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SIMPLE GROUPS WITH THE SAME
PRIME GRAPH AS 2Dn(q)

Behrooz Khosravi and A. Babai

Abstract. In 2006, Vasil’ev posed the problem: Does there exist a positive
integer k such that there are no k pairwise nonisomorphic nonabelian finite
simple groups with the same graphs of primes? Conjecture: k = 5. In 2013,
Zvezdina, confirmed the conjecture for the case when one of the groups is
alternating. We continue this work and determine all nonabelian simple groups
having the same prime graphs as the nonabelian simple group 2Dn(q).

1. Introduction

If n is an integer, then we denote by π(n) the set of all prime divisors of n.
If G is a finite group, then π(|G|) is denoted by π(G). The spectrum of a finite
group G which is denoted by ω(G) is the set of its element orders. We construct
the prime graph of G, denoted by Γ(G), as follows: the vertex set is π(G) and two
distinct primes p and q are joined by an edge (we write p ∼ q) if and only if G
contains an element of order pq. Let s(G) be the number of connected components
of Γ(G) and let πi(G), i = 1, . . . , s(G), be the connected components of Γ(G). If
2 ∈ π(G) we always suppose that 2 ∈ π1(G). The connected components of the
prime graph of nonabelian simple groups with disconnected prime graph are listed
in [13]. In graph theory a subset of vertices of a graph is called an independent
set if its vertices are pairwise non-adjacent. Denote by t(G) the maximal number
of primes in π(G) pairwise non-adjacent in Γ(G). In other words, if ρ(G) is an
independent set with the maximal number of vertices in Γ(G), then t(G) = |ρ(G)|.
Similarly if p ∈ π(G), then let ρ(p, G) be an independent set with the maximal
number of vertices in Γ(G) containing p and t(p, G) = |ρ(p, G)|. In [11, Tables 2-9],
independent sets also independence numbers for all simple groups are listed.

Hagie [6] determined finite groups G satisfying Γ(G) = Γ(S), where S is a
sporadic simple group. The same problem is considered for some finite simple
groups (see [1, 2, 3, 8, 14]).
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Vasil’ev formulated the following problem in [9]:

Problem 16.26. Does there exist a positive integer k such that there are no

k pairwise nonisomorphic nonabelian finite simple groups with the same graphs of

primes? Conjecture: k = 5.

In [16], the problem was solved when one of the two groups is an alternating
group. The conjecture is true in this case.

Here we continue this work and determine all nonabelian simple groups, with
the same prime graph as 2Dn(q).

Throughout the paper, we use the classification of finite simple groups, all
groups are finite and by simple groups we mean nonabelian simple groups. All
further unexplained notations are standard and refer to [4]. Also for a natural
number n and a prime number p, we denote by (n)p, the p-part of n, i.e., (n)p = pα,
such that pα | n, but pα+1 ∤ n.

2. Preliminary results

In this section, we will quote some useful facts which will be used during the
proof of the main theorem.

Remark 2.1. [10] Let p be a prime number and (q, p) = 1. Let k > 1 be the
smallest positive integer such that qk ≡ 1 (mod p). Then k is called the order of q
with respect to p and we denote it by ordp(q). Obviously by Fermat’s little theorem
it follows that ordp(q)|(p − 1). Also if qn ≡ 1 (mod p), then ordp(q)|n. Similarly
if m > 1 is an integer and (q, m) = 1, we can define ordm(q). If a is odd, then
orda(q) is denoted by e(a, q), too. If q is odd, let e(2, q) = 1 if q ≡ 1 (mod 4) and
e(2, q) = 2 if q ≡ −1 (mod 4).

Lemma 2.1. [5, Remark 1] The equation pm −qn = 1, where p and q are primes

and m, n > 1 has only one solution, namely 32 − 23 = 1.

Lemma 2.2. [5, 7] Except the relations (239)2−2(13)4 = −1 and (3)5− 2(11)2 =1
every solution of the equation

pm − 2qn = ±1; p, q prime; m, n > 1,

has exponents m = n = 2; i.e., it comes from a unit p − q21/2 of the quadratic field

Q(21/2) for which the coefficients p, q are primes.

Lemma 2.3. (Zsigmondy Theorem) [15] Let p be a prime and n a positive

integer. Then one of the following holds:

(i) there is a primitive prime p′ for pn −1, that is, p′ | (pn −1) but p′ ∤ (pm −1),
for every 1 6 m < n, (usually p′ is denoted by rn)

(ii) p = 2, n = 1 or 6,

(iii) p is a Mersenne prime and n = 2.

We denote by D+
n (q) the simple group Dn(q), and by D−

n (q) the simple group
2Dn(q).
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Table 1. 2-independence numbers for group 2Dn(q)

G conditions t(2, G) ρ(2, G)
2Dn(q) n ≡ 0 (mod 2), n > 4 2 {2, r2n}

n ≡ 1 (mod 2), n > 4, q ≡ 1 (mod 4) 2 {2, r2n}
n ≡ 1 (mod 2), n > 4, q ≡ 7 (mod 8) 2 {2, r2(n−1)}
n ≡ 1 (mod 2), n > 4, q ≡ 3 (mod 8) 3 {2, r2(n−1), r2n}

Lemma 2.4. [12, Proposition 2.5] Let G = Dε
n(q) be a finite simple group of

Lie type over a field of characteristic p. Define

η(m) =

{

m if m is odd,

m/2 otherwise.

Let r and s be odd primes and r, s ∈ π(G) r {p}. Put k = e(r, q) and l = e(s, q),
and 1 6 η(k) 6 η(l). Then r and s are non-adjacent if and only if 2η(k) + 2η(l) >
2n − (1 − ε(−1)k+l), and l/k is not an odd natural number, and if ε = +, then the

chain of equalities n = l = 2η(l) = 2η(k) = 2k is not true.

Lemma 2.5. [12, Proposition 2.4] Let G be a simple group of Lie type, Bn(q) or

Cn(q) over a field of characteristic p. Let r, s be odd primes with r, s ∈ π(G)r {p}.

Put k = e(r, q) and l = e(s, q), and suppose that 1 6 η(k) 6 η(l). Then r and s are

non-adjacent if and only if η(k) + η(l) > n, and l/k is not an odd natural number.

Lemma 2.6. [11, Proposition 2.1] Let G = An−1(q) be a finite simple group

of Lie type over a field of characteristic p. Let r and s be odd primes and r, s ∈
π(G) r {p}. Put k = e(r, q) and l = e(s, q), and suppose that 2 6 k 6 l. Then r
and s are non-adjacent if and only if k + l > n, and k does not divide l.

Lemma 2.7. [11, Proposition 2.2] Let G = 2An′−1(q) be a finite simple group

of Lie type over a field of characteristic p. Define

ν(m) =











m if m ≡ 0 (mod 4);

m/2 if m ≡ 2 (mod 4);

2m if m ≡ 1 (mod 4).

Let r and s be odd primes and r, s ∈ π(G) r {p}. Put k = e(r, q) and l = e(s, q),
and suppose that 2 6 ν(k) 6 ν(l). Then r and s are non-adjacent if and only if

ν(k) + ν(l) > n, and ν(k) does not divide ν(l).

3. Prime graph of simple classical Lie type groups

In this section, we denote by ri, a primitive prime divisor of qi − 1 and we
consider Ri(q) as the set of all primitive prime divisors of qi − 1.

Remark 3.1. Let G =2 Dn(q), where q = pα and n > 4. Using [11, Ta-
ble 6], we give the 2-independence number for the simple group 2Dn(q) in Table
1. Let n be odd. By [11, Proposition 3.1], we have ρ(p, G) = {p, r2(n−1), r2n}. By
Lemma 2.4, we know that ρ(r1, G) = {r1, r2n} and also ρ(r2, G) = {r2, r2(n−1)}.
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Let rk ≁ ri, where k > 3 is a fixed odd number. Hence 2k + 2η(i) > 2n −
(1 + (−1)i+k). Therefore, i ∈ A ∪ B, where A = {2n, 2(n − 1), . . . , 2(n − k + 1)}
and B = {n − 2, n − 4, . . . , n − k + 1}. Since k > 3, so rk is not adjacent to r2n,
r2(n−1) and r2(n−2). Moreover, {r2(n−2), r2(n−1), r2n} is an independent set. So
{rk, r2(n−2), r2(n−1), r2n} ⊆ ρ(rk, G). Therefore, t(rk, G) > 4. Let rk ≁ ri, where

k > 4 is a fixed even number. Hence k + 2η(i) > 2n − (1 + (−1)i+k). Define
A = {2n, 2(n − 1), . . . , 2(n − k/2)} and B = {n − 2, n − 4, . . . , n − k/2 + a}, where
if k ≡ 0 (mod 4), then a = 2 and otherwise, a = 1. Therefore, i ∈ A ∪ B. Let
k = 4. If n ≡ 1 (mod 4), then ρ(r4, G) = {r4, r2(n−2), r2(n−1), r2n}, otherwise
ρ(r4, G) = {r4, r2(n−2), r2n}. If k > 6, then t(rk, G) > 5.

Let n be even. We know that ρ(p, G) = {p, rn−1, r2(n−1), r2n}, by [11, Propo-
sition 3.1]. By Lemma 2.4, we know that ρ(r1, G) = {r1, r2n} and ρ(r2, G) =
{r2, r2n}.

Let rk ≁ ri, where k > 3 is a fixed odd number. Hence 2k + 2η(i) >
2n − (1 + (−1)i+k). Suppose A = {2n, 2(n − 1), . . . , 2(n − k + 1)} and B =
{n − 1, n − 3, . . . , n − k}. Therefore, i ∈ A ∪ B. Since k > 3, so t(rk, G) > 5. Let
rk ≁ ri, where k > 4 is a fixed even number. Hence k + 2η(i) > 2n − (1 + (−1)i+k).
Define A = {2n, 2(n − 1), . . . , 2(n − k/2)} and B = {n − 1, n − 3, . . . , n − k/2 + a},
where if k ≡ 0 (mod 4), then a = 1, otherwise a = 2. Therefore, i ∈ A ∪ B.
Let k = 4. If n ≡ 0 (mod 4), then ρ(r4, G) = {r4, rn−1, r2(n−1), r2n}, otherwise
ρ(r4, G) = {r4, rn−1, r2(n−2), r2(n−1)}. Also if k > 6, then t(rk, G) > 5.

Remark 3.2. Let G = Dn(q), where q = pα and n > 4. Let n be odd.
By [11, Proposition 3.1], we have ρ(p, G) = {p, rn, r2(n−1)}. By Lemma 2.4, we
know that ρ(r1, G) = {r1, r2(n−1)} and ρ(r2, G) = {r2, rn}. Let rk ≁ ri, where

k > 3 is a fixed odd number. Hence 2k + 2η(i) > 2n − (1 − (−1)i+k). Sup-
pose A = {2(n − 1), 2(n − 2), . . . , 2(n − k)} and B = {n, n − 2, . . . , n − k + 1}.
Therefore, i ∈ A ∪ B. Since k > 3, so t(rk, G) > 4. Let rk ≁ ri, where
k > 4 is a fixed even number. Hence k + 2η(i) > 2n − (1 − (−1)i+k). Define
A = {2(n − 1), 2(n − 2), . . . , 2(n − k/2 + 1)} and B = {n, n − 2, . . . , n − k/2 + a},
where if k ≡ 0 (mod 4), then a = 0, otherwise a = 1. Therefore, i ∈ A ∪ B.
Let k = 4, if n ≡ 1 (mod 4), then ρ(r4, G) = {r4, rn−2, rn, r2(n−1)}, otherwise
ρ(r4, G) = {r4, rn−2, rn}. If k > 6, then t(rk, G) > 4.

Let n be even. By [11, Proposition 3.1], we have ρ(p, G) = {p, rn−1, r2(n−1)}.
By Lemma 2.4, we know that ρ(r1, G) = {r1, r2(n−1)} and ρ(r2, G) = {r2, rn−1}.
Let rk ≁ ri, where k > 3 is a fixed odd number. Hence 2k + 2η(i) > 2n −
(1 − (−1)i+k). Therefore, i ∈ A∪B, where A = {2(n−1), 2(n−2), . . . , 2(n−k)} and
B = {n−1, n−3, . . . , n−k+2}. Since k > 3, if n 6= 4, then t(rk, G) > 4. Let rk ≁ ri,
where k > 4 is a fixed even number. Hence k + 2η(i) > 2n − (1 − (−1)i+k). Define
A = {2(n−1), 2(n−2), . . . , 2(n−k/2+1)} and B = {n−1, n−3, . . . , n−k/2+a},
where if k ≡ 0 (mod 4), then a = 1, otherwise a = 0. Therefore, i ∈ A ∪ B.
Similarly to the above, if k = 4, then ρ(r4, G) = {r4, rn−1, r2(n−1)} otherwise,
t(rk, G) > 4.

Remark 3.3. Let G = Cn(q) or G = Bn(q), where q = pα and n > 3. Let n be
odd. By [11, Proposition 3.1], we have ρ(p, G) = {p, rn, r2n}. By Lemma 2.5, we
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know that ρ(r1, G) = {r1, r2n} and ρ(r2, G) = {r2, rn}. Let rk ≁ ri, where k > 3 is
a fixed odd number. Hence k+η(i) > n. Suppose A = {2n, 2(n−1), . . . , 2(n−k+1)}
and B = {n, n−2, . . . , n−k+1}. Therefore, i ∈ A∪B. Since k > 3, so t(rk, G) > 4.
Let rk ≁ ri, where k > 4 is a fixed even number. Hence k/2 + η(i) > n. Define
A = {2n, 2(n−1), 2(n−2), . . . , 2(n−k/2+1)} and B = {n, n−2, . . . , n−k/2+a},
where if k ≡ 0 (mod 4), then a = 2, otherwise a = 1. Therefore, i ∈ A ∪ B. If
k 6= 4, then t(rk, G) > 4. Let k = 4, if n ≡ 1 (mod 4), then t(r4, G) = 4, otherwise
ρ(r4, G) = {r4, rn, r2n}.

Let n be even. By [11, Proposition 3.1], we have ρ(p, G) = {p, r2n}. By
Lemma 2.5, we know that ρ(r1, G) = {r1, r2n} and ρ(r2, G) = {r2, r2n}. Let
rk ≁ ri, where k > 3 is a fixed odd number. Hence k + η(i) > n. Suppose
A = {2n, 2(n−1), . . . , 2(n−k+1)} and B = {n−1, n−3, . . . , n−k+2}. Therefore,
i ∈ A ∪ B. Since k > 3, so t(rk, G) > 4. Let rk ≁ ri, where k > 4 is a fixed even
number. Hence k/2 + η(i) > n. Define A = {2n, 2(n − 1), . . . , 2(n − k/2 + 1)}
and B = {n − 1, n − 3, . . . , n − k/2 + a}, where if k ≡ 0 (mod 4), then a = 1,
otherwise, a = 2. Therefore, i ∈ A ∪ B. Let k = 4, if n ≡ 0 (mod 4), then
ρ(r4, G) = {r4, rn−1, r2(n−1), r2n}, otherwise ρ(r4, G) = {r4, rn−1, r2(n−1)}. Let
k > 6, so t(rk, G) > 4.

Remark 3.4. Let G = An−1(q). By [11, Proposition 3.1], we have t(p, G) = 3
and also by [11, Proposition 4.1], we know that 2 6 t(r1, G) 6 3. Let rk ≁ ri,
where k 6= 1 is a fixed number, hence i ∈ {n, n − 1, . . . , n − k + 1}. Therefore, by
Lemma 2.6, we have t(r2, G) = 2 and t(r3, G) = 3. Let k > 4, so t(rk, G) > 4.

Remark 3.5. Let G = 2An−1(q). By [11, Proposition 3.1], we have t(p, G) = 3
and also by [11, Proposition 4.2], we know that 2 6 t(r2, G) 6 3. Let rk ≁ ri,
where k 6= 2 is a fixed number, hence i ∈ {n, n − 1, . . . , n − k + 1}. Therefore, by
Lemma 2.7, we have t(r1, G) = 2 and t(r3, G) = 3. Let k > 4, so t(rk, G) > 4.

4. Main results

In the sequel, we denote by ri and ui, a primitive prime divisor of qi − 1 and
q′i − 1, respectively. Also we consider Ri(q) and Ui(q

′) as the set of all primitive
prime divisors of qi − 1 and q′i − 1, respectively.

Theorem 4.1. Let G = 2Dn(q), where n > 4 and q = pα, and also S be

a classical simple group of Lie type over the field GF(q′), where q′ = p′β. Then

Γ(S) = Γ(G) if and only if one of the following holds:

(1) S = G.

(2) S = 2Dn(q′), where q′ = p′β, 4 | n, p′ 6= p, p′ ≡ 1 (mod 4), p ≡ 1
(mod 4), π(q2 − 1) = π(q′2 − 1), R2n(q) = U2n(q′) and {p} ∪ R4(q) =
{p′} ∪ U4(q′).

(3) S = Bn(q′) or S = Cn(q′), where q′ = p′β, 4 | n, p′ 6= p, R1(q) ∪ R2(q) =
{p′} ∪ U1(q′) ∪ U2(q′), R2n(q) = U2n(q′) and either {p} ∪ R4(q) = U3(q′) ∪
U4(q′) ∪ U6(q′) or {p} ∪ R4(q) = U4(q′).

Proof. We know that Γ(S) = Γ(G), therefore t(S) = t(G), t(2, S) = t(2, G)
and for every r ∈ π(G), we have t(r, G) = t(r, S). We know that t(p, G) > 3
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and t(r1, G) = t(r2, G) = 2 and for every ri ∈ π(G), where i /∈ {1, 2}, we have
t(ri, G) > 2, by Remark 3.1. Now we consider each possibility for S by [13, Tables
1a–1c].
Case 1. Let S = 2Dn′(q′), where q′ = p′β . We have t(S) = t(G) so [(3n′ + 4)/4]
= [(3n + 4)/4]. Therefore, n = n′, n + 1 = n′ or n′ + 1 = n. Also t(p, S) >

3, t(u1, S) = t(u2, S) = 2 and for every ui ∈ π(S), where i /∈ {1, 2}, we have
t(ui, S) > 2, by Remark 3.1. Therefore, R1(q) ∪ R2(q) = U1(q′) ∪ U2(q′). Now we
consider the following subcases:
1.1. Let n be odd.
1.1.1 Let n + 1 = n′. It is clear that p′ 6= 2 otherwise, t(2, S) = 4, which is
a contradiction, since t(2, G) 6 3, by [11, Tables 4, 6]. Therefore, ρ(2, S) =
{2, u2n′}, hence t(2, G) = 2. Consequently, p 6= 2 otherwise, t(2, G) = 3, which is a
contradiction. Now we consider the following two cases:
1.1.1.1. Let ρ(2, G) = {2, r2n}. Therefore, R2n(q) = U2n′(q′). We know that
r1 ≁ r2n ∼ r2, and u1 ≁ u2n′ ≁ u2, which is a contradiction.
1.1.1.2. Let ρ(2, G) = {2, r2(n−1)}. Therefore, R2(n−1)(q) = U2n′(q′). We know
that r1 ∼ r2(n−1) ≁ r2, and u1 ≁ u2n′ ≁ u2, which is a contradiction.
Similarly, if n′ + 1 = n, then we get a contradiction.
1.1.2. Let n = n′, now we consider the following subcases:
1.1.2.1. Let q ≡ 1 (mod 4), hence ρ(2, G) = {2, r2n}. Therefore, t(2, S) = 2, and
so q′ 6≡ 3 (mod 8). If q′ ≡ 1 (mod 4), then ρ(2, S) = {2, u2n} and so R2n(q) =
U2n(q′). We know that r1 ≁ r2n ∼ r2, and u1 ≁ u2n ∼ u2. Consequently, R1(q) =
U1(q′) and R2(q) = U2(q′). Moreover, we know that u2 is adjacent to all vertices
except u2(n−1) and also r2 is adjacent to all vertices except r2(n−1), which implies
that R2(n−1)(q) = U2(n−1)(q

′). Consequently, R2(n−1)(q) ∪ R2n(q) = U2(n−1)(q
′) ∪

U2n(q′). Therefore, every r2n and r2(n−1) can be regarded as u2n and u2(n−1). For
convenience in the sequel we write {r2n, r2(n−1)} ≈ {u2n, u2(n−1)} to illustrate the
above statement. By Remark 3.1, we know that p is the only vertex in Γ(G), which
is adjacent to all vertices except r2(n−1) and r2n, and similarly p′ is the only vertex
in Γ(S), which is adjacent to all vertices except u2(n−1) and u2n. Consequently,
p = p′. Since π(S) = π(G), so α = β, by Lemma 2.3, which implies that S = G. If
q′ ≡ 7 (mod 8), then R2n(q) = U2(n−1)(q

′). Similarly to the above, by the above
notation {r2(n−1), r2n} ≈ {u2(n−1), u2n}, and by Remark 3.1, p = p′ and so q = q′,
which is a contradiction, since q ≡ 1 (mod 4).
1.1.2.2. Let q ≡ 7 (mod 8), hence ρ(2, G) = {2, r2(n−1)}, completely similar to the
above case we get that S = G.
1.1.2.3. Let q ≡ 3 (mod 8), hence ρ(2, G) = {2, r2(n−1), r2n} so t(2, S) = 3. It
follows that ρ(2, S) = {2, u2(n−1), u2n}, by [11, Tables 4, 6]. Therefore, R2(n−1)(q)∪
R2n(q) = U2(n−1)(q

′) ∪ U2n(q′). Therefore, {r2(n−1), r2n} ≈ {u2(n−1), u2n}. We
know that p and 2 are the only vertices which are adjacent to all vertices in Γ(G)
except r2n and r2(n−1). Also we know that p′ and 2 are the only vertices which
are adjacent to all vertices in Γ(S) except u2n and u2(n−1). Consequently, {2, p} =
{2, p′}. Since q ≡ 3 (mod 8), so p 6= 2. Therefore, p = p′. Since π(S) = π(G), so
α = β, by Lemma 2.3, which implies that S = G.
1.1.2.4. Let q = 2α, hence ρ(2, G) = {2, r2(n−1), r2n} so t(2, S) = 3. Consequently,
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either q′ ≡ 3 (mod 8) or q′ = 2β , so ρ(2, S) = {2, u2(n−1), u2n}. Therefore, similarly
to the above {r2(n−1), r2n} ≈ {u2(n−1), u2n}. If q′ ≡ 3 (mod 8), then p′ and 2 are
the only vertices, which are adjacent to all vertices except u2n and u2(n−1), by [11,
Tables 4, 6] and Remark 3.1. On the other hand, p is the only vertex, which is
adjacent to all vertices except r2n and r2(n−1). Consequently, {p} = {p′, 2}, which
is a contradiction. It follows that p′ = 2 = p. Since π(G) = π(S), so α = β, by
Lemma 2.3. Therefore, S = G.
1.2 Let n be even.
1.2.1. Let n + 1 = n′. It is clear that p 6= 2, since t(2, S) 6= t(2, G). Therefore,
ρ(2, G) = {2, r2n} and we know that t(2, S) = 2. Now we consider the following
two cases:
1.2.1.1. Let ρ(2, S) = {2, u2n′}. Therefore, R2n(q) = U2n′(q′). We know that
r1 ≁ r2n ≁ r2, and u1 ≁ u2n′ ∼ u2, which is a contradiction.
1.2.1.2 Let ρ(2, S) = {2, u2(n′

−1)}. Therefore, R2n(q) = U2(n′
−1)(q

′). We know
that r1 ≁ r2n ≁ r2, and u1 ∼ u2(n′

−1) ≁ u2, which is a contradiction.
Similarly, if n′ + 1 = n, then we get a contradiction.
1.2.2. Let n = n′. If p = 2, then t(2, G) = 4. It follows that p′ = 2, by [11,
Tables 4, 6]. Consequently, p = p′ and so similarly to the above we have G = S. If
p 6= 2, then t(2, G) = 2. Hence p′ 6= 2, since otherwise, t(2, S) = 4. Consequently,
p 6= 2 and p′ 6= 2. Since n is even, so ρ(2, G) = {2, r2n} and ρ(2, S) = {2, u2n}.
Therefore, R2n(q) = U2n(q′). By Remark 3.1, p and r4 are the only vertices in
Γ(G) such that their independence numbers are 4. Also p′ and u4 are the only
vertices in Γ(S) such that their independence numbers are equal to 4. Therefore,
R4(q) ∪ {p} = U4(q′) ∪ {p′}. Now we consider the following two cases:
1.2.2.1. Let n ≡ 2 (mod 4). If p = p′, then similarly to the above we have S = G.
Otherwise, there exists u4 such that p = u4. We know that {p, rn−1, r2(n−1), r2n} is
the unique maximal independent set in Γ(G) which contains p. Also we know that
{u4, un−1, u2(n−2), u2(n−1)} is the unique maximal independent set in Γ(S) which
contains u4. So Rn−1(q)∪R2(n−1)(q)∪R2n(q) = Un−1(q′)∪U2(n−2)(q

′)∪U2(n−1)(q
′),

which is a contradiction, since R2n(q) = U2n(q′).
1.2.2.2. Let n ≡ 0 (mod 4). Thus {rn−1, r2(n−1), r2n} is equal to ρ(r4, G) r {r4}
and ρ(p, G) r {p}. Similarly we can consider ρ(u4, S) r {u4} = ρ(p′, S) r {p′}. If
p = p′, then similarly to the above we have S = G. Otherwise, there exist r4 and

u4 such that p = u4 and p′ = r4. Consequently, S = 2Dn(rβ
4 ).

Case 2. Let S = Dn′(q′), where q′ = p′β .
If n′ = 4, then t(S) = 3, and so t(G) = 3. Therefore, n = 3, which is a

contradiction. Consequently n′ > 4. We know that t(p, S) = 3 and t(u1, S) =
t(u2, S) = 2 and for every ui ∈ π(S), where i > 2, we have t(ui, S) > 2, by
Remark 3.2. Therefore, R1(q) ∪ R2(q) = U1(q′) ∪ U2(q′).

Let n be even. By Remark 3.1, there is no vertex in Γ(G), whose independence
number is 3, while p′ ∈ π(S) and t(p′, S) = 3, which is a contradiction.

Therefore n is odd. We know that t(S) = t(G).
2.1. If t(S) = [(3n′ + 1)/4], then n′ = n, n′ = n + 1 or n′ = n + 2.

2.1.1. Let n = n′. We know that t(2, S) = 2 or 3. We consider the following two
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cases:
2.1.1.1. Let t(2, S) = 3, hence ρ(2, S) = {2, un, u2(n−1)}, by [11, Tables 4, 6]. So
t(2, G) = 3 and ρ(2, G) = {2, r2(n−1), r2n}, by [11, Tables 4, 6]. Therefore, sim-
ilarly to the above, R2n(q) ∪ R2(n−1)(q) = Un(q′) ∪ U2(n−1)(q

′) and consequently
{r2(n−1), r2n} ≈ {un, u2(n−1)}. By Remarks 3.1 and 3.2, {p, 2} = {p′, 2}. Therefore,
p = p′. Since π(S) = π(G), so 2nα = 2(n − 1)β, by Lemma 2.3, so (α)2 > (β)2.
Let x be a primitive prime divisor of p2nα − 1, so x is a primitive prime divi-
sor of q2n − 1. By assumption, x ∈ Un(q′) ∪ U2(n−1)(q

′). If x ∈ Un(q′), then

x | (pnβ − 1), which implies that 2nα 6 nβ, and this is a contradiction. Therefore,
R2n(q) = U2(n−1)(q

′) and R2(n−1)(q) = Un(q′). Let x be a primitive prime divisor

of p2(n−1)α − 1. Then similarly to the above 2(n − 1)α 6 nβ. If y is a primi-
tive prime divisor of pnβ − 1, then similarly we have nβ 6 2(n − 1)α. Therefore,
nβ = 2(n − 1)α. Since nα = (n − 1)β, so (n − 2)α = β, which is a contradiction,
since n is odd and (α)2 > (β)2.
2.2.1.2. Let t(2, S) = 2 and so p′ 6= 2. Let q′ ≡ 3 (mod 4) and so ρ(2, S) = {2, un}.
We know that t(2, G) = t(2, S) = 2. Now we consider the following two cases:
2.2.1.2.1. Let q ≡ 1 (mod 4), so R2n(q) = Un(q′). We know that r1 ≁ r2n ∼ r2

and u1 ∼ un ≁ u2. Therefore, R2(q) = U1(q′) and so R2(n−1)(q) = U2(n−1)(q
′).

2.2.1.2.2. Let q ≡ 7 (mod 8), so R2(n−1)(q) = Un(q′). We know that r1 ∼ r2(n−1)≁
r2 and u1 ∼ un ≁ u2. Therefore, R1(q) = U1(q′) and so R2n(q) = U2(n−1)(q

′).
Consequently, R2n(q)∪R2(n−1)(q) = Un(q′)∪U2(n−1)(q

′) and similarly to the above
{r2(n−1), r2n} ≈ {un, u2(n−1)}. By Remarks 3.1 and 3.2, p = p′. Similarly to the
above we have 2nα = 2(n − 1)β and so (α)2 > (β)2. If R2n(q) = U2(n−1)(q

′),
then similarly to the above we get a contradiction. Therefore, R2n(q) = Un(q′) and
similarly 2nα = nβ, which is a contradiction.
Let q′ ≡ 1 (mod 4), then similarly to the above we get a contradiction.
2.1.2. Let n = n′ + 1. If p′ = 2, then t(2, S) = t(2, G) = 3. We know that
ρ(2, S) = {2, un′−1, u2(n′−1)} and ρ(2, G) = {2, r2(n−1), r2n}, by [11, Tables 4,6].
Therefore, R2(n−1)(q) ∪ R2n(q) = Un′−1(q′) ∪ U2(n′−1)(q

′) and so {r2n, r2(n−1)} ≈
{un′

−1, u2(n′
−1)}. By Remarks 3.1 and 3.2, we have {2, p} = U4(q′)∪{p′}. If p = 2,

then we get a contradiction. It follows that U4(q′) has one member and p = u4,
and so there exists a natural number m such that pm = q′2 + 1. By Lemma 2.1, we
have m = 1. On the other hand, we know that R1(q) ∪ R2(q) = U1(q′) ∪ U2(q′) or
in other words π(q2 −1) = π(q′2 −1). Consequently, π((q′2 +1)2α −1) = π(q′2 −1),
which is a contradiction. Therefore, p′ 6= 2 and since n′ is even, so t(2, S) = 2.
If q′ ≡ 3 (mod 4), so ρ(2, S) = {2, un′−1}. We know that t(2, G) = t(2, S) = 2.
Now we consider the following two cases:
2.1.2.1. Let q ≡ 1 (mod 4), so R2n(q) = Un′−1(q′). We know that r1 ≁ r2n ∼ r2

and u1 ∼ un′−1 ≁ u2. Therefore, R2(q) = U1(q′) and so R2(n−1)(q) = U2(n′
−1)(q

′).
2.1.2.2. Let q ≡ 7 (mod 8), so R2(n−1)(q) = Un′−1(q′). We know that r1 ∼
r2(n−1) ≁ r2 and u1 ∼ un′−1 ≁ u2. Therefore, R1(q) = U1(q′) and so R2n(q) =
U2(n′

−1)(q
′). Thus, similarly to the above we have {r2(n−1), r2n} ≈ {un′

−1, u2(n′
−1)}.

By Remarks 3.1 and 3.2, we have {p} = {p′} ∪ U4(q′), which is a contradiction.
If q′ ≡ 1 (mod 4), then ρ(2, S) = {2, u2(n′−1)} and similarly to the above we get a
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contradiction.
2.1.3. Let n′ = n + 2, so n′ is odd. It is clear, either n ≡ 1 (mod 4) or n′ ≡ 1
(mod 4). If n ≡ 1 (mod 4), then p is the only vertex in Γ(G), whose independence
number is 3. Also independence number of p′ and u4 are 3 in Γ(S). Therefore,
{p} = {p′} ∪ U4(q′), which is a contradiction. Similarly, if n′ ≡ 1 (mod 4), then we
get a contradiction.
2.2. If t(S) = (3n′ + 3)/4, then n = n′ and similarly to the above we get a
contradiction.

Case 3. Let S = Cn′(q′) or S = Bn′(q′), where q′ = p′β .
If n′ 6 3, then t(S) 6 3, and so t(G) 6 3. Therefore, n 6 3, which is a

contradiction. Consequently, n′ > 3. We have t(S) = t(G) so [(3n′ + 5)/4] =
[(3n + 4)/4]. Therefore, n = n′ + 1 or n = n′.
3.1. Let n be odd.
3.1.1. Let n = n′. We know that t(p, S) = 3, t(u1, S) = t(u2, S) = 2 and for
every ui ∈ π(S), where i > 2, we have t(ui, S) > 2, by Remark 3.3. Therefore,
R1(q)∪R2(q) = U1(q′)∪U2(q′). Let p′ = 2. Then p = 2, since π(q2 −1) = π(q′2 −1).
Since π(G) = π(S), so α = β, by Lemma 2.3. Therefore, S = Cn(q) or S = Bn(q).
We know that rn ∈ π(S) r π(G), which is a contradiction. Consequently, p′ 6= 2
and so t(2, S) = t(2, G) = 2. Therefore ρ(2, S) = {2, u2n} or ρ(2, S) = {2, un}.
Since the proofs are similar, for convenience we give a proof for ρ(2, S) = {2, u2n}
and the proof of the other case is similar. Let ρ(2, S) = {2, u2n}.
3.1.1.1. If q ≡ 1 (mod 4), then R2n(q) = U2n(q′). We know that r1 ≁ r2n ∼ r2

and u1 ≁ u2n ∼ u2. Consequently, R2(q) = U2(q′) and so R2(n−1)(q) = Un(q′).
Similarly to the above {r2(n−1), r2n} ≈ {un, u2n}. By Remarks 3.1 and 3.3, if
n ≡ 1 (mod 4), then p = p′. Similarly to the above we can see that S = Cn(q) or
S = Bn(q), which is a contradiction. Otherwise, {p} = {p′} ∪ U4(q′), which is a
contradiction.
3.1.1.2. If q ≡ 7 (mod 8), then R2(n−1)(q) = U2n(q′) and similarly to the above we
get a contradiction.
3.1.2. Let n = n′ + 1, so n′ is even. Hence ρ(2, S) = {2, u2n′} and t(p′, S) = 2,
by [11, Tables 4, 6]. By Remarks 3.1 and 3.3, and similarly to the above, R1(q) ∪
R2(q) = U1(q′) ∪ U2(q′) ∪ {p′} and u2n′ is not adjacent to u1, u2 and p′. If q ≡ 1
(mod 4), then R2n(q) = U2n′(q′). On the other hand, we know that r2n ∼ r2, which
is a contradiction. Similarly, if q ≡ 7 (mod 8), then R2(n−1)(q) = U2n′(q′), while
r2(n−1) ∼ r1, which is a contradiction.
3.2 Let n be even. It is clear that p 6= 2, otherwise, t(2, S) 6= t(2, G), which is a
contradiction. Therefore, ρ(2, G) = {2, r2n}.
3.2.1. Let n = n′, so ρ(2, S) = {2, u2n}. Therefore, R2n(q) = U2n(q′). By Remarks
3.1 and 3.3, R1(q) ∪ R2(q) = U1(q′) ∪ U2(q′) ∪ {p′}.
Let n 6≡ 0 (mod 4), so t(u4, S) = 3. But we know that t(x, G) 6= 3, for every
x ∈ π(G), which is a contradiction. Consequently, n ≡ 0 (mod 4). By Remark
3.1, we have p and r4 are the only vertices in Γ(G) such that their independence
numbers are equal to 4.
If 3 | (n − 1), then u3, u4 and u6 are the only vertices in Γ(S) such that their
independence numbers are equal to 4. In this case, we have {p} ∪ R4(q) = U3(q′) ∪
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U4(q′) ∪ U6(q′). Otherwise, 3 ∤ (n − 1) and so {p} ∪ R4(q) = U4(q′). Similarly, we
can find some relations between other vertices.
3.2.2. Let n = n′ + 1. Since n is even, so by Remark 3.1, there is not any vertex
in Γ(G) such that its independence number is 3. On the other hand, n′ is odd, so
t(p′, S) = 3, which is a contradiction.

Case 4. Let S = An′−1(q′) or 2An′−1(q′), where q′ = p′β .
Since the proofs for these groups are similar, we state the details of the proof

for one of them, say An′−1(q′). So in the sequel let S = An′−1(q′), where q′ = p′β.
Let n be even. By Remark 3.1, there is not any vertex in Γ(G), whose inde-

pendence number is 3, while t(p′, S) = 3, which is a contradiction. Therefore, n is
odd. We know that by [11], t(u1, S) is equal to 2 or 3.
4.1. Let t(u1, S) = 3, so by Remarks 3.1 and 3.4, R1(q) ∪ R2(q) = U2(q′). Now we
consider the following cases:
4.1.1. Let n′

2 < (q′ − 1)2, so ρ(2, S) = {2, un′}. Hence t(2, G) = 2. If q ≡ 1
(mod 4), then ρ(2, G) = {2, r2n}. Therefore, R2n(q) = Un′(q′). We know that
r1 ≁ r2n ∼ r2, which is a contradiction, since R1(q) ∪ R2(q) = U2(q′). Conse-
quently, q ≡ 7 (mod 8), and so R2(n−1)(q) = Un′(q′). We have r1 ∼ r2(n−1) ≁ r2,
which is a contradiction.
4.1.2. Let n′

2 > (q′ − 1)2 or n′

2 = (q′ − 1)2 = 2, so ρ(2, S) = {2, un′−1}. If
q ≡ 1 (mod 4), then R2n(q) = Un′

−1(q′). We know that r1 ≁ r2n ∼ r2, which is
a contradiction, since R1(q) ∪ R2(q) = U2(q′). Similarly, if q ≡ 7 (mod 8), then
R2(n−1)(q) = Un′−1(q′), while we know that r1 ∼ r2(n−1) ≁ r2, which is a contra-
diction.
4.1.3. Let 2 < n′

2 = (q′ − 1)2, so ρ(2, S) = {2, un′−1, un′}. Therefore, q ≡ 3
(mod 8), hence similarly to the above we get that {r2(n−1), r2n} ≈ {un′−1, un′}. It
follows that R2n(q) = Un′(q′) or R2n(q) = Un′−1(q′) and similarly to the above we
get a contradiction.
4.2. Let t(u1, S) = 2, hence R1(q) ∪ R2(q) = U1(q′) ∪ U2(q′). Let n ≡ 1 (mod 4).
Let t(2, S) = t(2, G) = 2. By Remark 3.4, we know that p′ and u3 are the only ver-
tices in Γ(S) such that their independence number is 3. On the other hand, p is the
only vertex in Γ(G) such that its independence number is 3 so {p} = {p′} ∪ U3(q′),
which is a contradiction. So t(2, S) = t(2, G) = 3. Similarly to the above we have,
{2, p} = {2, p′}∪U3(q′). Also p′ = 2 if and only if p = 2, since π(q2 −1) = π(q′2 −1).
It follows that u3 = 2, which is a contradiction. Therefore, p = p′ 6= 2 and so
{2} = {2} ∪ U3(q′), which is a contradiction. Hence, n 6≡ 1 (mod 4).

Now we claim that t(2, S) = t(2, G) = 3. Otherwise, t(2, S) = t(2, G) = 2 and
{p} ∪ R4(q) = {p′} ∪ U3(q′). If p′ = p, then {r2(n−1), r2n} ≈ {un′−1, un′}.

Let R2n(q) = Un′(q′) and R2(n−1)(q) = Un′−1(q′). If x is a primitive prime

divisor of p2nα − 1, then x is a primitive prime divisor of q2n − 1. Therefore,
x | (pn′β − 1), which implies that 2nα 6 n′β. Let y be a primitive prime divisor of

pn′β −1, so y | (p2nα −1), which implies that n′β 6 2nα. Consequently, n′β = 2nα,
similarly we have (n′ − 1)β = 2(n − 1)α. It follows that 2α = β. On the other
hand, t(S) = t(G) so n′ ∈ {(3n − 1)/2, (3n + 1)/2, (3n + 3)/2}. Consequently,
S = An′−1(p2α), which is a contradiction, since π(S) 6= π(G).
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Let R2n(q) = Un′−1(q′) and R2(n−1)(q) = Un′(q′). Similarly to the above, we
have 2nα = (n′ − 1)β and 2(n − 1)α = n′β, which is a contradiction.

Therefore, p 6= p′ and so p is a primitive prime divisor of q′3 − 1 and p′ is a
primitive prime divisor of q4 − 1. Hence we can consider p′ = r4 and p = u3.

Since p′ = r4, so ρ(r4, G)r {r4} = ρ(p′, S)r {p′}, hence R2(n−2)(q) ∪ R2n(q) =
Un′−1(q′) ∪ Un′(q′). On the other hand, u3 is not adjacent to two elements of
{un′−2, un′−1, un′} in Γ(S) and ρ(p, G) = {p, r2(n−1), r2n}. Consequently, 3 ∤ (n′− 2)
and u3 ≁ un′−2, since p = u3. Therefore, either 3 | (n′ − 1) and so R2(n−1)(q) ∪
R2n(q) = Un′−2(q′) ∪ Un′(q′) or 3 | n′ and R2(n−1)(q) ∪ R2n(q) = Un′−2(q′) ∪
Un′−1(q′). Moreover, we know that t(S) = t(G), which implies 2n′ ∈{3n−1, 3n+1,
3n + 3}.

Let 3n + 1 = 2n′. It is clear that neither 3 | (n′ − 1) nor 3 | n′, which is a
contradiction.

By Remark 3.1, if 3 ∤ (n − 2), then for every x ∈ π(G), we have t(x, G) 6= 4,
while t(u4, S) = 4, which is a contradiction. So 3 | (n − 2) and t(r3, G) = 4.
Since u4 is the only vertex in Γ(S), whose independence number is equal to 4, so
r3 = u4. Therefore, ρ(r3, G) r {r3} = ρ(u4, S) r {u4}. It follows that R2(n−2)(q) ∪
R2(n−1)(q) ∪ R2n(q) = ρ(u4, S) r {u4}. By the above discussion, we get that
R2(n−2)(q)∪R2(n−1)(q)∪R2n(q) = Un′−2(q′)∪Un′−1(q′)∪Un′(q′). Hence 4 | (n′−3),
by Lemma 2.6, and so n′ is odd.

If 3n + 3 = 2n′, then 3(n + 1) = 2n′, which is a contradiction, since n 6≡ 1
(mod 4). If 3n − 1 = 2n′, then 3(n − 1) = 2(n′ − 1), we get a contradiction.

Hence, t(2, S) = t(2, G) = 3, so {2, p} ∪ R4(q) = {2, p′} ∪ U3(q′). If p = 2, then
p′ = 2, since π(q2 − 1) = π(q′2 − 1). Therefore, p = p′ and similarly to the above
we get a contradiction. Consequently, since r4 6= 2 and u3 6= 2 so {p} ∪ R4(q) =
{p′} ∪ U3(q′). Now completely similar to the above we get a contradiction. �

Theorem 4.2. Let G = 2Dn(q), where q = pα and n > 4, and also S be an

exceptional group of Lie type. Then Γ(S) and Γ(G) are not equal.

Proof. We consider the following cases:
(1) Let S = E8(q′). Since s(E8(q′)) > 4 and s(G) 6 3, by [13, Tables 1a–1c], so
we get a contradiction. Similarly S 6= 2B2(q′), where q′ = 22m+1.
(2) Let S = G2(q′). We know that t(S) = t(G). Therefore, [(3n + 4)/4] = 3, so
n = 3, which is a contradiction. Similarly S 6= 3D4(q′) and 2F4(2′).
(3) Let S = E6(q′). Since t(S) = t(G), so [(3n + 4)/4] = 5, hence n = 6. We
know that Γ(S) has two components so s(G) = 2, which is a contradiction, by [13,
Tables 1a–1c]. Similarly S is not isomorphic to 2E6(q′), 2G2(q′), where q′ = 32m+1,
2F4(q′), where q′ = 22m+1 and F4(q′), where q′ > 2.
(4) Let S = E7(q′). So [(3n + 4)/4] = 8, hence n = 10. Therefore, t(2, G) = 2 or 4,
while t(2, S) = 3, which is a contradiction. Similarly S 6= F4(2). �

Theorem 4.3. Let G = 2Dn(q), where q = pα and n > 4, and also S be an

alternating or sporadic group. Then Γ(S) and Γ(G) are not equal.

Proof. We consider the following cases:
(1) Let S = M22. Since s(M22) = 4 and s(G) 6 3, by [13, Tables 1a–1c], so we get
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a contradiction. Similarly S 6= J1, J4, ON , Ly, F ′

24 and F1.
(2) Let S = M11. We know that t(S) = t(G). Therefore, [(3n+4)/4] = 3, so n = 3,
which is a contradiction. Similarly S is not isomorphic to M12, J2, J3, He, McL,
HN and HiS.
(3) Let S = F3. Since t(S) = t(G), so [(3n + 4)/4] = 5, hence n = 6. We know that
Γ(S) has three components so s(G) = 3, which is a contradiction, by [13, Tables
1a–1c]. Similarly S 6= Fi23 and F2.
(4) Let S = M23. So [(3n + 4)/4] = 4, hence n = 4 or 5. By [13, Tables 1a–1c],
s(G) = 1 while s(S) > 1, which is a contradiction. Similarly for the other sporadic
groups, we get a contradiction.

By [16], it is clear that S cannot be equal to an alternating group. �

Corollary 4.1. (i) If n is a natural number such that 4 ∤ n, then the Vasil’ev

Conjecture is true for the nonabelian simple group 2Dn(pα).
(ii) Let 4 | n and q = pα. If S is a nonabelian simple group such that Γ(S) =

Γ(2Dn(q)), then one of the following holds:

(1) S = G.

(2) S = 2Dn(q′), where q′ = p′β, p′ 6= p, p′ ≡ 1 (mod 4), p ≡ 1 (mod 4),
π(q2 − 1) = π(q′2 − 1), R2n(q) = U2n(q′) and {p} ∪ R4(q) = {p′} ∪ U4(q′).

(3) S = Bn(q′) or S = Cn(q′), where q′ = p′β, p′ 6= p, R1(q) ∪ R2(q) =
{p′} ∪ U1(q′) ∪ U2(q′), R2n(q) = U2n(q′) and either {p} ∪ R4(q) = U3(q′) ∪
U4(q′) ∪ U6(q′) or {p} ∪ R4(q) = U4(q′).

Finally we state

Conjecture. Cases (2) and (3) in above corollary can not occur.

It is clear that if the conjecture is true, then Vasil’ev’s conjecture will be true
for 2Dn(q), for each n and prime power q.

References

1. A. Babai, B. Khosravi, N. Hasani, Quasirecognition by prime graph of 2Dp(3) where p =
2n + 1 > 5 is a prime, Bull. Malays. Math. Sci. Soc. (2) 32(3) (2009), 343–350.

2. A. Babai, B. Khosravi, Recognition by prime graph of 2D2m+1(3), Sib. Math. J. 52(5) (2011),
788–795.

3. , Quasirecognition by prime graph of 2Dn(3α), where n = 4m + 1 > 21 and α is odd,
Math. Notes. 95(3) (2014), 3–13.

4. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups,
Oxford University Press, Oxford, 1985.

5. P. Crescenzo, A diophantine equation which arises in the theory of finite groups, Adv. Math.
17(1) (1975), 25–29.

6. M. Hagie, The prime graph of a sporadic simple group, Comm. Algebra 31(9) (2003), 4405–
4424.

7. A. Khosravi, B. Khosravi, A new characterization of some alternating and symmetric groups
(II), Houston J. Math. 30 (2004), 465–478.

8. , Quasirecognition by prime graph of the simple group 2G2(q), Sib. Math. J. 48(3)
(2007), 570–577.

9. V. D. Mazurov, E. I. Khukhro (Eds.), The Kourovka Notebook:Unsolved Problems in Group
Theory, 16th ed., Sobolev Inst. Math., Novosibirsk, 2006.



SIMPLE GROUPS WITH THE SAME PRIME GRAPH AS 2Dn(q) 263

10. W. Sierpiński, Elementary theory of numbers, Monografie Matematyczne 42, Panstwowe
Wydawnictwo Naukowe, Warsaw, 1964.

11. A. V. Vasil’ev, E. P. Vdovin, An adjacency criterion in the prime graph of a finite simple
group, Algebra Logic 44(6) (2005), 381–405.

12. , Cocliques of maximal size in the prime graph of a finite simple group,
arXiv:0905.1164.

13. A. V. Vasil’ev, M. A. Grechkoseeva, On the recognition of the finite simple orthogonal groups
of dimension 2m, 2m + 1 and 2m + 2 over a field of characteristic 2, Sib. Math. J. 45(3)
(2004), 420–431.

14. A. V. Zavarnitsin, On the recognition of finite groups by the prime graph, Algebra Logic 43(4)
(2006), 220–231.

15. K. Zsigmondy, Zur theorie der potenzreste, Monatsh. Math. Phys. 3 (1892), 265–284.
16. M. A. Zvezdina, On nonabelian simple groups having the same prime graph as an alternating

group, Sib. Math. J. 54(1) (2013), 47–55.

Dept. of Pure Math., Faculty of Math. and Computer Sci., (Received 23 04 2014)
Amirkabir University of Technology (Tehran Polytechnic),
Tehran, Iran
and
School of Mathematics,
Institute for Research in Fundamental sciences (IPM),
Tehran, Iran.
khosravibbb@yahoo.com

Department of Mathematics,
University of Qom,
Qom, Iran
a_babai@aut.ac.ir


	1. Introduction
	2. Preliminary results
	3. Prime graph of simple classical Lie type groups
	4. Main results
	References

