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FINSLER-TYPE ESTIMATORS FOR
THE CANCER CELL POPULATION DYNAMICS

Vladimir Balan and Jelena Stojanov

ABsTrACT. We introduce a Finslerian model related to the classical Gar-
ner dynamical system, which models the cancer cell population growth. The
Finsler structure is determined by the energy of the deformation field—the
difference of the fields, which describe the reduced and the proper biological
models.

It is shown that a certain locally-Minkowski anisotropic Randers struc-
ture, obtained by means of statistical fitting, is able to provide a Zermelo-type
drift of the overall cancer cell population growth, which occurs due to signif-
icant changes within the cancerous process. The geometric background, the
applicative advantages and perspective openings of the constructed geometric
structure are discussed.

1. The Garner cancer cell population model

It is a known fact that the subpopulations of abnormal cells responsible for the
cancer disease contain the so called cancer stem cells (CSCs) [15]. In this context,
it is very important to describe changes in the cancer population, which contains
three types of cells, [11), I3]: proliferating, quiescent (resting) and dead ones, their
abundance being determinant in the prognostic of the cancerous disease.

The evolution of the cancer cells population was firstly modeled in 1995 by
means of Solyanik’s dynamical system, which is based on the following assumptions:
cancer population consists of proliferating and quiescent cells, proliferating cells can
lose the division feature and transit to the quiescent ones, and quiescent cells can
become proliferating or die.

The states of the Solyanik model are described by the amount Z of proliferating
cells and the amount ¢ of quiescent cells, which satisfy the differential system

z=0bi—Pi+Qy
—dj + P& — Qy,
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FIGURE 1. Transitions between cell classes in the Solyanik and Garner
cancer evolution models

where b is the rate of cell division of the proliferating cells, d is the rate of cell
death of the quiescent cells, @ and P describe the intensity of cell transition from
the quiescent to proliferating cells and converse, with all the involved parameters
reconsidered on a daily basis (see Fig. [II).

Solyanik’s model [16] was further improved by Garner et al. in [12] by regarding
the parameters P, @ as dependent on Z and g, via

P=c(i+aj), Q=Ai/(1+ B,
where a measures the relative nutrient uptake by resting vs. proliferating cancerous
cells; ¢ gives the magnitude of the rate of cell transition from the proliferating to
the resting state; A is the initial rate of @) increase at small Z; A/B is the rate of
Q@ decrease for large 7.

The Garner model describes the evolution of the scaled cell populations » = 77,
y = 5y by means of the dynamical system

: hxy

LR CRE  pry e
(1.1)

)= —r —l—ax(x—l—y)—ﬂ

4 4 1+ ka?’

where r = d/b is the ratio between the death rate of quiescent cells and the birth
rate of proliferating cells; h = A/(ac) represents a growth factor that preferentially
shifts cells from quiescent to proliferating state; k = B - (b/c)? represents a mild
moderating effect.

The associated nullclines, equilibrium points, the appropriate versal deforma-
tion and the static bifurcation diagram of the Garner system were studied in [3}, [4].

2. The Finsler structure and related tensor Hilbert spaces

A real Finsler structure (M, F') consists of a real n-dimensional C°*° manifold
M, and a mapping called Finsler fundamental function defined as follows [8), 9], [10]:

DEFINITION 2.1. A real scalar function F' : TM — [0,00) is called a Finsler
fundamental function if it satisfies the following properties:
(1) F is smooth on the slit tangent space TM ~ {0} = {(z,y) | x € M, y €
T.M, y # 0} and is continuous on the image of the null section of the
tangent bundle (TM, 7, M);
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(2) F is positively 1-homogeneous in the directional argument, i.e.,
F(z,\y) = AF(z,y), YA>0;
(3) the smooth maps g;; : TM ~ {0} = R, ,j € 1,n given by
1o
2 Qyidyd’

form the symmetric positive definite matrix, [g] = (gi;); je15, and are the

(2-1) Gij

componentsﬂ of the Finsler metric tensor field g = g;;dx’ @ da?.

Also, in the case when [g] is not positive definite, but non-degenerate, and with
constant signature, then (M, F) is called pseudo-Finsler structure [5].

In our case, we shall consider extensions of this definition, by assuming that
the domain of F is a strict subset of T'M, and that the operations within the fibres
are feasible.

A geometric object, which is specific for Finsler structures and reflects the
obstruction of the Finsler metric tensor to becoming a Riemannian one is the Cartan
tensor field, whose components are [6]
10gij(z,y) 1 OPF?(z,y)

2 Oyb  40yidyioyF’

Both the Finsler metric g;; and the Cartan tensor field Cjji, which depend
on the tangent space coordinates (z,y), belong to Hilbert spaces of (bounded and
continuous) d-tensor fields of the corresponding type, (0,2) and (0, 3), respectively
I8, [14].

The scalar product which provides the Hilbert structure generally acts on a
pair of two (0, m)-tensors A and B by means of the formula

<.A, B>g _ Ailmimgiljl » -gi"‘j’"Bil

This naturally induces the norm, the projection of A onto B, and the angle
between the two tensors as follows:

Cijk =

O P

(A, B) (A, B)
IAllg = V(A A), prgA= (B,B>B’ <(A, B) = arccos AL 18]
We note that all these geometric objects generally depend on the fixed Finsler
metric g and on the tangent space local coordinates (z,y).
For m = 2, the tensor fields are represented by square matrices A and B

respectively, and for g;; = d;; (i.e., Finsler space of Euclidean type), we have
(2.2) (A, B)s = Trace(A - BY),

where ()? is the transposition operator.
We shall further consider three types of Finsler structures: Randers, Euclidean
and of 4-th root type.

IThe components gi; of the fundamental metric tensor field (??) and the components g of
its dual tensor field defined by g**g,; = 6;'., will be further used to lower and respectively to raise

indices of tensors, for constructing geometric objects specific to the Finsler structure.
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The Randers structure has the fundamental function of the form Fr = a + 3,
where o = \/a;;(z)y*y’, with the Riemannian metric a;;(z) and b;(z) are the coeffi-
cients of the 1-form 8 = b;(z)y*. The Euclidean structure appears as a special case,
for a;; = const., and b; = 0, Fg = \/a;;y'y’, while a 4-th root Finsler structure
has the general form Fo = {/aijre()y*yIy*y*, where a;;re are the components of
a (0,4)-tensor field on the base manifold M.

We shall determine by statistical fitting over a certain model-related 2-dimens-
ional subdomain three such metrics of the form

(2.3)  Fry) =\/0iy"y? +biy' =/ (y')? + (422 + by + bay?,
(24) Fpy) = Ve ') +eyly® + e (42)?,
(25) Foly) = Var-(y")* +a2- (41302 + a3- (v")2(¥2) + aa-y' (12)° + a5+ (v*)*,
where the coefficients by 2, c1,2.3 and ¢1,2,3,4,5 are real constants providing the lo-
cally Minkowski character of the three Finsler structures. Each of the structures
respectively provides the corresponding Finsler metric tensor fields: gr, gr and gq.
We shall further analyze the way these structures relate and their properties
related to the model, by examining their Cartan tensors, and by estimating their
shift from the associated conformally Euclidean projection.
Except for the Euclidean case ([24]), where the Cartan tensor is identically zero,
the Randers and the 4-th root cases provide a nontrivial Cartan tensor, whose

squared Frobenius norm is a direction-dependent scalar function provided by the
transvection ||C||3 = Cijrgm g7 gF* Crst.

PROPOSITION 2.1. The following assertions hold [:
(1) The Finsler metric produced by (Z3) has the following conformally Euclidean

projection
1 3(b12 + bay
(2.6) Prigr = 5 <2 + % + b7 + b§>5-
ety

(2) The Finsler metric produced by (24) has the constant conformally Euclidean
factor, i.e., the conformally flat projection is

1
(2.7) Prs9g = 5(01 + ¢3)d.
(3) The Finsler metric produced by (Z3) has the following conformally Euclidean
projection
p
2. -

2\We assume Fg defined on the subdomain of T'M which ensures the positivity of the root
argument; as well, we note that F is a pseudo-Finsler norm, whose smoothness is ensured on a
strict subdomain of the slit tangent space.

3In [10], an alternative of norm for the Cartan tensor is presented, which results in a numerical
value.

4Hereby we denote by § the canonic metric for the Euclidean 2-dimensional case, and use the
notation y = (y%,4?) = (&, 7).
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where p is the following polynomial in the components of the tangent vector
y =y = (&,9):
(2.9) p= (84 + 49193 — ¢3)3° + (12q1¢s + 12q142)i"5
+ (12¢193 + 6¢2q4 + 24q15 + 3¢3)3* 9
+ (16194 + 44203 + 160245 + 4g344) %5
+ (12¢3g5 + 3q3 + 24q1q5 + 6¢2q4) 29"
+ (12qag5 + 129245)9° + (4g3q5 + 843 — 43)9°.

PRrROOF. A straightforward calculation produces the components of Finsler met-
ric tensor fields in the all three cases:

2 F
gRr11 = —%iQ + Zbid + — + b3,
(6% (6% (8%
..o ba. by
gr12 = —%xy + 2@ + =g + bib,
(6% (6% (6%
. 2. . F
9R22 = —%zﬁ + Zbyy + — + b3;
(6% (6% (6%
gg11 = C1, JE12 = 502, 9E22 = C3;
1 . 5. oy
9@11 = 3% (8¢73° + 12q1423"9 + (3¢5 + 12q143)3*

+ (4g2q3 + 16q1q4) 3”5 + (24q1q5 + 692q4) 2>y
+ 12¢20539° + (44305 — ¢3)9°)

go12 = g%;g(2q1q2$6 +3q52°9 + 6(qaqs — q1qa) 9% + (2qaqa + 4% — 16q1¢5)3>5°
+6(g3q1 — 4205)8%5" + 3¢9 + 21953°)

9Q22 = % ((4q1q3 — 43)i° + 12q1q42°y + (24q1q5 + 6g2q4) 3" y°
+ (1642q5 + 44304)3°5° + (12g3g5 + 3¢3)3>§" + 12qaqs29° + 8¢35°).

Inner product ([Z2) of g and ¢ reduces to the trace and (4,d) = 2, hence
summation 3 (gi1+g22) gives the conformal factors at (Z6), (2.7) and (ZX). O

PROPOSITION 2.2. In the Hilbert space of (0,2)-type Finsler tensors, the fol-
lowing deviation angles occur:

(1) The Finsler-Randers metric produced by (23) deviates from its conformally
Euclidean approzimation by the angle

Op = 1+ (A+1)(A2—4A+1)
R = arccosy | o (24+3A+B)2—2(A+1)(A2 —4A + 1)’

(2.10)

where the following abbreviations are used: A = (b1& + bay)/\/2% + y? and
B = b3 + b3.
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(2) The Finsler metric produced by 24) and its conformally flat approximation
determine the constant deviation angle

c1 +c3
V23 +E+23

(3) The deviation function expressing the angle between the Finsler metric pro-
duced by 23) and its conformally Euclidean approzimation is

0 = arccos

p
2.11 0o = arccos——=,
( ) Q V2s
where p is the polynomial from ([29), and s = 7+ o(7) is a polynomial in &,y
with

™= (64611‘ + 84793 — 8q143q3 + 164745 + qé‘)w'm
+ (192q?<J2 +96¢7q3q1 — 24q103q4 + 24q1q§)ﬂ'3“y
+(192q?q3 ++192¢7¢5 + 144¢7 g — 48q7 q2qa + 192474345
+ 481429394 + 48q143 93 — 48q14505 — 124504 + 18q§)5010:t)2
+<256(Z§Q4 + 352¢%q2q3 — 128¢3qaqs + 5767 qaqs + 128¢1424375
— 56014504 + 32019245 + 144410247 — 843q4qs
+ 32010403 + 720105 + T2q3q3 — 32ng5)dsgy3
+ (384q?q5 + 144473 + 724743 + 576¢7¢3 + 48047 ¢2q4 — 9641924443
+ 672q192q4q5 + 168¢15q3 + 96¢143 95 + 120¢1 4303
+ 300363 — 24001035 — 24030505 + 1200303 + 243qs + 9g3 )%
+ (768613612(]5 + 384¢7q3qa + 38447 q1q5 — 96¢145q4 + T68¢1202 — 38441020345
+ 57641q3q4q5 + 4842345 — T2q3q5 + 168¢3¢4qs + 120g3q3q4 + 24019344
— 24014245 + 96419243 + T2q143 + 24433 + 96q2q§):b7y5
+ (512Q%Q§ + 64043 q3q5 + 272q102q3q4 + 32q1G2qaq5 + 272424345

+ 432019595 — 14419345 — 14443q395 — 256019345 + 43214345
+ 44¢3¢% + 640q1g3q2 + 176qaq3qa + 240¢2¢3 + 16¢3¢3

N | =

+ 16034 + 2400347 + 36034 + 364203 + 324} )i%5° -
and o(m) produced from w after interchanging

(91,92, 93,94, G5, T, 9) < (g5, 94,93, G2, 91,9, T).
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PROOF. Let f be the conformal Euclidean factor of the projection in the equa-
tions (Z6)-(21), and let § = <(g,prs g) be the angle between the corresponding
metric and its projection to §. Then, the homogeneity of the inner product implies

{9, f9) (. 9O
\/W\/m— gn(f) \/W\/W gn(f) <(g,9).

By use of ([Z.2), we have the following expressionﬁ

2
cosf = 2911 +9222 _, (g, ) = arccos 2(911 + 522) .
V293 + 207, + 93,) 2(911 + 2912 + 935)

By plugging into the previous formula the appropriate metric components, one gets
E10)-E11. O

The proposed Finsler functions are of locally Minkowski type, which infers that
many geometric objects related to them considerably simplify: the geodesics are
(pieces of) straight lines, the KCC invariants vanish, the Berwald linear connection

is trivial [I, [8]. In fact, the Finlser structures will provide point-independent norms,
which act on a certain proper subset of the space TM = TR2.

cosf =

3. The statistic fitting of the Finsler structures

3.1. The reduced Garner system. We observe that the original Garner
dynamical system (L)), denoted further as GS, is the extended version of the
reduced dynamical system (denoted as RS)@:

r=x—z(x+y
6. et
y=—ry+ax(z+y).

We note that in the original system G.S, for h being significant one notices a
malignant evolution of the illness; this happens when:

e the parameter a significantly decreases, becoming negligible (i.e., there is a
small ratio of nutrient uptake of resting vs. proliferating cells, which shows
that the resources are absorbed mostly by the proliferating cells in detriment
of quiescent cells);

e the parameter c is negligible (i.e., the rate of cell transition from cancerous
to the resting state is negligible, hence the evolution of the disease is either
stationary, or worsening);

e the parameter A significantly increases (the rate of increase of @ is abruptly
big at small z, i.e., the cell transition from the quiescent to cancerous cells is
intense).

We conclude that when these conditions are far from being achieved (this might
happen, e.g., under treatment, which may significantly modify the intake of nutrient
ratio in disfavor of cancerous cells), the GS (L)) can be approximated by RS (Bd]).

5We shall further consider the absolute value of the factor, reducing thus the angle to the
first quadrant.
6This occurs when in system (&I)) the constant h = A/(ac) is negligible, 0 < |h| < 1.
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FIGURE 2. The field lines of the reduced Garner model RS, for a =
1.998958904 and r = 0.03.

3.2. The increase rate of cancer cell populations for mild premises.
As described in the previous section, under mild (controlled) evolution of the disease
(for 0 < |h| < 1), the RS system (B.I) reasonably approximates the original system
D).

The set of all possible states of the Garner’s dynamical system is a bounded
subset D of the first quadrant in R?, K, = {p = (x,y) | * > 0,y > 0}, which
contains the information on the scaled amount of proliferating and of quiescent cells.

The RS ([BI) attaches to any point p = (z,y) € D its related velocity p =
(#,9) € T(z,)(K4). Due to the polynomial form of the vector field, RS provides a
reverse association p = (&,y) ~ p(z,y), by solving the nonlinear algebraic system
(BJ) in terms of p = (z,y) for given p = (&, ), but only in certain regions of K
and only for certain values of the parameters r, h, k.

We shall further consider the RS system for the case of fixed parameters [12]:

(A1) a = 1.998958904 and r = 0.03.

We choose the domain D of the Finsler norm F' as a set of tangent vectors,
where D = ¢(I, x Iy) C T, K, with

I, x Iy = [0.329915,0.888939] x [1.0988, 1.51452] C [0, 00) x [0, 27),
and ¢ is the mapping which changes the polar coordinates to the Cartesian ones,
¢ :[0,00) x [0,27) — R?, ©(p,0) = (pcosb, psin ).

Under an appropriate choice of I; and I, one can uniquely solve the quadratic
system (BJ) in terms of p = (x,y), with P located on a field line from K, with
related tangent direction of the emerging velocity p € D.

By using the inverse function theorem for the feasible directions of the reduced
dynamical system, one may solve the pair of algebraic nonlinear equations of the
system, to locally find the associated point p.
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3.3. The rate-shift under changes of premises. The status of the cancer-
ous disease changes from mild to severe status due to a multitude of factors which
corresponds to a change of parameters in the G.S Garner system (L.

Such a case occurs when /i becomes significant; this transforms R.S into GS and
then (CI) associates to the solutions p from the nonlinear system, the new rates
of change p. = (&, @.) valid for the new circumstances of the illness. Namely, the
point coordinates p = (x,y) determined under mild conditions in Subsection [B.2]
plugging in (), produce the new change rate p. of the cancer cell populations

(see Fig. B).
P (RS)»I P (GS) p Ap
[ P [ P ;

FIGURE 3. The transition p ~» p. between the RS and the GS change rates.

3.4. Statistical fitting of the Finsler norms. The Euclidean norm ||p.| &
of the obtained rate-vector p, = (Z., &) can be used to evaluate the severeness of
the disease evolution. This choice, however, has the drawback of being symmetric
in the two components of p., especially in the case & > 0, since equal credit is given
to the two rates of the increase.

One alternative choice is to design a tool which emphasizes the cancer cell
population increase, by means of a Finsler norm, which is likely to emphasize a
tuned fair evaluation of the illness evolution.

To this aim we note that ||p.| can provide locally Minkowski (i.e., depending
on directional variables only) Finsler norms Fgr(z,9), Fr(&,y) and Fg(Z,9) by
statistical ﬁttingﬂ.

The proposed approximation, which provides the fit of the Finsler norm F is
given by
(3-2) F(I7y) ~ HpeHEv
where || - || g is the Euclidean norm. We note that the triangle inequality for norms
shows that the rate-jump entailed by the change of status RS — GS due to the
increase of |h|, does not exceed ||p. — p||&-

We shall consider the following choices which follow the main requirements of
a Finsler norm, and which are fundamental functions of locally Minkowski typeﬁ:

(3.3) Fr(&,9) = /&% + 92 + b1t + bay
(3.4) Fp(#,9) = Vc1d? + caiy + 392
(3.5) Fo(i,9) = va(@)* + b(£)3 (9) + c(@)2(§)? + d(@) () + e(9)*

7Generally, when considering one of the three structures, we shall simply write F(&,79).
Similar procedures of Finslerian statistical fitting were performed in [2].
8For brevity, we denote (a, b, ¢,d, e) := (q1, g2, 93,44, q5)-
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where by 2 and ¢; 23 and (a, b, ¢,d, e) = (q1, 42, g3, q4, g5) are coefficients to be eval-
uated by statistic fitting.
In our research, we use the values assumed in (A1) for the systems RS (B.1)

and GS ().

For the statistical fitting of F'(p) from [B2) to ||p.||, where p = (&,9), and
p = (z,9), pe = (Te, ye) are respectively obtained by tracing the process described
in Fig. Bl we use for the Randers, Euclidean and 4-th root cases the following
equalities (k € 1, N)

(3.6) i, + b = \/(E)F + ()} — /33 + 32,
(3.7) 019-3% + C2@p Yk + C3y]?; = (ie)i + (ye)iv
2

(3.8)  a(@)i +b(@)(H)k + (@i + d@)@)R + e = ((@e)i + @e)F)

which allows us to determine the statistical fit for the values by 2, c12,3 and a, b, ¢, d, e
by the method of least squares.
For finding p. from p via RS and further GS, we use in (1)) the parameter

values [3), 12]
(A2) h =1.236 and k = 0.236.

As inputs for the fitting process, we employ a uniform grid over the (p,6)-
domain I, x Iy = [0.329915, 0.888939] x [1.0988,1.51452],

(pi,Hj) S Ip X Ig, (Z,j) S O,Hp X 0,’119,

with ¢(I, x Iy) = I} x I = [0.05,0.1596] x [0.293844,0.887532], and consider as
related tangent vectors the following scaled spherical harmonics

Pk = (&, Uk) = (picosbj,p;cosf;) € D=1y x I, kel,N

where k= (i — 1)n, +j € 1, N, and N = (n, + 1)(ng + 1).

We note that the right hand side of the RS contains quadratic polynomials,
and that for given input p = p;, (RS)™! provides a twofold point-solution, p’, p"”,
of which one solution p; is chosen.

For each next plugged-in scaled spherical harmonic py1, RS similarly provides
two other point-solutions, and the right choice py41 is determined by both the
non-negativity of its components and by the Euclidean proximity to the previous
selected point p, (k€ 1, N —1).

Finally, one gets the set of points pr, = (zk,yx) and (via GS) the corresponding
change rates (pe)x, k € 1, N, which are further plugged in (B.6])-(B.8).

The N samples p; and the new rates (p.)r (k = 1,N), plugged in the N
relations from ([B.6)—(B.8), provide in each case N linear equations with parameters
as unknowns which fix the Finsler function (3.3)-(33).

3.4.1. The Randers fitting. The system (B.6) is linear relative to b; and bs,
over-determined (/N >> 2), and has the form AS = B, where A = (&4, Jx),_77 €
Mpyx2(R), S = (b1,b2)! € Max1(R) is the the unknown vector, and B € Myx1(R)
is given by the r.h.s. of (3:6)) for k =1, N.
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Computer Maple 17 simulation for N = 36, provides by the least square method
the pseudosolution (by,b2)" = (A'A)~1 A'B, and under assumptions (A1) and (A2,
the exact fit-values of the parameters are

(3.9 b1 ~ 0.628481987778205518, by ~ —0.269476980932055964.

Hence the fit Randers structure related to the dynamical system of the Garner
cancer cells population model (III) becomes (for the obtained (39) fit values of the
parameters)

(3.10) Fr(#,y) = V2 + 92 +0.63-2— 0275

where the dot marks denote time derivatives, which describe the rates of increase
for the scaled cancer cell populationsﬁ.

3.4.2. The Euclidean fitting. For the Euclidean case, for fixing the Finsler func-
tion ([B4)), the same N samples pj and new rates (p.)r (k =1, N), are plugged in
the N relations (B.1).

The obtained system is linear in terms of ¢;, ¢ and c3, superdetermined
(N > 3), and has the form AS = B, where A € Mnx3(R), S € M3x1(R), and
B € Mnx1(R), with the unknown vector S = (c1, 2, c3)*.

Analogous computer simulation provides the parameters solution

c1 ~ 0.940805450748692151
c2 ~ 1.16189809024084268
c3 ~ 0.496069555231253400,

hence the Euclidean type fundamental function of the structure fit to (1)), is

Fr(i,79) ~ 1/0.9422 + 11625 + 0.5052.

3.4.3. The 4-th root fitting. The 4-th root type Finsler function (B3]) (the third
case) is determined by use of the same method as in the previous two cases with
the differences: A € Myy5(R), S € M5«1(R), and S = (a,b, c,d,e).

The same computer simulation provides the parameters solutiond:

a ~ —0.320013354328217758; b ~ 2.69642032805366582;
(3.11) ¢~ 2.42492765757201711; d ~ 1.07381846633249766;
e ~ 0.254991915496320776,

hence the fit 4-th root Finsler fundamental function locally related to the GS (.1
is

(3.12) Foli,g) ~ +v/—0.32i% + 2.7023y + 2420252 + 1.0745 + 0.255°.

9For display convenience, truncated values of the coefficients have been used, in this, but
also in the next two structures
L0por brevity, we denote (a, b, ¢,d, e) := (q1, 92,93, g4, q5)-
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4. The properties of the constructed Finsler metric structures

4.1. The Randers type structure. Regarding the Randers structure, it is
remarkable that for ||b]|, < 1, which is our case, one has (g;;) positive definite, and
there exists a vertical non-holonomic frame

i 0 T3
called the Holland frame of the Randers structure [8],

) ) Wi + b Loy _
X}=\/OM—F(5§—7“%+J)+ ofF-T2), j=T3,

F
in which the Randers metric tensor field g;; becomes the a-subjacent Riemannian
one and «; = g; = % In this respect, we get the following results.

PROPOSITION 4.1. The following assertions hold true:
a) The associated Finsler metric tensor field g = g;j(p)dz’ ®dx? of the Randers
structure Fr has the components

a+p ( yy3> N Yy + albiy’ + bjyt) + bibja?
o

(4.1) 9ij(y) = o2 o2

where y = (y*,y?) = (2,9), by ~ 0.63, by ~ —0.27 and']
a = /by = Vi + 9%, B =0by' =bii+ by

b) For the Finsler structure (3.3)), the components of the fields of the Holland
frame are given by

)

- aFé& —yi(y + ab; iyl _
i oY~y g)+yy =13

J vVaF3 aF’

PROOF. a) By a direct computation, one obtains
F
9ii(y) = E(% — ;) + (@i + bi)(a + b))

<=2t ) (S 0) ().

«

whence result (£1I) follows. For b), one notices that using the definition of the
Holland frame [8] and, by performing the calculations for our locally-Minkowski
particular norm, one infers the claimed result. O

Moreover, by plugging in the fit coefficients from (B.I0) into the appropriate
equations from Propositions 2] and one gets the following

Hyor display convenience, truncated values of the coefficients have been used, of the
more accurate statistically determined values by = 0.628481987778205518 - r - cos(t) and by =
—0.269476980932055964 - r - sin(t).
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FIGURE 4. Plot of the squared locally Minkowski Finsler Randers norm
z = F?(&,9) and of the indicatrix F(z,9) = 1

COROLLARY 4.1. The conformally Fuclidean projection of the metric produced
by the Randers type Finsler structure B.10) is

prs g ~ (0.9459'3 — 0.405y
NEEEE
and the deviation between these two metrics is given by
1.89ad — 0.81ag + 2.47a2
\/F Y

+ 1.235> s,

Or =~ arccos

where o = /12 + 92 and

r = —4.6803) + 1.20ai?y — 0.44ad> + 10.5603% + 8.64ar + 1.940%42 — 2.040227).

The graphical representation of the values of the Finsler-Randers norm along
the z-axis in terms of the inputs (&,y) € D = [0.05,0.1596] x [0.293844, 0.887532],
and of the Finsler indicatrix are provided in Fig. @ These clearly exhibit convexity
and compactness of the Randers indicatrix of (B10).

By Maple symbolic programming one can easily test that the signature of the
metric g is (4, +), hence (D, F') with D C K is a Randers geometric structure of
locally-Minkowski type [14].

To illustrate the signature of the point-independent metric tensor g, one can
see that, within a fiber of T;R?, its associated quadratic form[™

Qy(v) = gijly vivd, v = (v 0)) € R? = TR?
has its graph an elliptic paraboloid patch (see Fig. Bl), which gives account of the
positive signature of g, signalled by the inequality ||b||? = b?+b3 ~ 0.632+0.272 < 1.

We note as well that the Cartan tensor Cj;, = i% measures the “dis-
tance” between the constructed Finslerian F' norm and the space of flat Euclidean-
type norms. The distance can be locally estimated in terms of y = (y!,4?) = (&, 9)

12he quadratic form @ acts on the vertical fibre of velocities provided by the identification
T;R? = R2, assuming the flagpole fixed, p = (.2,1).
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FIGURE 5. Graphs of the quadratic form Q% and of QS = ||C||2 for
p€[=1,0.5] x [—0.5, 1].

by the square of the Frobenius norm Q' = [|C||2 (see Fig.[), where

IClly = /Cijgr g7 g Crar.

The plot of the energy Qg of C;ji, emphasizes a special region inside [—1,0.5] x
[—0.5,1], at which the difference between the Randers norm and the canonic Eu-
clidean norm significantly matter. This region (a small neighborhood of the origin)
corresponds to slight variations of the cancer cell population, while for strong vari-
ations the Randers structure asymptotically approaches the canonic Euclidean one.

4.2, The induced Euclidean structures. The Euclidean case ¢ is canonic,
hence the corresponding equations from Propositions 2.1] and produce the con-
stant conformally flat factor and the constant deviation angle,

prsgr ~ 0.726, 0O~ 0.71.

4.3. The 4-root type structure. For the 4-th root Finsler metric, the sub-
stitution of fit truncated parameters ([B.I1) into the corresponding equations of
Propositions 2.1] and produce the following

COROLLARY 4.2. The conformally Fuclidean projection of the metric produced
by 4-root type Finsler structure (312) and the deviation angle between the metric
and its §-projection respectively are

=L s 0= 2
Pr(;gQ—lGng ) @ = arccos 5
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FIGURE 6. Graph of the energy z = F?(&,9), indicatrix Fg(&,9) = 1
and squared Cartan norm z = Q$ of the 4-th root Finsler structure

where
p A 9.6155 + 14.932%) — 27.644%y% — 41.644%)° — 26.054%9* — 11.3149° — 1.7875,
s~ 1.83¢12 — 1344y + 7722192 + 40.57:%° + 87.114%)*

+104.79279° + 84.735¢° 4 52.574°97 + 25.572158

+9.59&39° + 2.72&25° + 0.49&9 4 0.047'2.

The parameters of both type structures, F'r and Fp have similar graphs, though
the structures strongly differ, and the indicatrix of Fy is nonconvex.

As well, the nature of Fy causes much stronger dependency of the metric tensor
on the directional argument, particularly in the neighborhood of (0,0) (see Fig. [@).

5. The relevance of the Finsler structures for the Garner model

We note that the fit Randers—Finsler norm (B3] arises from the evaluation
of the GGS evolution-rate in terms of the reduced RS, and provides a mediated
information on the prognosis of the disease after the state worsening signaled by
the increase of the parameter h. The additive term 8 = 0.63& — 0.27y from the
Randers norm evaluates the impact of the change in the parameter h and the rate
of increase.
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The statistically determined coefficients (b1, bs) = (0.63, —0.27) emphasize the
dominant role of the proliferating cells in the dynamical system (II)).

The Finsler norm (B3) provides an evaluation of the severity of the rate of
cancer cell evolution immediately after a significant change of the Garner parameter
h, which can be experimentally measured or estimated in terms of the cause which
determined the change.

The benefit of the Randers structure relies on the fact that the vector input
y = p of F (the growth rates of the cancerous cells) does not require knowledge of
the amount of the total cell populations p.

These inputs can be experimentally determined when the cancer evolution is
controlled (“steady", for h = 0), and can be estimated by measuring the population
increase/decrease of the cancerous cells by using only two subsequent laboratory
samples.

Moreover, the deformation term 8 = 0.63% — 0.27¢ = ||p|| — ||p|| represents the
dri [7], which affects the straight paths of the Euclidean norm «, producing the
new, curved paths of our Randers structure Fgr = a + 5.

The Euclidean and the 4-th root fit Finsler norms exhibit different proper-
ties of the variation of cell populations. While Fg gives account via gg on the
anisotropic evolution of the illness process in the p 2-dimensional plane through its
PCA spectral data, the 4-th root norm Fo(y) = +/Pa(y) is much more dense in
information, through the larger spectral data of its (0, 4) tensor induced by halvings
by the 4-homogeneous in the components of the quadratic polynomial P4(y). The
qualitative advantage over the Euclidean case is sensed within the space of 4-th
root Finsler norms by the difference A(y) = ¢/Py(y) — /F2(y).

6. Conclusions

A Finsler norm which fits the data provided by the Garner dynamical system
is constructed. This leads to a Randers Finsler structure of locally Minkowski type,
which mainly gives account of the changes of the Garner vector field, in terms of
its parameters. The norm provides a measure of the status change of the cancer
cell proliferation, related to a significant increase of the growth factor parameter h
in the Garner system, which modifies its dynamics, and allows to fairly estimate
the change of the variation rate based on laboratory subsequent samples.

As well, considerations on the conformally Euclidean projections of the three fit
Finsler norms are produced, and the deviation from the canonic Euclidean frame-
work are described by the angle formed by the conformally canonic Euclidean pro-
jection, computed within the Hilbert space of d-tensors, endowed by the canonic
scalar product between tensors.

Further developments on the information provided by Finslerian norm (3.2)
towards the original dynamical system are under current research, and will be
presented in a forthcoming paper.

131p general, in terms of Zermelo navigation [9], the Randers structure represents the most
appropriate model for exhibiting through its geodesics the influence of the S-force field on the
geodesic trajectories of the Riemannian structure given by «.
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