H, |A|p = (A∗A)p/2, p > 0.

The previous condition seems quite natural, if we have in mind that u∞ ∈ R(A∗),

where R(A∗) is the range of the operator A and R(A∗) its closure in norm of the
space H . It means that the solution u∞ is densely surrounded by the elements
from R(A∗).

In [1,5,15,18] as approximations of the normal solution u∞ of problem (1.2),
the following was used

(2.2) uα = gα(A∗
ηAη)A∗

ηfδ

that are generated by the family of Borel measurable functions gα : [0, a] 7→ R

satisfying the conditions

(2.3)

sup
06t6a

|gα(t)| 6 M/α, M > 0,

sup
06t6a

tp|1 − tgα(t)| 6 γpαp, α > 0, γp = const, 0 6 p 6 p0, 0 < p0.

Here, a is the constant from (1.4). Number p0 is called qualification of the family
{gα : α > 0} and it has an important role. For example, (see [19, p. 100]) if the
conditions (1.4), (2.3) and (2.1) are satisfied, then for

α = α(η, δ) = d(η + δ)
2

p+2 , d = const > 0,

one has

‖uα − u∞‖ 6 const(η + δ)
p

p+2 , 0 < p 6 2p0.

2.2. Projected source condition and constrained regularization. At
first, we need to address the question of the meaning of the source condition [15]

(2.4) u∗ = |A|ph∗, where h∗ ∈ H, |A|p = (A∗A)p/2, p > 0.

When studying the problem (1.1) of minimization with constraints, it is necessary to
have in mind that, in general, the normal solution u∗ does not satisfy the condition

(2.5) u∗ ∈ R(A)∗ = N (A)⊥,

that was fulfilled for the problem without constraints (in this case u∗ = u∞). This
fact was important for the justification of the source condition (2.1). Hence, in
case (1.1) of minimization with constraints, it is necessary to describe a class of
the problems whose normal solutions satisfy the condition (2.4) or to find a more
adequate source condition with similar meaning. We will follow these steps to prove
a lemma.

Generally, in what follows, we will denote by ΠX(x) (or by ΠXx) the metric
projection of the point x on a closed convex set X ⊆ H .



92 JAĆIMOVIĆ, KRNIĆ, AND OLEG OBRADOVIĆ

Lemma 2.1. Normal solution u∗ of problem (1.1) belongs to ΠU (R(A∗)).

Proof. The function Fα(u) = 1
2 ‖Au − f‖2 + 1

2 α‖u‖2 is strongly convex, such
that the problem Fα(u) 7→ inf, u ∈ U has a unique solution, which we denote
by vα. It is well known that vα → u∗ as α → 0. The corresponding variational
inequality 〈F ′

α(vα), u − vα〉 > 0, ∀u ∈ U can be written in the form 〈vα − (A∗f −
A∗Auα)/α, u − vα〉 > 0, ∀u ∈ U . It is well known ( [17] or [19, p. 183]) that then
vα = ΠU ((A∗f − A∗Auα)/α) ∈ ΠU (R(A∗)). From here, allowing that α → 0, we

obtain that u∗ ∈ ΠU (R(A∗)). �

In what follows we will also study the accuracy of the regularization methods on
the class of problems of the type (1.1) with normal solutions satisfying the so-called
projected source condition:

(2.6) u∗ = ΠU (|A|ph∗), h∗ ∈ H, p > 0.

Note that the source conditions for the linear operator equations with con-
straints, that are coordinated with the Tikhonov method of regularization were
considered in [11].

The following example indicates one class of problems (1.1) whose normal so-
lutions satisfy (2.5).

Example 2.1. If U ⊆ H is a closed convex which has exactly one hyper-

plane of support at each boundary point and the conditions u∗ ∈ ΠU (R(A∗)) and
U∗ ∩ U∞ = ∅, are satisfied, then (2.5) holds.

Proof. From U∗∩U∞ = ∅ it follows that u∗ belongs to the boundary of the set
U∗ and that J ′(u∗) = A∗Au∗ − A∗f 6= 0. Let u∗ = ΠU (h), h ∈ R(A∗) and denote
c = u∗ − h. Then 〈c, u − u∗〉 = 〈u∗ − h, u − u∗〉 > 0, ∀u ∈ U . It follows from here
that the hyperplane Hc := {x ∈ H : 〈c, x〉 = 〈c, u∗〉} is a hyperplane of support of
U at u∗. From the inequality 〈A∗Au∗ −A∗f, u−u∗〉 = 〈J ′(u∗), u−u∗〉 > 0, ∀u ∈ U ,
it follows that HJ′(u∗) = {x ∈ H : 〈J ′(u∗), x〉 = 〈J ′(u∗), u∗〉} is also a hyperplane
of support of U at u∗. Having in mind that U has only one supporting hiperplane
at u∗, we can now conclude that the vector A∗Au∗ − A∗f = J ′(u∗) is collinear

with c : J ′(u∗) = A∗Au∗ − A∗f = γc, γ 6= 0. It means that c ∈ R(A∗) ⊆ R(A∗).

Now u∗ ∈ R(A∗) immediately follows from here and from equality u∗ = c + h,

h ∈ R(A∗). �

Now we can describe a class of regularization methods whose accuracy we study
on a class of the problems whose normal solutions satisfy (2.1). Later, we will also
consider condition (2.6).

Suppose that the Borel measurable functions gα : [0, a] 7→ R, a > 0 satisfy the
conditions

1 − tanα(t) > 0, t ∈ [0, a],(2.7)

1

t + βα
6 gα(t) 6

1

βα
, t ∈ [0, a], β > 0,(2.8)
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(2.9)
∃p0 > 0 such that ∀p ∈ [0, p0] sup

06t6a
tp(1−tanα(t)) 6 γαp, α > 0, where γ = γ(p0).

Notice that, in this case, the functions satisfying conditions (2.7)–(2.9) also
satisfy conditions (2.3). In addition, the family of the functions gα(t) = (t + α)−1

and gα(t) =
∑m−1

j=0
αj

(t+α)j = t−1(1−(1+ t)−m) (that defines the Tikhonov methods

of regularization and its iterated variant) also satisfy these conditions.
We prove some properties of the operators gα(A∗

ηAη) and g−1
α (A∗

ηAη), where

the function t 7→ 1/gα(t) is denoted by (gα(t))−1.
Firstly, let us observe that gα(A∗

ηAη) : H 7→ H is a self-adjoint positive definite

operator. Hence there exist g
1/2
α (A∗

ηAη) and g
−1/2
α (A∗

ηAη) and they are also self-
adjoint and positive definite operators.

Lemma 2.2. If conditions (2.7) and (2.8) are satisfied, then the following esti-
mates hold:

‖gα(A∗
ηAη)‖ 6 1/βα, ‖gα(A∗

ηAη) − A∗
ηAη‖ 6 αβ,(2.10)

max{‖Aηu‖2; βα‖u‖2} 6 〈g−1
α (A∗

ηAη)u, u〉 6 ‖Aηu‖2 + βα‖u‖2,(2.11)

‖Aηgα(A∗
ηAη)A∗

η‖ 6 1, ‖g1/2
α (A∗

ηAη)A∗
η‖ 6 1.(2.12)

Proof. The first inequality in (2.10) follows from (2.8):

‖gα(A∗
ηAη)‖ 6 sup

06t6a
gα(t) 6 1/βα.

while the second one from ‖g−1
α (A∗

ηAη) − A∗
ηAη‖ 6 sup06t6a |(gα(t))−1 − t| 6

αβ. Let us prove the first inequality in (2.11). Based on (2.8), we have that
βα 6 (gα(t))−1 6 t + βα. Therefore, we have βα‖u‖2 6 〈g−1

α (A∗
ηAη)u, u〉. From

1 − tanα(t) > 0 it follows that t 6 g−1
α (t), wherefrom we obtain 〈g−1

α (A∗
ηAη)u, u〉 >

〈A∗
ηAηu, u〉 = ‖Aηu‖2. Furthermore, the second inequality in (2.11) is a conse-

quence of the inequality (gα(t))−1 6 t + βα.
Let us prove (2.12). Using the equality Aηgα(A∗

ηAη)A∗
η = AηA∗

ηgα(AηA∗
η), we

have ‖Aηgα(A∗
ηAη)A∗

η‖ = ‖AηA∗
ηgα(AηA∗

η)‖ 6 sup06t6a tgα(t) 6 1. The second
inequality in (2.12) is a consequence of the previous one:

‖g1/2
α (A∗

ηAη)A∗
ηu‖2 = 〈g1/2

α (A∗
ηAη)A∗

ηu, g1/2
α (A∗

ηAη)A∗
ηu〉

〈gα(A∗
ηAη)A∗

ηu, A∗
ηu〉 = 〈Aηgα(A∗

ηAη)A∗
ηu, u〉 6 ‖u‖2.

Consequently, ‖g
1/2
α (A∗

ηAη)A∗
η‖ 6 1. �

As an approximation of the normal solution of problem (1.1), one can take the
unique solution uα ∈ U of the variational inequality

(2.13)
〈

g−1
α (A∗

ηAη)uα − A∗
ηfδ, u − uα

〉

> 0, ∀u ∈ U,

where the functions gα satisfy conditions (2.7)–(2.9).
In the cases of Tikhonov regularization and the Tikhonov iterated regulariza-

tion, variational inequalities (2.13) become
〈

(A∗
ηAη + αI)uα − A∗

ηfδ, u − uα

〉

> 0,
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∀u ∈ U , and
〈

(A∗
ηAη + αI)un,α − αun−1,α − A∗

ηfδ, u − un,α

〉

> 0, ∀u ∈ U ,
n = 1, . . . , m, u0,α = 0, uα = um,α.

Problem (2.13) has a unique solution, since the operator Gα(u) = g−1
α (A∗

ηAη)u−
Aη∗fδ is strongly monotone:

〈Gα(u) − Gα(v), u − v〉 =
〈

g−1
α (A∗

ηAη)(u − v), u − v
〉

> βα‖u − v‖2.

Note that u∗
α = gα(A∗

ηAη)A∗
ηfδ in (2.2) (which is an approximate solution of

problem (1.2)), is a unique solution of the equation Gα(u) = 0.
It is easy to see that Gα is a potential operator: G(u) = T ′

α(u), where

Tα(u) :=
∥

∥g−1/2
α (A∗

ηAη)u − g1/2
α (A∗

ηAη)A∗
ηfδ

∥

∥

2
.

Consequently, variational inequality (2.13) is equivalent to the minimization prob-
lem Tα(u) → inf, u ∈ U .

3. Convergence of the regularization methods

In this section we prove the convergence uα → u∗ as α → 0 and derive an
estimate of the rate of convergence in the case when condition (2.4) (or (2.6) is
satisfied. Firstly, we prove some auxiliary results.

Lemma 3.1. If conditions (1.4) and (2.8) are satisfied, and if η
α → 0 as α → 0,

then
1

βα

∥

∥A∗
ηAη

(

I − Π
R(A∗)

)

u∗
∥

∥ → 0 as α → 0,(3.1)

1

βα

∥

∥

(

g−1
α (A∗

ηAη) − βα
)(

I − Π
R(A∗)

)

u∗
∥

∥ → 0 as α → 0.(3.2)

1

βα

∥

∥

(

g−1
α (A∗

ηAη) − A∗
ηAη

)

‖ 6 C, C = const.(3.3)

Proof. Taking into account that the equality A
(

I − Π
R(A∗)

)

u∗ = 0, (3.1)

can be obtained as an immediate consequence of (1.4) and of the lemma, namely,
bearing in mind the conditions of the lemma, we can obtain

1

βα

∥

∥A∗
ηAη

(

I − Π
R(A∗)

)

u∗
∥

∥ =
1

βα

∥

∥A∗
η(Aη − A)

(

I − Π
R(A∗)

)

u∗
∥

∥

6
η

βα
‖A∗

η‖
∥

∥

(

I − Π
R(A∗)

)

u∗
∥

∥ → 0 as α → 0.

Convergence (3.2) is also a consequence of (1.4) and of the conditions of the
lemma. From βα 6 (gα(t))−1 6 t+βα it follows 0 6 (gα(t))−1 −βα 6 t. Therefore,
we have

1

βα

∥

∥

(

g−1
α (A∗

ηAη) − βαI
)(

I − Π
R(A∗)

)

u∗
∥

∥ 6
1

βα

∥

∥A∗
η

∥

∥

∥

∥Aη

(

I − Π
R(A∗)

)

u∗
∥

∥

=
1

βα
‖A∗

η‖
∥

∥(Aη − A)
(

I − Π
R(A∗)

)

u∗
∥

∥ 6
aη

βα

∥

∥

(

I − Π
R(A∗)

)

u∗
∥

∥ → 0 as α → 0.

Finally, (3.3) is a consequence of the inequality ‖(g−1
α (A∗

ηAη) − A∗
ηAη)‖ 6

sup06t6a{1/(gα(t) − t)} 6 αβ. �
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In the proof of the convergence uα → u∗, we shall also use the following lemma
whose proofs can be found in [18, pp. 93 (Lemma 1.2), 99 (Lemma 2.2), 109 (Lem-
ma 3.2) and 114 (inequality 3.60)].

Lemma 3.2. (a) If ‖A − Aη‖ 6 η, then

(∀p > 0) ‖|Aη|p − |A|p‖ 6 c(1 + | ln η|)ηmin{1,p}, c = c(p) ≡ const.

(b) If, in addition, the conditions ‖Aη‖2 6 a, ‖A‖2 6 a, and (2.9) are satisfied,
then
(b1) ‖AηKαη(|A|p − |Aη|p)h∗‖ 6 γη, γ = γ(α, p) as α → 0,

(b2) (∀x ∈ R(A∗)) ‖Kαηx‖ → 0 as α, η → 0,

(b3) (∀x ∈ R(A∗))(∀p0 > 1/2) ‖Kαηx‖ → 0, 1√
α

‖AηKαηx‖ → 0

as α, η → 0, where Kαη = I − A∗
ηAηgα(A∗

ηAη) and γp is the constant from (2.9)

(b4) ‖AηKαη|A|ph∗‖ 6 c2α(p+1)/2‖h∗‖, c2 = c2(p), 0 6 p 6 2p0 − 1.

Now, we can prove the main results of the paper. They are related to the
convergence of the methods of regularization.

Theorem 3.1. Suppose conditions (1.4) and (2.7)–(2.9) are satisfied.
(a1) If Au∗ = f and the parameter α in (2.13) is chosen such that α = α(η, δ) → 0

and η+δ
α → 0 as η, δ → 0, then uα → u∗ as η, δ → 0.

(a2) If Au∗ 6= f and α = α(η, δ) → 0 and η2

α3 + δ
α → 0 as η, δ → 0, then uα → u∗

as η, δ → 0.

(b) If in addition, condition (2.4) is satisfied, then
(b1) in the case of Au∗ = f , we have that

‖uα − u∗‖ = O
(

(η + δ)/
√

α + αp/2)

+ o
(

ηp/(p+2)),(3.4)

‖Aη(uα − u∗)‖ = O
(

η + δ + α
p+1

2

)

+
√

αo(η
p

p+2 ), 0 6 p 6 2p0 − 1, p0 >
1

2
.(3.5)

(b2) in the case of Au∗ 6= f we have that

‖uα − u∗‖ = O
( η

α
+

δ√
α

+ α
p
2

)

+ o
(

η
p

p+2
)

,(3.6)

‖Aη(uα − u∗)‖ = O
( η√

α
+ δ + α

p+1
2

)

+
√

α o
(

η
p

p+2
)

, 0 6 p 6 2p0 − 1, p0 >
1

2
.

(3.7)

Proof. Let us begin with the variational inequality (2.13) that for u = u∗
gives 〈g−1

α (A∗
ηAη)uα − A∗

ηfδ, u∗ − uα〉 > 0. From here, taking into account the
inequality 〈A∗Au∗ − A∗f, u∗ − uα〉 6 0, and the equality

A∗
ηfδ = A∗

ηAηu∗ +(A∗f −A∗Au∗)+A∗
η[(A−Aη)u∗ +(fδ −f)]+(A∗ −A∗

η)(Au∗ −f),
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we obtain

〈g−1
α (A∗

ηAη)(uα − u∗), uα − u∗〉 6 〈g−1
α (A∗

ηAη)u∗, u∗ − uα〉 − 〈A∗
ηfδ, u∗ − uα〉

6 〈g−1
α (A∗

ηAη)u∗, u∗ − uα〉 − 〈A∗
ηAηu∗, u∗ − uα〉

+ 〈A∗
η[(Aη − A)u∗ + (f − fδ)], u∗ − uα〉 + 〈(A∗

η − A∗)(Au∗ − f), u∗ − uα〉
= 〈(g−1

α (A∗
ηAη) − A∗

ηAη)u∗, u∗ − uα〉 + 〈(Aη − A)u∗ + (f − fδ), Aη(u∗ − uα)〉
+ 〈(A∗

η − A∗)(Au∗ − f), u∗ − uα〉.

From here, using the conditions of the theorem, and the conditions on functions
gα, and ε-inequality 〈a, b〉 6 ε

2 ‖a‖2 + 1
(2ε) ‖b‖2, we obtain

1

2
αβ‖uα − u∗‖2 +

1

2
‖Aη(uα − u∗)‖2

6 max{αβ‖uα − u∗‖2; ‖Aη(uα − u∗)‖2}

6 〈g−1
α (A∗

ηAη)(uα − u∗), uα − u∗〉

6
ε1

2
‖u∗ − uα‖2 +

1

2ε1
‖gα(A∗

ηAη) − A∗
ηAη‖2‖u∗‖2

+
ε2

2
‖Aη(u∗ − uα)‖2 +

1

ε2
‖Aη − A‖2‖u∗‖2 +

ε2

2
‖Aη(u∗ − uα)‖2

+
1

ε2
‖f − fδ‖2 +

ε3

2
‖u∗ − uα‖2 +

1

2ε3
‖Au∗ − f‖2‖A∗

η − A∗‖2

6
ε1

2
‖u∗ − uα‖2 +

1

2ε1
(αβ)2‖u∗‖2 + ε2‖Aη(u∗ − uα)‖2

+
1

ε2
η2‖u∗‖2 +

1

ε2
δ2 +

ε3

2
‖u∗ − uα‖2 +

1

2ε3
‖Au∗ − f‖2η2.

For ε1 = ε3 = αβ
2 , ε2 = 1

4 , we have

‖Aη(uα − u∗)‖2 6 4αβ‖u∗‖2 + 4η2‖u∗‖2 + 8δ2 +
η2

αβ
‖Au∗ − f‖2,

and consequently, for α ∼ η,

‖Aη(uα − u∗)‖ = O
(√

α + η + δ +
η√
α

)

= O
(√

α +
√

η + δ
)

.

For ε1 = ε3 = αβ
4 , ε2 = 1

2 , we have

‖uα − u∗‖2 6 8‖u∗‖2 + 2
η2

αβ
‖u∗‖2 + 2

δ2

αβ
+ 8

η2

α2β2 ‖Au∗ − f‖2

It means that (uα) remains bounded as α → 0.

Now, according to the equality u∗ = P u∗ + (I − P )u∗, where P = Π − R(A∗)

is the (orthogonal) projection onto the subspace R(A∗), and bearing in mind that

g
1/2
α (A∗

ηAη) and g
−1/2
α (A∗

ηAη) are self-adjoint operators, the previous inequality can
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be written in the form
〈

g−1
α (A∗

ηAη)(u∗ − uα), u∗ − uα

〉

= ‖g−1/2
α (A∗

ηAη)(u∗ − uα)‖2

6
〈

g−1/2
α (A∗

ηAη)KαηP u∗, g−1/2
α (A∗

ηAη)(u∗ − uα)
〉

+
〈

(g−1
α (A∗

ηAη) − A∗
ηAη)(I − P )u∗, u∗ − uα

〉

+
〈

g1/2
α (A∗

ηAη)A∗
η

[

(Aη − A)u∗ + (f − fδ)
]

, g−1/2
α (A∗

ηAη)(u∗ − uα)
〉

+
〈

g1/2
α (A∗

ηAη)(A∗
η − A∗)(Au∗ − f), g−1/2

α (A∗
ηAη)(u∗ − uα)

〉

,

where Kαη = I − A∗
ηAηgα(A∗

ηAη). From here, using again ε-inequality, we get

〈

g−1
α (A∗

ηAη)(u∗ − uα), u∗ − uα

〉

= ‖g−1/2
α (A∗

ηAη)(u∗ − uα)‖2

6
3

2
‖g−1/2

α (A∗
ηAη)KαηP u∗‖2 + ‖g1/2

α (A∗
ηAη)A∗

η

[

(Aη − A)u∗ + (f − fδ)
]2

+ ‖g1/2
α (A∗

ηAη)(A∗
η − A∗)(Au∗ − f)‖2 +

1

2
‖g−1/2

α (A∗
ηAη)(u∗ − uα)‖2

+
〈

(g−1
α (A∗

ηAη) − A∗
ηAη)(I − P )u∗, u∗ − uα

〉

.

or
〈

g−1
α (A∗

ηAη)(u∗ − uα), u∗ − uα

〉

6 3‖g−1/2
α (A∗

ηAη)KαηP u∗‖2 + ‖g1/2
α (A∗

ηAη)A∗
η

[

(Aη − A)u∗ + (f − fδ)
]2

+
{

‖g1/2
α (A∗

ηAη)(A∗
η − A∗)(Au∗ − f)‖

}2

+ 2
〈

(g−1
α (A∗

ηAη) − A∗
ηAη)(I − P )u∗, u∗ − uα

〉

.

Furthermore, as an immediate consequence of (2.12), we have

(3.8) ‖g−1/2
α (A∗

ηAη)u‖2 = 〈g−1
α (A∗

ηAη)u, u〉 6
(

‖Aηu‖ +
√

αβ ‖u‖
)2

.

Now, according to inequalities (2.10)–(2.12), (3.8), and taking into account condi-
tions (1.4), we obtain

max
{

‖Aη(uα − u∗)‖2; αβ‖uα − u∗‖2}

(3.9)

6

{

‖AηKαηP u∗‖ +
√

αβ ‖KαηP u∗‖ + η‖u∗‖ + δ +
η√
αβ

‖Au∗ − f‖
}2

+ 2
〈(

g−1
α (A∗

ηAη) − αβI
)

(I − P )u∗, u∗ − uα

〉

+ 2αβ
〈

(I − P )u∗, u∗ − uα

〉

− 2
〈

A∗
ηAη(I − P )u∗, u∗ − uα

〉

Because (uα) is bounded, there exist a null-sequences (αn), (ηn), and (δn), and
v∗ ∈ U , such that uαn converges weakly to v∗ as n → +∞. In order to simplify the
text, we will assume that uα converges weakly to v∗ as α → 0. Then, from (3.9),
Lemmas 3.1 and 3.2, and from the conditions of the theorem, bearing in mind the
lower-semicontinuity of the norm, it follows that
(3.10)
lim
α→0

‖Aη(u∗−uα‖ = 0, i.e., Av∗ = Au∗ and ‖u∗−v∗‖2
6 2

〈(

I−Π
R(A∗)

)

u∗, u∗−v∗
〉

.
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The equality Av∗ = Au∗ shows that v∗ is also a solution of the problem (1.1)
and that v∗ − u∗ ∈ KerA. Now, inequality (3.10) can be written as ‖u∗ − v∗‖2 6

2〈u∗, u∗ − v∗〉.
Also, as a solution of minimization problem (1.3), u∗ satisfies the variational

inequality 〈u∗, u∗ −v∗〉 6 0. Hence, v∗ = u∗ and consequently, uα weakly converges
to u∗. Finally, if in (3.9) η → 0 and δ → 0, then we get that uα strongly converges
to u∗.

Inequality (3.7) remains to be proven. Let us suppose that condition (2.4) is
satisfied. Then (I −P )u∗ =

(

I −Π
R(A∗)

)

u∗ = 0 and inequality (3.9) can be written

in the form

max

{

1√
αβ

‖Aη(uα − u∗)‖; ‖uα − u∗‖
}

6
1√
αβ

‖AηKαη|A|ph∗‖ + ‖Kαη|A|ph∗‖ +
η‖u∗‖ + δ√

αβ
+

η‖Au∗ − f‖
αβ

.

Let us estimate 1√
αβ

‖AηKαηu∗‖ and ‖Kαη|A|ph∗‖. Applying the inequality

(b4) from Lemma 3.2, we obtain the estimate:

1√
αβ

‖AηKαη|A|ph∗‖ 6

(

εαp
η√
αβ

+
γ p+1

2√
β

α
p
2

)

‖h∗‖, 0 < p 6 2p0 − 1.

In a similar way, we can obtain the inequality

‖Kαη|A|ph∗‖ 6

[

cp(1 + | ln η|)ηmin{1;p} + γ p
2
α

p
2

]

‖h∗‖.

Then from (3.4) we have

max

{

1√
αβ

‖Aη(uα − u∗)‖; ‖uα − u∗‖
}

6

(

εαp
η√
αβ

+
γ p+1

2√
β

α
p
2

)

‖h∗‖

+
[

cp(1 + ln η)ηmin{1;p} + γ p
2
α

p
2

]

‖h∗‖ +
η‖u∗‖ + δ√

αβ
+

η‖Au∗ − f‖
αβ

.

Now, taking into account that (1+| ln η|)ηmin{1;p}

ηp/(p+2) → 0 as η → 0, we obtain

estimates (3.4)–(3.7). �

To our knowledge, there are no regularization methods based on functions
satisfying conditions (2.7)–(2.9) with qualification p0 > 1, such that a theorem
analogous to Theorem 3.1 holds when condition (2.4) is replaced by the projected
source condition (2.6). At the same time, for the standard Tikhonov method of
regularization

(3.11) Jα(u) =
1

2
‖Aηu − fδ‖2 +

1

2
α‖u‖2.

generated by the functions gT,α(t) = 1
t+α , (that satisfy conditions (2.7)–(2.9) with

qualification p0 = 1), the estimate analogous to the estimate from Theorem 3.1 is
true.
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Theorem 3.2. If in (3.11) the condition (2.6) is satisfied, then the following
bounds are true:

(i) If Au∗ = f then

‖u∗ − uα‖ = O

(

η + δ√
α

+ αmin{1/2;p/2}
)

+ o(η
p

p+2 ), 0 6 p 6 2p0 − 1, p0 >
1

2

‖Aη(uα − u∗)‖ = O
(

η + δ + αmin{1;(p+1)/2
)

+
√

αo(η
p

p+2 ), 0 6 p 6 2p0 − 1, p0 >
1

2
(ii) If Au∗ 6= f and the parameter of regularization is choosen such that α > 2η2,

then

‖u∗ − uα‖ = O

(

η

α
+

δ√
α

+ αmin{1/2;p/2}
)

+ o(η
p

p+2 ), 0 6 p 6 2p0 − 1, p0 >
1

2

‖Aη(uα − u∗)‖ = O
(

η + δ + αmin{1;(p+1)/2
)

+
√

αo(η
p

p+2 ), 0 6 p 6 2p0 − 1, p0 >
1

2

Proof. Here, by uα we denote the unique solution of the problem (3.11). It
is well known that uα → u∗ as α → 0. Let us derive the estimate of the rate of
convergence when condition (2.6) is fulfilled. We will begin with the variational
inequality 〈J ′

α(uα), u − uα〉 > 0, ∀u ∈ U , that for u = u∗ gives
〈

A∗
ηAηuα + αuα −

A∗
ηfδ, u∗ − uα

〉

> 0. The above inequality can be written in the form

(3.12) α‖u∗ −uα‖2 +‖Aη(u∗ −uα)‖2 6 α〈u∗, u∗ −uα〉+〈A∗
ηAηu∗ −A∗

ηfδ, u∗ −uα〉.
Taking into account that u∗ = ΠU (|A|ph∗) and using the ε-inequality and the

equality αI = (A∗
ηAη + αI)Kαη, where Kαη = I − (A∗

ηAη)(αI + A∗
ηAη)−1, we have

the following estimate of the first term in (3.12):

(3.13) α〈u∗, u∗ − uα〉 6 α〈|A|ph∗, u∗ − uα〉 = 〈(αI + A∗
ηAη)Kαη|A|ph∗, u∗ − uα〉

= 〈AηKαη|A|ph∗, Aη(u∗ − uα)〉 + α〈Kαη|A|ph∗, u∗ − uα〉

6
ε1

2
‖AηKαη|A|ph∗‖2+

1

2
ε1‖Aη(u∗−uα)‖2+

αε2

2
‖Kαη|A|ph∗‖2+

α

2ε2
‖u∗−uα‖2.

Furthermore, using the inequality 〈A∗Au∗ − A∗f, uα − u∗〉 > 0 and the con-
ditions of approximation of A and f by Aη and fδ, we have the estimate of the
second term in (3.12):

〈A∗
ηAηu∗ − A∗

ηfδ, u∗ − uα〉 6 〈A∗
ηAηu∗ − A∗

ηfδ, u∗ − uα〉 − 〈A∗Au∗ − A∗f, u∗ − uα〉
= 〈A∗

η(Aη −A)u∗, u∗ −uα〉+〈A∗
η(f −fδ), u∗ −uα〉+〈(A∗

η −A∗)(Au∗ −f)u∗, u∗ −uα〉.
Now, using again ε-inequality, we have the estimates

(3.14) 〈A∗
η(Aη − A)u∗, u∗ − uα〉 + 〈A∗

η(f − fδ), u∗ − uα〉
= 〈(Aη − A)u∗, Aη(u∗ − uα)〉 + 〈f − fδ, Aη(u∗ − uα)〉

6
ε3

2
‖(Aη − A)u∗‖2 +

1

2ε3
‖Aη(u∗ − uα)‖2 +

ε4

2
‖f − fδ‖2 +

1

2ε2
‖Aη(u∗ − uα)‖2

6
ε1

2
η2‖u∗‖2 +

1

2ε1
‖Aη(u∗ − uα)‖2 +

ε2

2
δ2 +

1

2ε2
‖Aη(u∗ − uα)‖2
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Let us estimate ‖AηKαη|A|ph∗‖2 and ‖Kαη|A|ph∗‖2. Taking into account
Lemma 1.3 and the fact that condition (2.9) in the Tikhonov method of regu-
larization has the form (see [1,18])

sup
06t6a2

tp|1 − tanα(t)| = sup
06t6a2

tp α

t + α
6 γ1αp, p ∈ [0, 1],

while for p > 1, we have sup06t6a2 tp|1− tanα(t)| = sup06t6a2 tp−1t α
t+α 6 γ2α. So,

we have (see [18, p. 93])

(3.15) ‖AηKαη|A|ph∗‖2 6 2‖AηKαη(|A|p − |Aη|p)h∗‖2 + 2‖AηKαη|Aη|ph∗‖2

6 2εαpη2‖h∗‖2 + 2 sup
06t6a

[

t
p+1

2

(

1 − t

t + α

)]2
‖h∗‖2

6 2(εαpη2 + cpαmin{p+1;2})‖h∗‖2, εαp → 0 as α → 0.

Furthermore, denoting I − A∗A(αI + A∗A)−1 = α(αI + A∗A)−1 by Kα, we have

‖Kαη|A|ph∗‖2 = ‖(Kαη − Kα)|A|ph∗ + Kα|A|ph∗‖2(3.16)

6 2‖(Kαη − Kα)|A|ph∗‖2 + 2‖Kα|A|ph∗‖2.

For the estimate of the first term from the right-hand side of this inequality, we use
the equality

‖Kαη − Kα‖ = α‖(αI + A∗
ηAη)−1[A∗

η(Aη − A) + (A∗
η − A∗)A](αI + A∗A)−1‖.

and the inequality ‖B(αI + B∗B)−1‖ = ‖(αI + B∗B)−1B∗‖ 6 1
2

1√
α

for B = A and

B = Aη. Taking into account the conditions of the theorem, we obtain

(3.17) ‖(Kαη − Kα)|A|ph∗‖2
6

α2η2‖|A|ph∗‖2

4α3 =
α−1η2‖|A|ph∗‖

4
.

Second addition in (3.16) can be estimated by (see (3.15))

(3.18) ‖Kα|A|ph∗‖2 6 c′
pαmin{2;p}‖h∗‖2.

From (3.16), (3.17), and (3.18), it can be obtained that

(3.19) ‖Kαη|A|ph∗‖2 6
η2

2α
‖|A|ph∗‖2 + c′αmin{2;p}‖h∗‖2.

Therefore, using (3.13) and (3.14), estimate (3.12) can be written as

α‖u∗ − uα‖2 + ‖Aη(u∗ − uα)‖2
6

ε1

2
‖AηKαη|A|ph∗‖2 +

1

2ε1
‖Aη(u∗ − uα)‖2

+
αε2

2
‖Kαη|A|ph∗‖2 +

α

2ε2
‖u∗ − uα‖2 + 〈A∗

η(Aη − A)u∗, u∗ − uα〉

+ 〈A∗
η(f − fδ), u∗ − uα〉 + 〈(A∗

η − A∗)(Au∗ − f)u∗, u∗ − uα〉.
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or, using (3.14), (3.14) and (3.19),

(3.20) α‖u∗ − uα‖2 + ‖Aη(u∗ − uα)‖2 6
ε1

2
(εαpη2 + cαmin{p+1;2})‖h∗‖2

+
1

2ε1
‖Aη(u∗ − uα)‖2 + ε2c′αmin{3,p+1}‖h∗‖2 +

ε2

2

|A|ph∗‖2

2
η2

+
α

2ε2
‖u∗ − uα‖2 +

ε3

2
‖u∗‖2η2 +

1

2ε3
‖Aη(u∗ − uα)‖2

+
ε4

2
δ2 +

1

2ε4
‖Aη(u∗ − uα)‖2 + 〈Au∗ − f, (Aη − A)(u∗ − uα)〉.

We will distinguish between two possibilities:
(1) Au∗ = f . Then using (3.12)–(3.16) and (3.20), for ε2 = 1

2 , ε3 = ε4 = ε1 = 2,
we obtain an estimate of the rate of convergence:

‖Aη(uα − u∗)‖ = O(η + δ + αmin{1;(p+1)/2})

while for ε2 = ε3 = ε4 = 1, ε1 = 2, we have

α‖(uα − u∗)‖2 = O(η2 + δ2 + αmin{2;p+1}),

i.e., ‖uα − u∗‖ = O
(

η+δ√
α

+ αmin{1/2;p/2})

.

(2) Au∗ 6= f . Then the term 〈Au∗ − f, (Aη − A)(u∗ − uα)〉 can be estimated by

〈Au∗ − f, (Aη − A)(u∗ − uα)〉 = 〈(A∗
η − A∗)(Au∗ − f), u∗ − uα〉

6 ‖Au∗ − f‖2 η2

2α
+

α

2
‖u∗ − uα‖2.

Now, from (3.20), ε1 = ε3 = ε4 = 2, ε2 = 1, we obtain the estimates of the rate of
convergence of the method

‖Aη(uα − u∗)‖ = O
( η√

α
+ δ + αmin{1,(p+1)/2}

)

,

and (for ε2 = ε1 = 1, ε3 = ε4 = 2)

‖uα − u∗‖ = O
( η

α
+

δ√
α

+ αmin{1/2,p/2}
)

.

�

Acknowledgment. The authors express their gratitude to the referee for
his/her suggestions and comments.

References

1. A. B. Bakushinsky, M. Yu. Kokurin, Iterative methods for approximate solutions of inverse

problems, Math. Appl. 577, Springer, Dordrecht, 2004.
2. R. I. Bot, B. Hofmann, An extension of the variational inequality approach for nonlinear

ill-posed problems, arXiv:0909.5093v1[math.NA], 2010.
3. A. Böttcher, B. Hofmann, U. Tautenhahn, M. Yamamoto, Convergence rates for Tikhonov

regularization from different kinds of smoothness conditions, Appl. Anal. 85 (2006), 555–578.
4. M. Burger, S. Osher, Convergence rate of convex variational regularization, Inverse Probl. 20

(2004), 1411–1421.



102 JAĆIMOVIĆ, KRNIĆ, AND OLEG OBRADOVIĆ

5. W. H. Engl, M. Hanke, A. Neubauer, Regularization of Inverse Problems, Kluwer, Dordrecht,
1996.

6. K. Frick, O. Scherzer, Regularization of ill-posed linear equations by the non-stationary aug-

mented Lagrangian method J. Integral Equations Appl. 22(2) (2010), 217–257.
7. B. Hofmann, Approximate source conditions in Tikhonov–Phillips regularization and con-

sequences for inverse problems with multiplication operators, Math. Methods Appl. Sci. 29

(2006), 351–371.
8. B. Hofmann, M. Yamamoto, Convergence rates for Tikhonov regularization based on range

inclusions, Inverse Probl. 21 (2005), 805–820.
9. M. Jaćimović, I. Krnić, On some classes of regularization methods for minimization problem

of quadratic functional on a halfspaces, Hokkaido Math. J. 28 (1999), 57–69.
10. M. Jaćimović, I. Krnić, O. Obradović, Wellposedness and regularization of minimizing se-

quences in quadratic programming problems in Hilbert space, Proc. Conf. Nonlinear Anal.
Optim. Problems, Montenegrin Academy of Sciences and Arts, (2009), 185–206.

11. I. Krnić, M. M. Potapov, Projective sourcewise representability of normal solutions to linear

equations on convex sets, Comput. Math. Math. Phys. 41(9) (2001), 1251–1258.
12. I. Krnić, O. Obradović, M. M. Potapov, On the accuracy of regularized solutions to quadratic

minimization problems on a halfspace, in case of a normally solvable operator, Yugoslav. J.
Oper. Res. 14(1) (2001) 19–26.

13. P. Mathé, B. Hofmann, How general are general source conditions, Inverse Probl. 24 (2008),
015009 (5 pp).

14. P. Mathé, S. V. Pereverzev, Geometry of linear ill-posed problems in variable Hlbert scales,
Inverse Probl. 19 (2003), 789–803.

15. M. T. Nair, Linear Operator Equartions. Approximation and Regularization, World Scientific,
2009

16. M. T. Nair, S. V. Pereverzev, U. Tautenhahn, Regualariation in Hilbert space under smooting

conditions, Inverse Probl. 21 (2005), 1851–1869.
17. A. Neubauer, Tikhonov-regularization of ill-posed linear operator equations on closed convex

sets, J. Approx. Theory 53 (1988), 304–320.
18. G. M. Vainikko, A. Yu. Veretennikov, Iterative Procedures in Ill-Posed Problems, Nauka,

Moscow, 1986 (in Russian).
19. F. P. Vasil’ev, Methods of Optimization, Factorial, Moscow, 2003 (in Russian).

Department of Mathematics (Received 27 04 2014)
University of Montenegro (Revised 23 09 2014)
Podgorica
Montenegro
milojica@jacimovic.me

dino@rc.pmf.ac.me

oleg@t-com.me


	1. Introduction
	2. Source conditions and regularization method
	3. Convergence of the regularization methods
	References

