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FINSLER-TYPE ESTIMATORS FOR

THE CANCER CELL POPULATION DYNAMICS

Vladimir Balan and Jelena Stojanov

Abstra
t. We introdu
e a Finslerian model related to the 
lassi
al Gar-

ner dynami
al system, whi
h models the 
an
er 
ell population growth. The

Finsler stru
ture is determined by the energy of the deformation �eld�the

di�eren
e of the �elds, whi
h des
ribe the redu
ed and the proper biologi
al

models.

It is shown that a 
ertain lo
ally-Minkowski anisotropi
 Randers stru
-

ture, obtained by means of statisti
al �tting, is able to provide a Zermelo-type

drift of the overall 
an
er 
ell population growth, whi
h o

urs due to signif-

i
ant 
hanges within the 
an
erous pro
ess. The geometri
 ba
kground, the

appli
ative advantages and perspe
tive openings of the 
onstru
ted geometri


stru
ture are dis
ussed.

1. The Garner 
an
er 
ell population model

It is a known fa
t that the subpopulations of abnormal 
ells responsible for the


an
er disease 
ontain the so 
alled 
an
er stem 
ells (CSCs) [15℄. In this 
ontext,

it is very important to des
ribe 
hanges in the 
an
er population, whi
h 
ontains

three types of 
ells, [11, 13℄: proliferating, quies
ent (resting) and dead ones, their

abundan
e being determinant in the prognosti
 of the 
an
erous disease.

The evolution of the 
an
er 
ells population was �rstly modeled in 1995 by

means of Solyanik's dynami
al system, whi
h is based on the following assumptions:


an
er population 
onsists of proliferating and quies
ent 
ells, proliferating 
ells 
an

lose the division feature and transit to the quies
ent ones, and quies
ent 
ells 
an

be
ome proliferating or die.

The states of the Solyanik model are des
ribed by the amount x̃ of proliferating


ells and the amount ỹ of quies
ent 
ells, whi
h satisfy the di�erential system

˙̃x = bx̃− P x̃+Qỹ

˙̃y = −dỹ + P x̃−Qỹ,
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Figure 1. Transitions between 
ell 
lasses in the Solyanik and Garner


an
er evolution models

where b is the rate of 
ell division of the proliferating 
ells, d is the rate of 
ell

death of the quies
ent 
ells, Q and P des
ribe the intensity of 
ell transition from

the quies
ent to proliferating 
ells and 
onverse, with all the involved parameters

re
onsidered on a daily basis (see Fig. 1).

Solyanik's model [16℄ was further improved by Garner et al. in [12℄ by regarding

the parameters P,Q as dependent on x̃ and ỹ, via

P = c(x̃+ aỹ), Q = Āx̃/(1 + B̄x̃2),

where a measures the relative nutrient uptake by resting vs. proliferating 
an
erous


ells; c gives the magnitude of the rate of 
ell transition from the proliferating to

the resting state; Ā is the initial rate of Q in
rease at small x̃; Ā/B̄ is the rate of

Q de
rease for large x̃.
The Garner model des
ribes the evolution of the s
aled 
ell populations x = c

b
x̃,

y = ca
b
ỹ by means of the dynami
al system

(1.1)

ẋ = x− x(x + y) +
hxy

1 + kx2

ẏ = −ry + ax(x+ y)− hxy

1 + kx2
,

where r = d/b is the ratio between the death rate of quies
ent 
ells and the birth

rate of proliferating 
ells; h = Ā/(ac) represents a growth fa
tor that preferentially

shifts 
ells from quies
ent to proliferating state; k = B̄ · (b/c)2 represents a mild

moderating e�e
t.

The asso
iated null
lines, equilibrium points, the appropriate versal deforma-

tion and the stati
 bifur
ation diagram of the Garner system were studied in [3, 4℄.

2. The Finsler stru
ture and related tensor Hilbert spa
es

A real Finsler stru
ture (M,F ) 
onsists of a real n-dimensional C∞
manifold

M , and a mapping 
alled Finsler fundamental fun
tion de�ned as follows [8, 9, 10℄:

Definition 2.1. A real s
alar fun
tion F : TM → [0,∞) is 
alled a Finsler

fundamental fun
tion if it satis�es the following properties:

(1) F is smooth on the slit tangent spa
e TM r {0} = {(x, y) | x ∈ M, y ∈
TxM, y 6= 0} and is 
ontinuous on the image of the null se
tion of the

tangent bundle (TM, π,M);
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(2) F is positively 1-homogeneous in the dire
tional argument, i.e.,

F (x, λy) = λF (x, y), ∀λ > 0;

(3) the smooth maps gij : TM r {0} → R, i, j ∈ 1, n given by

(2.1) gij =
1

2

∂2F 2

∂yi∂yj
,

form the symmetri
 positive de�nite matrix, [g] = (gij)i,j∈1,n, and are the


omponents

1

of the Finsler metri
 tensor �eld g = gijdx
i ⊗ dxj

.

Also, in the 
ase when [g] is not positive de�nite, but non-degenerate, and with


onstant signature, then (M,F ) is 
alled pseudo-Finsler stru
ture [5℄.

In our 
ase, we shall 
onsider extensions of this de�nition, by assuming that

the domain of F is a stri
t subset of TM , and that the operations within the �bres

are feasible.

A geometri
 obje
t, whi
h is spe
i�
 for Finsler stru
tures and re�e
ts the

obstru
tion of the Finsler metri
 tensor to be
oming a Riemannian one is the Cartan

tensor �eld, whose 
omponents are [6℄

Cijk :=
1

2

∂gij(x, y)

∂yk
=

1

4

∂3F 2(x, y)

∂yi∂yj∂yk
.

Both the Finsler metri
 gij and the Cartan tensor �eld Cijk, whi
h depend

on the tangent spa
e 
oordinates (x, y), belong to Hilbert spa
es of (bounded and


ontinuous) d-tensor �elds of the 
orresponding type, (0, 2) and (0, 3), respe
tively
[8, 14℄.

The s
alar produ
t whi
h provides the Hilbert stru
ture generally a
ts on a

pair of two (0,m)-tensors A and B by means of the formula

〈A,B〉g = Ai1...imgi1j1 . . . gimjmBi1...im .

This naturally indu
es the norm, the proje
tion of A onto B, and the angle

between the two tensors as follows:

‖A‖g =
√

〈A,A〉, prB A =
〈A,B〉
〈B,B〉B, ∢(A,B) = arccos

〈A,B〉
‖A‖ · ‖B‖ .

We note that all these geometri
 obje
ts generally depend on the �xed Finsler

metri
 g and on the tangent spa
e lo
al 
oordinates (x, y).
For m = 2, the tensor �elds are represented by square matri
es A and B

respe
tively, and for gij = δij (i.e., Finsler spa
e of Eu
lidean type), we have

(2.2) 〈A,B〉δ = Trace(A ·Bt),

where ( )t is the transposition operator.

We shall further 
onsider three types of Finsler stru
tures: Randers, Eu
lidean

and of 4-th root type.

1

The 
omponents gij of the fundamental metri
 tensor �eld (??) and the 
omponents gij of

its dual tensor �eld de�ned by gisgsj = δij , will be further used to lower and respe
tively to raise

indi
es of tensors, for 
onstru
ting geometri
 obje
ts spe
i�
 to the Finsler stru
ture.
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The Randers stru
ture has the fundamental fun
tion of the form FR = α+ β,
where α =

√

aij(x)yiyj , with the Riemannian metri
 aij(x) and bi(x) are the 
oe�-


ients of the 1-form β = bi(x)y
i
. The Eu
lidean stru
ture appears as a spe
ial 
ase,

for aij = const., and bi = 0, FE =
√

aijyiyj , while a 4-th root Finsler stru
ture

has the general form FQ = 4

√

aijkℓ(x)yiyjykyℓ, where aijkℓ are the 
omponents of

a (0, 4)-tensor �eld on the base manifold M2

.

We shall determine by statisti
al �tting over a 
ertain model-related 2-dimens-

ional subdomain three su
h metri
s of the form

FR(y) =
√

δijyiyj + biy
i =

√

(y1)2 + (y2)2 + b1y
1 + b2y

2,(2.3)

FE(y) =
√

c1 ·(y1)2 + c2 ·y1y2 + c3 ·(y2)2,(2.4)

FQ(y) =
4

√

q1 ·(y1)4 + q2 ·(y1)3y2 + q3 ·(y1)2(y2)2 + q4 ·y1(y2)3 + q5 ·(y2)4,(2.5)

where the 
oe�
ients b1,2, c1,2,3 and q1,2,3,4,5 are real 
onstants providing the lo-


ally Minkowski 
hara
ter of the three Finsler stru
tures. Ea
h of the stru
tures

respe
tively provides the 
orresponding Finsler metri
 tensor �elds: gR, gE and gQ.
We shall further analyze the way these stru
tures relate and their properties

related to the model, by examining their Cartan tensors, and by estimating their

shift from the asso
iated 
onformally Eu
lidean proje
tion.

Ex
ept for the Eu
lidean 
ase (2.4), where the Cartan tensor is identi
ally zero,

the Randers and the 4-th root 
ases provide a nontrivial Cartan tensor, whose

squared Frobenius norm is a dire
tion-dependent s
alar fun
tion provided by the

transve
tion

3 ‖C‖2g = Cijkg
irgjsgktCrst.

Proposition 2.1. The following assertions hold

4

:

(1) The Finsler metri
 produ
ed by (2.3) has the following 
onformally Eu
lidean

proje
tion

(2.6) prδgR =
1

2

(

2 +
3(b1ẋ+ b2ẏ)
√

ẋ2 + ẏ2
+ b21 + b22

)

δ.

(2) The Finsler metri
 produ
ed by (2.4) has the 
onstant 
onformally Eu
lidean

fa
tor, i.e., the 
onformally �at proje
tion is

(2.7) prδ gE =
1

2
(c1 + c3)δ.

(3) The Finsler metri
 produ
ed by (2.5) has the following 
onformally Eu
lidean

proje
tion

(2.8) prδ gQ =
p

16F 6
Q

δ,

2

We assume FQ de�ned on the subdomain of TM whi
h ensures the positivity of the root

argument; as well, we note that FQ is a pseudo-Finsler norm, whose smoothness is ensured on a

stri
t subdomain of the slit tangent spa
e.

3

In [10℄, an alternative of norm for the Cartan tensor is presented, whi
h results in a numeri
al

value.

4

Hereby we denote by δ the 
anoni
 metri
 for the Eu
lidean 2-dimensional 
ase, and use the

notation y = (y1, y2) = (ẋ, ẏ).
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where p is the following polynomial in the 
omponents of the tangent ve
tor

y = (y1, y2) = (ẋ, ẏ):

p = (8q21 + 4q1q3 − q22)ẋ
6 + (12q1q4 + 12q1q2)ẋ

5ẏ(2.9)

+ (12q1q3 + 6q2q4 + 24q1q5 + 3q22)ẋ
4ẏ2

+ (16q1q4 + 4q2q3 + 16q2q5 + 4q3q4)ẋ
3ẏ3

+ (12q3q5 + 3q24 + 24q1q5 + 6q2q4)ẋ
2ẏ4

+ (12q4q5 + 12q2q5)ẋẏ
5 + (4q3q5 + 8q25 − q24)ẏ

6.

Proof. A straightforward 
al
ulation produ
es the 
omponents of Finsler met-

ri
 tensor �elds in the all three 
ases:

gR11 = − β

α3
ẋ2 +

2

α
b1ẋ+

F

α
+ b21,

gR12 = − β

α3
ẋẏ +

b2
α
ẋ+

b1
α
ẏ + b1b2,

gR22 = − β

α3
ẏ2 +

2

α
b2ẏ +

F

α
+ b22;

gE11 = c1, gE12 =
1

2
c2, gE22 = c3;

gQ11 =
1

8F 6

(

8q21ẋ
6 + 12q1q2ẋ

5ẏ + (3q22 + 12q1q3)ẋ
4ẏ2

+ (4q2q3 + 16q1q4)ẋ
3ẏ3 + (24q1q5 + 6q2q4)ẋ

2ẏ4

+ 12q2q5ẋẏ
5 + (4q3q5 − q24)ẏ

6
)

gQ12 =
1

8F 6

(

2q1q2ẋ
6 + 3q22ẋ

5ẏ + 6(q2q3 − q1q4)ẋ
4ẏ2 + (2q2q4 + 4q23 − 16q1q5)ẋ

3ẏ3

+ 6(q3q4 − q2q5)ẋ
2ẏ4 + 3q24ẋẏ

5 + 2q4q5ẏ
6
)

gQ22 =
1

8F 6

(

(4q1q3 − q22)ẋ
6 + 12q1q4ẋ

5ẏ + (24q1q5 + 6q2q4)ẋ
4ẏ2

+ (16q2q5 + 4q3q4)ẋ
3ẏ3 + (12q3q5 + 3q24)ẋ

2ẏ4 + 12q4q5ẋẏ
5 + 8q25 ẏ

6
)

.

Inner produ
t (2.2) of g and δ redu
es to the tra
e and 〈δ, δ〉 = 2, hen
e

summation

1
2 (g11+g22) gives the 
onformal fa
tors at (2.6), (2.7) and (2.8). �

Proposition 2.2. In the Hilbert spa
e of (0, 2)-type Finsler tensors, the fol-

lowing deviation angles o

ur:

(1) The Finsler-Randers metri
 produ
ed by (2.3) deviates from its 
onformally

Eu
lidean approximation by the angle

(2.10) θR = ar

os

√

1

2
+

(A+ 1)(A2 − 4A+ 1)

(2 + 3A+B)2 − 2(A+ 1)(A2 − 4A+ 1)
,

where the following abbreviations are used: A = (b1ẋ + b2ẏ)/
√

ẋ2 + ẏ2 and

B = b21 + b22.
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(2) The Finsler metri
 produ
ed by (2.4) and its 
onformally �at approximation

determine the 
onstant deviation angle

θE = ar

os

c1 + c3
√

2c21 + c22 + 2c23
.

(3) The deviation fun
tion expressing the angle between the Finsler metri
 pro-

du
ed by (2.5) and its 
onformally Eu
lidean approximation is

(2.11) θQ = ar

os

p√
2s

,

where p is the polynomial from (2.9), and s = π+ σ(π) is a polynomial in ẋ, ẏ
with

π =
(

64q41 + 8q21q
2
2 − 8q1q

2
2q3 + 16q21q

2
3 + q42

)

ẋ12

+
(

192q31q2 + 96q21q3q4 − 24q1q
2
2q4 + 24q1q

3
2

)

ẋ11ẏ

+
(

192q31q3 ++192q21q
2
2 + 144q21q

2
4 − 48q21q2q4 + 192q21q3q5

+ 48q1q2q3q4 + 48q1q
2
2q3 − 48q1q

2
2q5 − 12q32q4 + 18q42

)

ẋ10ẏ2

+
(

256q31q4 + 352q21q2q3 − 128q21q2q5 + 576q21q4q5 + 128q1q2q3q5

− 56q1q
2
2q4 + 32q1q2q

2
3 + 144q1q2q

2
4 − 8q22q4q3

+ 32q1q4q
2
3 + 72q1q

3
2 + 72q32q3 − 32q32q5

)

ẋ9ẏ3

+
(

384q31q5 + 144q21q
2
3 + 72q21q

2
4 + 576q21q

2
5 + 480q21q2q4 − 96q1q2q4q3

+ 672q1q2q4q5 + 168q1q
2
2q3 + 96q1q

2
3q5 + 120q1q3q

2
4

+ 30q22q
2
4 − 240q1q

2
2q5 − 24q22q3q5 + 120q22q

2
3 + 24q32q4 + 9q42

)

ẋ8ẏ4

+
(

768q21q2q5 + 384q21q3q4 + 384q21q4q5 − 96q1q
2
3q4 + 768q1q2q

2
5 − 384q1q2q3q5

+ 576q1q3q4q5 + 48q2q3q
2
4 − 72q32q5 + 168q22q4q5 + 120q22q3q4 + 240q1q

2
2q4

− 24q1q2q
2
4 + 96q1q2q

2
3 + 72q1q

3
4 + 24q32q3 + 96q2q

3
3

)

ẋ7ẏ5

+
(

512q21q
2
5 + 640q21q3q5 + 272q1q2q3q4 + 32q1q2q4q5 + 272q2q3q4q5

+ 432q1q
2
2q5 − 144q1q3q

2
4 − 144q22q3q5 − 256q1q

2
3q5 + 432q1q

2
4q5

+ 44q22q
2
4 + 640q1q3q

2
5 + 176q2q

2
3q4 + 240q21q

2
4 + 16q22q

2
3

+ 16q23q
2
4 + 240q22q

2
5 + 36q32q4 + 36q2q

3
4 + 32q43

)

ẋ6ẏ6 · 1
2
,

and σ(π) produ
ed from π after inter
hanging

(q1, q2, q3, q4, q5, ẋ, ẏ) ↔ (q5, q4, q3, q2, q1, ẏ, ẋ).
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Proof. Let f be the 
onformal Eu
lidean fa
tor of the proje
tion in the equa-

tions (2.6)�(2.8), and let θ = ∢(g, prδ g) be the angle between the 
orresponding

metri
 and its proje
tion to δ. Then, the homogeneity of the inner produ
t implies

cos θ =
〈g, fδ〉

√

〈g, g〉
√

f2〈δ, δ〉
= sign(f) · 〈g, δ〉

√

〈g, g〉
√

〈δ, δ〉
= sign(f) · cos∢(g, δ).

By use of (2.2), we have the following expressions

5

cos θ =
g11 + g22

√

2(g211 + 2g212 + g222)
, ∢(g, δ) = ar

os

√

(g11 + g22)2

2(g211 + 2g212 + g222)
.

By plugging into the previous formula the appropriate metri
 
omponents, one gets

(2.10)�(2.11). �

The proposed Finsler fun
tions are of lo
ally Minkowski type, whi
h infers that

many geometri
 obje
ts related to them 
onsiderably simplify: the geodesi
s are

(pie
es of) straight lines, the KCC invariants vanish, the Berwald linear 
onne
tion

is trivial [1, 8℄. In fa
t, the Finlser stru
tures will provide point-independent norms,

whi
h a
t on a 
ertain proper subset of the spa
e TM = TR2
.

3. The statisti
 �tting of the Finsler stru
tures

3.1. The redu
ed Garner system. We observe that the original Garner

dynami
al system (1.1), denoted further as GS, is the extended version of the

redu
ed dynami
al system (denoted as RS)6:

(3.1)

ẋ = x− x(x+ y)

ẏ = −ry + ax(x + y).

We note that in the original system GS, for h being signi�
ant one noti
es a

malignant evolution of the illness; this happens when:

• the parameter a signi�
antly de
reases, be
oming negligible (i.e., there is a

small ratio of nutrient uptake of resting vs. proliferating 
ells, whi
h shows

that the resour
es are absorbed mostly by the proliferating 
ells in detriment

of quies
ent 
ells);

• the parameter c is negligible (i.e., the rate of 
ell transition from 
an
erous

to the resting state is negligible, hen
e the evolution of the disease is either

stationary, or worsening);

• the parameter Ā signi�
antly in
reases (the rate of in
rease of Q is abruptly

big at small x, i.e., the 
ell transition from the quies
ent to 
an
erous 
ells is

intense).

We 
on
lude that when these 
onditions are far from being a
hieved (this might

happen, e.g., under treatment, whi
h may signi�
antly modify the intake of nutrient

ratio in disfavor of 
an
erous 
ells), the GS (1.1) 
an be approximated by RS (3.1).

5

We shall further 
onsider the absolute value of the fa
tor, redu
ing thus the angle to the

�rst quadrant.

6

This o

urs when in system (3.1) the 
onstant h = Ā/(ac) is negligible, 0 < |h| ≪ 1.
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Figure 2. The �eld lines of the redu
ed Garner model RS, for a =
1.998958904 and r = 0.03.

3.2. The in
rease rate of 
an
er 
ell populations for mild premises.

As des
ribed in the previous se
tion, under mild (
ontrolled) evolution of the disease

(for 0 6 |h| ≪ 1), the RS system (3.1) reasonably approximates the original system

(1.1).

The set of all possible states of the Garner's dynami
al system is a bounded

subset D of the �rst quadrant in R
2
, K+ = {p = (x, y) | x > 0, y > 0}, whi
h


ontains the information on the s
aled amount of proliferating and of quies
ent 
ells.

The RS (3.1) atta
hes to any point p = (x, y) ∈ D its related velo
ity ṗ =
(ẋ, ẏ) ∈ T(x,y)(K+). Due to the polynomial form of the ve
tor �eld, RS provides a

reverse asso
iation ṗ = (ẋ, ẏ)  p(x, y), by solving the nonlinear algebrai
 system

(3.1) in terms of p = (x, y) for given ṗ = (ẋ, ẏ), but only in 
ertain regions of K+

and only for 
ertain values of the parameters r, h, k.
We shall further 
onsider the RS system for the 
ase of �xed parameters [12℄:

(A1) a = 1.998958904 and r = 0.03.

We 
hoose the domain D of the Finsler norm F as a set of tangent ve
tors,

where D = ϕ(Iρ × Iθ) ⊂ TpK+, with

Iρ × Iθ = [0.329915, 0.888939]× [1.0988, 1.51452]⊂ [0,∞)× [0, 2π),

and ϕ is the mapping whi
h 
hanges the polar 
oordinates to the Cartesian ones,

ϕ : [0,∞)× [0, 2π) → R
2, ϕ(ρ, θ) = (ρ cos θ, ρ sin θ).

Under an appropriate 
hoi
e of I1 and I2, one 
an uniquely solve the quadrati


system (3.1) in terms of p = (x, y), with P lo
ated on a �eld line from K+, with

related tangent dire
tion of the emerging velo
ity ṗ ∈ D.

By using the inverse fun
tion theorem for the feasible dire
tions of the redu
ed

dynami
al system, one may solve the pair of algebrai
 nonlinear equations of the

system, to lo
ally �nd the asso
iated point p.
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3.3. The rate-shift under 
hanges of premises. The status of the 
an
er-

ous disease 
hanges from mild to severe status due to a multitude of fa
tors whi
h


orresponds to a 
hange of parameters in the GS Garner system (1.1).

Su
h a 
ase o

urs when h be
omes signi�
ant; this transforms RS into GS and

then (1.1) asso
iates to the solutions p from the nonlinear system, the new rates

of 
hange ṗe = (ẋe, ẋe) valid for the new 
ir
umstan
es of the illness. Namely, the

point 
oordinates p = (x, y) determined under mild 
onditions in Subse
tion 3.2,

plugging in (1.1), produ
e the new 
hange rate ṗe of the 
an
er 
ell populations

(see Fig. 3).

Figure 3. The transition ṗ ṗe between the RS and the GS 
hange rates.

3.4. Statisti
al �tting of the Finsler norms. The Eu
lidean norm ‖ṗe‖E
of the obtained rate-ve
tor ṗe = (ẋe, ẋe) 
an be used to evaluate the severeness of

the disease evolution. This 
hoi
e, however, has the drawba
k of being symmetri


in the two 
omponents of ṗe, espe
ially in the 
ase ẋ > 0, sin
e equal 
redit is given
to the two rates of the in
rease.

One alternative 
hoi
e is to design a tool whi
h emphasizes the 
an
er 
ell

population in
rease, by means of a Finsler norm, whi
h is likely to emphasize a

tuned fair evaluation of the illness evolution.

To this aim we note that ‖ṗe‖ 
an provide lo
ally Minkowski (i.e., depending

on dire
tional variables only) Finsler norms FR(ẋ, ẏ), FE(ẋ, ẏ) and FQ(ẋ, ẏ) by

statisti
al �tting

7

.

The proposed approximation, whi
h provides the �t of the Finsler norm F is

given by

(3.2) F (ẋ, ẏ) ∼ ‖ṗe‖E,
where ‖ · ‖E is the Eu
lidean norm. We note that the triangle inequality for norms

shows that the rate-jump entailed by the 
hange of status RS → GS due to the

in
rease of |h|, does not ex
eed ‖ṗe − ṗ‖E .
We shall 
onsider the following 
hoi
es whi
h follow the main requirements of

a Finsler norm, and whi
h are fundamental fun
tions of lo
ally Minkowski type

8

:

FR(ẋ, ẏ) =
√

ẋ2 + ẏ2 + b1ẋ+ b2ẏ(3.3)

FE(ẋ, ẏ) =
√

c1ẋ2 + c2ẋẏ + c3ẏ2(3.4)

FQ(ẋ, ẏ) =
4

√

a(ẋ)4 + b(ẋ)3(ẏ) + c(ẋ)2(ẏ)2 + d(ẋ)(ẏ)3 + e(ẏ)4(3.5)

7

Generally, when 
onsidering one of the three stru
tures, we shall simply write F (ẋ, ẏ).
Similar pro
edures of Finslerian statisti
al �tting were performed in [2℄.

8

For brevity, we denote (a, b, c, d, e) := (q1, q2, q3, q4, q5).
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where b1,2 and c1,2,3 and (a, b, c, d, e) = (q1, q2, q3, q4, q5) are 
oe�
ients to be eval-

uated by statisti
 �tting.

In our resear
h, we use the values assumed in (A1) for the systems RS (3.1)

and GS (1.1).

For the statisti
al �tting of F (ṗ) from (3.2) to ‖ṗe‖, where ṗ = (ẋ, ẏ), and
p = (x, y), ṗe = (ẋe, ẏe) are respe
tively obtained by tra
ing the pro
ess des
ribed

in Fig. 3, we use for the Randers, Eu
lidean and 4-th root 
ases the following

equalities (k ∈ 1, N)

b1ẋk + b2ẏk =
√

(ẋe)2k + (ẏe)2k −
√

ẋ2
k + ẏ2k,(3.6)

c1ẋ
2
k + c2ẋkẏk + c3ẏ

2
k = (ẋe)

2
k + (ẏe)

2
k,(3.7)

a(ẋ)4k + b(ẋ)3k(ẏ)k + c(ẋ)2k(ẏ)
2
k + d(ẋ)k(ẏ)

3
k + e(ẏ)4k =

(

(ẋe)
2
k + (ẏe)

2
k

)2
,(3.8)

whi
h allows us to determine the statisti
al �t for the values b1,2, c1,2,3 and a, b, c, d, e
by the method of least squares.

For �nding ṗe from ṗ via RS and further GS, we use in (1.1) the parameter

values [3, 12℄

(A2) h = 1.236 and k = 0.236.

As inputs for the �tting pro
ess, we employ a uniform grid over the (ρ, θ)-
domain Iρ × Iθ = [0.329915, 0.888939]× [1.0988, 1.51452],

(ρi, θj) ∈ Iρ × Iθ, (i, j) ∈ 0, nρ × 0, nθ,

with ϕ(Iρ × Iθ) = I1 × I2 = [0.05, 0.1596]× [0.293844, 0.887532], and 
onsider as

related tangent ve
tors the following s
aled spheri
al harmoni
s

ṗk = (ẋk, ẏk) = (ρi cos θj , ρi cos θj) ∈ D = I1 × I2, k ∈ 1, N

where k = (i − 1)nρ + j ∈ 1, N , and N = (nρ + 1)(nθ + 1).
We note that the right hand side of the RS 
ontains quadrati
 polynomials,

and that for given input ṗ = ṗ1, (RS)−1
provides a twofold point-solution, p′, p′′,

of whi
h one solution p1 is 
hosen.

For ea
h next plugged-in s
aled spheri
al harmoni
 ṗk+1, RS similarly provides

two other point-solutions, and the right 
hoi
e pk+1 is determined by both the

non-negativity of its 
omponents and by the Eu
lidean proximity to the previous

sele
ted point pk (k ∈ 1, N − 1).
Finally, one gets the set of points pk = (xk, yk) and (via GS) the 
orresponding


hange rates (ṗe)k, k ∈ 1, N , whi
h are further plugged in (3.6)-(3.8).

The N samples ṗk and the new rates (ṗe)k (k = 1, N), plugged in the N
relations from (3.6)�(3.8), provide in ea
h 
ase N linear equations with parameters

as unknowns whi
h �x the Finsler fun
tion (3.3)-(3.5).

3.4.1. The Randers �tting. The system (3.6) is linear relative to b1 and b2,
over-determined (N >> 2), and has the form AS = B, where A = (ẋk, ẏk)k=1,N ∈
MN×2(R), S = (b1, b2)

t ∈ M2×1(R) is the the unknown ve
tor, and B ∈ MN×1(R)
is given by the r.h.s. of (3.6) for k = 1, N .
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Computer Maple 17 simulation forN = 36, provides by the least square method

the pseudosolution (b1, b2)
t = (AtA)−1AtB, and under assumptions (A1) and (A2),

the exa
t �t-values of the parameters are

(3.9) b1 ≈ 0.628481987778205518, b2 ≈ −0.269476980932055964.

Hen
e the �t Randers stru
ture related to the dynami
al system of the Garner


an
er 
ells population model (1.1) be
omes (for the obtained (3.9) �t values of the

parameters)

(3.10) FR(ẋ, ẏ) ≈
√

ẋ2 + ẏ2 + 0.63 · ẋ− 0.27 · ẏ

where the dot marks denote time derivatives, whi
h des
ribe the rates of in
rease

for the s
aled 
an
er 
ell populations

9

.

3.4.2. The Eu
lidean �tting. For the Eu
lidean 
ase, for �xing the Finsler fun
-

tion (3.4), the same N samples ṗk and new rates (ṗe)k (k = 1, N), are plugged in

the N relations (3.7).

The obtained system is linear in terms of c1, c2 and c3, superdetermined

(N ≫ 3), and has the form AS = B, where A ∈ MN×3(R), S ∈ M3×1(R), and
B ∈ MN×1(R), with the unknown ve
tor S = (c1, c2, c3)

t
.

Analogous 
omputer simulation provides the parameters solution

c1 ≈ 0.940805450748692151

c2 ≈ 1.16189809024084268

c3 ≈ 0.496069555231253400,

hen
e the Eu
lidean type fundamental fun
tion of the stru
ture �t to (1.1), is

FE(ẋ, ẏ) ≈
√

0.94ẋ2 + 1.16ẋẏ + 0.50ẏ2.

3.4.3. The 4-th root �tting. The 4-th root type Finsler fun
tion (3.5) (the third


ase) is determined by use of the same method as in the previous two 
ases with

the di�eren
es: A ∈ MN×5(R), S ∈ M5×1(R), and S = (a, b, c, d, e)t.
The same 
omputer simulation provides the parameters solution

10

:

(3.11)

a ≈ −0.320013354328217758; b ≈ 2.69642032805366582;
c ≈ 2.42492765757201711; d ≈ 1.07381846633249766;
e ≈ 0.254991915496320776,

hen
e the �t 4-th root Finsler fundamental fun
tion lo
ally related to the GS (1.1)

is

(3.12) FQ(ẋ, ẏ) ≈ 4

√

−0.32ẋ4 + 2.70ẋ3ẏ + 2.42ẋ2ẏ2 + 1.07ẋẏ3 + 0.25ẏ4.

9

For display 
onvenien
e, trun
ated values of the 
oe�
ients have been used, in this, but

also in the next two stru
tures

10

For brevity, we denote (a, b, c, d, e) := (q1, q2, q3, q4, q5).
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4. The properties of the 
onstru
ted Finsler metri
 stru
tures

4.1. The Randers type stru
ture. Regarding the Randers stru
ture, it is

remarkable that for ‖b‖g < 1, whi
h is our 
ase, one has (gij) positive de�nite, and
there exists a verti
al non-holonomi
 frame

FH =
{

Xj | Xj = X i
j

∂

∂yi
, j = 1, 2

}

,


alled the Holland frame of the Randers stru
ture [8℄,

X i
j =

√

α/F
(

δij −
yi(αj + bj)

F
+
√

α/F · y
iαj

α

)

, j = 1, 2,

in whi
h the Randers metri
 tensor �eld gij be
omes the α-subja
ent Riemannian

one and αi =
∂α
∂yi = yi

α
. In this respe
t, we get the following results.

Proposition 4.1. The following assertions hold true:

a) The asso
iated Finsler metri
 tensor �eld g = gij(ṗ)dx
i⊗dxj

of the Randers

stru
ture FR has the 
omponents

(4.1) gij(y) =
α+ β

α

(

δij −
yiyj

α2

)

+
yiyj + α(biy

j + bjy
i) + bibjα

2

α2
,

where y = (y1, y2) = (ẋ, ẏ), b1 ≈ 0.63, b2 ≈ −0.27 and

11

α =
√

δijyiyj =
√

ẋ2 + ẏ2, β = biy
i = b1ẋ+ b2ẏ.

b) For the Finsler stru
ture (3.3), the 
omponents of the �elds of the Holland

frame are given by

X i
j =

αFδij − yi(yj + αbj)√
αF 3

+
yiyj

αF
, j = 1, 2.

Proof. a) By a dire
t 
omputation, one obtains

gij(y) =
F

α
(δij − αiαj) + (αi + bi)(αj + bj)

=
α+ β

α

(

δij −
1

α2
yiyj

)

+
(yi

α
+ bi

)(yj

α
+ bj

)

,

when
e result (4.1) follows. For b), one noti
es that using the de�nition of the

Holland frame [8℄ and, by performing the 
al
ulations for our lo
ally-Minkowski

parti
ular norm, one infers the 
laimed result. �

Moreover, by plugging in the �t 
oe�
ients from (3.10) into the appropriate

equations from Propositions 2.1 and 2.2 one gets the following

11

For display 
onvenien
e, trun
ated values of the 
oe�
ients have been used, of the

more a

urate statisti
ally determined values b1 = 0.628481987778205518 · r · cos(t) and b2 =
−0.269476980932055964 · r · sin(t).
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Figure 4. Plot of the squared lo
ally Minkowski Finsler Randers norm

z = F 2(ẋ, ẏ) and of the indi
atrix F (ẋ, ẏ) = 1

Corollary 4.1. The 
onformally Eu
lidean proje
tion of the metri
 produ
ed

by the Randers type Finsler stru
ture (3.10) is

prδ gR ≈
(

0.945ẋ− 0.405ẏ
√

ẋ2 + ẏ2
+ 1.235

)

δ,

and the deviation between these two metri
s is given by

θR ≈ arccos
1.89αẋ− 0.81αẏ + 2.47α2

√
r

,

where α =
√

ẋ2 + ẏ2 and

r = −4.68α3ẏ + 1.20αẋ2ẏ − 0.44αẋ3 + 10.56α3ẋ+ 8.64α4 + 1.94α2ẋ2 − 2.04α2ẋẏ.

The graphi
al representation of the values of the Finsler-Randers norm along

the z-axis in terms of the inputs (ẋ, ẏ) ∈ D = [0.05, 0.1596]× [0.293844, 0.887532],
and of the Finsler indi
atrix are provided in Fig. 4. These 
learly exhibit 
onvexity

and 
ompa
tness of the Randers indi
atrix of (3.10).

By Maple symboli
 programming one 
an easily test that the signature of the

metri
 g is (+,+), hen
e (D,F ) with D ⊂ K+ is a Randers geometri
 stru
ture of

lo
ally-Minkowski type [14℄.

To illustrate the signature of the point-independent metri
 tensor g, one 
an

see that, within a �ber of TṗR
2
, its asso
iated quadrati
 form

12

Qg
y
(v) = gij |y vivj , v = (vi, vj) ∈ R

2 ≡ TṗR
2

has its graph an ellipti
 paraboloid pat
h (see Fig. 5), whi
h gives a

ount of the

positive signature of g, signalled by the inequality ‖b‖2 ≡ b21+b22 ≈ 0.632+0.272 < 1.

We note as well that the Cartan tensor Cijk = 1
4

∂3F 2

∂yi∂yj∂yk measures the �dis-

tan
e� between the 
onstru
ted Finslerian F norm and the spa
e of �at Eu
lidean-

type norms. The distan
e 
an be lo
ally estimated in terms of y = (y1, y2) = (ẋ, ẏ)

12

The quadrati
 form Q a
ts on the verti
al �bre of velo
ities provided by the identi�
ation

TṗR
2 ≡ R2

, assuming the �agpole �xed, ṗ = (.2, 1).
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Figure 5. Graphs of the quadrati
 form Qg
y and of QC

y = ‖C‖2y for

ṗ ∈ [−1, 0.5]× [−0.5, 1].

by the square of the Frobenius norm QC
y
= ‖C‖2

y
(see Fig. 5), where

‖C‖y =
√

CijkgirgjsgktCrst.

The plot of the energy QC
y
of Cijk emphasizes a spe
ial region inside [−1, 0.5]×

[−0.5, 1], at whi
h the di�eren
e between the Randers norm and the 
anoni
 Eu-


lidean norm signi�
antly matter. This region (a small neighborhood of the origin)


orresponds to slight variations of the 
an
er 
ell population, while for strong vari-

ations the Randers stru
ture asymptoti
ally approa
hes the 
anoni
 Eu
lidean one.

4.2. The indu
ed Eu
lidean stru
tures. The Eu
lidean 
ase δ is 
anoni
,
hen
e the 
orresponding equations from Propositions 2.1 and 2.2 produ
e the 
on-

stant 
onformally �at fa
tor and the 
onstant deviation angle,

prδ gE ≈ 0.72δ, θE ≈ 0.71.

4.3. The 4-root type stru
ture. For the 4-th root Finsler metri
, the sub-

stitution of �t trun
ated parameters (3.11) into the 
orresponding equations of

Propositions 2.1 and 2.2 produ
e the following

Corollary 4.2. The 
onformally Eu
lidean proje
tion of the metri
 produ
ed

by 4-root type Finsler stru
ture (3.12) and the deviation angle between the metri


and its δ-proje
tion respe
tively are

prδ gQ =
1

16F 6
Q

p δ, θQ = arccos
p√
2s

,
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Figure 6. Graph of the energy z = F 2(ẋ, ẏ), indi
atrix FQ(ẋ, ẏ) = 1
and squared Cartan norm z = QC

y of the 4-th root Finsler stru
ture

where

p ≈ 9.61ẋ6 + 14.93ẋ5ẏ − 27.64ẋ4ẏ2 − 41.64ẋ3ẏ3 − 26.05ẋ2ẏ4 − 11.31ẋẏ5 − 1.78ẏ6,

s ≈ 1.83ẋ12 − 1.34ẋ11ẏ + 7.72ẋ10ẏ2 + 40.57ẋ9ẏ3 + 87.11ẋ8ẏ4

+ 104.79ẋ7ẏ5 + 84.73ẋ6ẏ6 + 52.57ẋ5ẏ7 + 25.57ẋ4ẏ8

+ 9.59ẋ3ẏ9 + 2.72ẋ2ẏ10 + 0.49ẋẏ11 + 0.04ẏ12.

The parameters of both type stru
tures, FR and FQ have similar graphs, though

the stru
tures strongly di�er, and the indi
atrix of FQ is non
onvex.

As well, the nature of FQ 
auses mu
h stronger dependen
y of the metri
 tensor

on the dire
tional argument, parti
ularly in the neighborhood of (0, 0) (see Fig. 6).

5. The relevan
e of the Finsler stru
tures for the Garner model

We note that the �t Randers�Finsler norm (3.3) arises from the evaluation

of the GS evolution-rate in terms of the redu
ed RS, and provides a mediated

information on the prognosis of the disease after the state worsening signaled by

the in
rease of the parameter h. The additive term β = 0.63ẋ − 0.27ẏ from the

Randers norm evaluates the impa
t of the 
hange in the parameter h and the rate

of in
rease.
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The statisti
ally determined 
oe�
ients (b1, b2) ≈ (0.63,−0.27) emphasize the

dominant role of the proliferating 
ells in the dynami
al system (1.1).

The Finsler norm (3.3) provides an evaluation of the severity of the rate of


an
er 
ell evolution immediately after a signi�
ant 
hange of the Garner parameter

h, whi
h 
an be experimentally measured or estimated in terms of the 
ause whi
h

determined the 
hange.

The bene�t of the Randers stru
ture relies on the fa
t that the ve
tor input

y = ṗ of F (the growth rates of the 
an
erous 
ells) does not require knowledge of

the amount of the total 
ell populations p.
These inputs 
an be experimentally determined when the 
an
er evolution is


ontrolled (�steady", for h ≈ 0), and 
an be estimated by measuring the population

in
rease/de
rease of the 
an
erous 
ells by using only two subsequent laboratory

samples.

Moreover, the deformation term β = 0.63ẋ− 0.27ẏ ≈ ‖ṗe‖−‖ṗ‖ represents the
drift

13

[7℄, whi
h a�e
ts the straight paths of the Eu
lidean norm α, produ
ing the
new, 
urved paths of our Randers stru
ture FR = α+ β.

The Eu
lidean and the 4-th root �t Finsler norms exhibit di�erent proper-

ties of the variation of 
ell populations. While FE gives a

ount via gE on the

anisotropi
 evolution of the illness pro
ess in the ṗ 2-dimensional plane through its

PCA spe
tral data, the 4-th root norm FQ(y) = 4

√

P4(y) is mu
h more dense in

information, through the larger spe
tral data of its (0, 4) tensor indu
ed by halvings

by the 4-homogeneous in the 
omponents of the quadrati
 polynomial P4(y). The
qualitative advantage over the Eu
lidean 
ase is sensed within the spa
e of 4-th

root Finsler norms by the di�eren
e ∆(y) = 4

√

P4(y)− 4

√

F 2
E(y).

6. Con
lusions

A Finsler norm whi
h �ts the data provided by the Garner dynami
al system

is 
onstru
ted. This leads to a Randers Finsler stru
ture of lo
ally Minkowski type,

whi
h mainly gives a

ount of the 
hanges of the Garner ve
tor �eld, in terms of

its parameters. The norm provides a measure of the status 
hange of the 
an
er


ell proliferation, related to a signi�
ant in
rease of the growth fa
tor parameter h
in the Garner system, whi
h modi�es its dynami
s, and allows to fairly estimate

the 
hange of the variation rate based on laboratory subsequent samples.

As well, 
onsiderations on the 
onformally Eu
lidean proje
tions of the three �t

Finsler norms are produ
ed, and the deviation from the 
anoni
 Eu
lidean frame-

work are des
ribed by the angle formed by the 
onformally 
anoni
 Eu
lidean pro-

je
tion, 
omputed within the Hilbert spa
e of d-tensors, endowed by the 
anoni


s
alar produ
t between tensors.

Further developments on the information provided by Finslerian norm (3.2)

towards the original dynami
al system are under 
urrent resear
h, and will be

presented in a forth
oming paper.

13

In general, in terms of Zermelo navigation [9℄, the Randers stru
ture represents the most

appropriate model for exhibiting through its geodesi
s the in�uen
e of the β-for
e �eld on the

geodesi
 traje
tories of the Riemannian stru
ture given by α.
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