|
Publications de l’Institut Mathématique, Nouvelle Série
Vol. 103[117] Contents of this Issue
Other Issues
ELibM Journals
ELibM Home
EMIS Home
Pick a mirror
|
|
A Note on Recurrent Bivectors in 4-Dimensional Lorentz Manifolds
Bahar Kırık
Marmara University, Faculty of Arts and Sciences, Department of Mathematics, Istanbul, Turkey
Abstract: We study recurrence properties of the second order skew-symmetric tensor fields, which are referred to as bivectors, on a 4-dimensional manifold admitting a Lorentz metric. Considering the known classification scheme for these tensor fields, recurrent bivectors which can be scaled to be parallel are first determined and these results are associated with the holonomy theory. This examination then identifies proper recurrence of such bivectors on the manifold. The link between these bivectors and the holonomy group is investigated and some theorems are proved.
Keywords: bivector, recurrent tensor, Lorentz signature, holonomy
Classification (MSC2000): 53C29; 53C50
Full text of the article: (for faster download, first choose a mirror)
Electronic fulltext finalized on: 26 Apr 2018.
This page was last modified: 11 Mai 2018.
© 2018 Mathematical Institute of the Serbian Academy of Science and Arts
© 2018 FIZ Karlsruhe / Zentralblatt MATH for
the EMIS Electronic Edition
|