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SPACES OF ENTIRE FUNCTIONS OF SLOW GROWTH
REPRESENTED BY DIRICHLET SERIES

ARVIND KUMAR and G.S. SRIVASTAVA

1 — Let
oo
(1.1) f(s) = Z €57
n=1
where 0 < A\ < o < .. < Ay < o.l, Ay > 0 asn — o0, §=o0+4it

(o, t being reals) and {ay,}5° any sequence of complex numbers, be a Dirichlet
series. Further, let

(1.2) limsupﬁ =D < o0,
n—oo n
(1.3) limsup(Ap+1 — Ap) =h >0,
n—oo
and
1
(1.4) lim sup logJan| ==
n—oo mn

Then the series in (1.1) represents an entire function f(s). We denote by X
the set of all entire functions f(s) having representation (1.1) and satisfying the
conditions (1.2)—(1.4). By giving different topologies on the set X, Kamthan
[4] and Hussain and Kamthan [2] have studied various topological properties of
these spaces. Hence we define, for any nondecreasing sequence {r;} of positive
numbers, r; — 00,

(1.5) Fllr =D lanl e, i=1,2,..

where f € X. Then from (1.4), ||f||», exists for each ¢ and is a norm on X.
Further, || f|l», < || fllr,,- With these countable number of norms, a metric d is
defined on X as:

=1 |f = gl

(1.6) d(f,9)=)_

9 1 1L Nf_ 0 fagEX'
i=1 2 1+Hf_gH"“z
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Further, following functions are defined for each f € X, namely

(1.7) p(f) = sup |an|/An ;
n>1

(1.8) £ = sup (Jan|>) .
n<i

Then p(f) and || f||; are para-norms on X. Let

L =gl
1.9 ,9) = g : .
49 *W-9) o2t 1f = glls

It was shown [2, Lemma 1] that the three topologies induced by d, s and p on X
are equivalent. Many other properties of these spaces were also obtained (see [2],
pp. 206—-209).

For the space of entire functions of finite Ritt order [6] and type, yet another
norm || f||; and hence a metric A was introduced and the properties of this space
X, were studied.

Let, for f € X,

M(o, f) = M(o) = sup [f(o+it),

—oo<t<oo

then M (o) is called the maximum modulus of f(s). The Ritt order of f(s) is
defined as

log log M
(1.10) limsupw =p, 0<p<o0.

o—00 o

For p < oo, the entire function f is said to be of finite order. A function p(o)
is said to be proximate order [3] if

(1.11) plc) = p as 0 —o00, 0<p<oo,
(1.12) op'(c) -0 as 0—o00.

For f € X, define

log M
(1.13) lim sup log M(a)

o—00 609(0)

<A< 0.

Then it was proved [3] that (1.13) holds if and only if

(1.14) lim sup ¢(Ap) Jan| "/ < (A.ep)'/? |

n—oo

where ¢(t) is the unique solution of the equation ¢ = exp|o.p(o)].
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(Apparently the inequality (4.1) and the definition of ¢(¢) contain some mis-
prints in [2, pp. 209-210]).
For each f € X, define

R I RO N
ufuq—nlean{[(A+;>ep1l/p} |

where ¢ = 1,2,.... For ¢1 < @2, ||fllg < |Ifllgo- It was proved that [ f|,,
q = 1,2,..., induces on X a unique topology such that X becomes a convex
topological vector space, where this topology is given by the metric A,

=1 f -yl
A(ﬁg)—ZﬁW—gﬂrq'

q=1

This space was denoted by X),. Various properties of this space were studied
[2, pp. 209-216].

It is evident that if p = 0, then the definition of the norm || f||, and proximate
order p(o) is not possible. It is the aim of this paper to give a metric on the space
of entire functions of zero order thereby studying some properties of this space.

2 — For an entire function f(s) represented by (1.1), for which p defined by
(1.10) is equal to zero, we define following Rahman [5]
loglog M
(2.1) limsup%(a):p*7 1<p"<o0.
o—00 lOg g
Then p* is said to be the logarithmic order of f(s). For 1 < p* < 0o, we define
the logarithmic proximate order [1] p*(o) as a continuous piecewise differentiable
function for o > o( such that

(2.2) p(o) — p* as 0 — o0,
(2.3) o.logo.p*(c) =0 as 0 — .

Then the logarithmic type T of f with respect to proximate order p*(o) is
defined as [7]:

log M
(2.4) lim sup log M(o)

T—00 oP” (o)

=T", 0<T"<o0.

It was proved by one of the authors [7] that f(s) is of logarithmic order p*,
1 < p* < o0, and logarithmic type T*, 0 < T* < o0, if and only if
An ¢(An) P

2.5 I _ » ey 1/ ("= 1)
(2.5) MU T T (o — 1) (p"T7) ,
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where ¢(t) is the unique solution of the equation t = o (@)1,
We now denote by X the set of all entire functions f(s) given by (1.1), satis-
fying (1.2) to (1.4), for which

log M
(2.6) limsupOgT(@ <Tr<oo, 1<p'<oo.

o—00 g (o)

Then from (2.5), we have

(2.7) lim sup An $(An) ( L 1).(;;* A
P

n—oo loglan|~t

In all our further discussion, we shall denote (p*/(p*—1))*"~1) by the constant
K. Then from (2.7) we have

An-0(An) } 7

(28) on] < x| - {Kp (T* + &)}/ D

where € > 0 is arbitrary and n > nyg.
Now, for each f € X, let us define

= An6(An)
||f||q - ngl |a”| exp|:{Kp*(T* + %)}1/(0*—1):| ’

where ¢ = 1,2,3,.... In view of (2.8), || f|l4 exists and for g1 < g, || fllgn < |1 fllqe-
This norm induces a metric topology on X.
We define

&1 f -4l
A(ﬂg)—ZﬁW—;Hq'

The space X with the above metric A will be denoted by X,.
Now we prove

Theorem 1. The space X, is a Fréchet space.

Proof: It is sufficient to show that X, is complete. Hence, let {f,} be a
A-Cauchy sequence in X. Therefore, for any given £ > 0 there exists ng = ng(e)
such that

|fa — fallg<e Va,8>ng, ¢>1.

Denoting fu(s) = > 1° al® esrn fa(s) = 10 at? e* M we have therefore

A 60)
(K. (T + Do

(2.9) Z a{®) — a(P)|. exp <e
n=1
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for a, B > ng, ¢ > 1. Hence we obviously have
jaf —aiP) < Va,8>mno,

ie., {aﬁf)} is a Cauchy sequence of complex numbers for each fixed n = 1,2, ....
Hence

lim a():an, n=12...
a—00

Now letting 8 — oo in (2.9), we have for a > ny,

An ¢(An)
(K p*(T* + D)}/

o0

(2.10) Z a{®) — a,|. exp[

|<e.

Taking a = ng, we get for a fixed ¢,

)‘n Qb()‘n) ] (no) |: >‘n ¢()‘n)
< 0/].
{K p* (T + Y1 = ™ exp {K p*(T* + D71

|an|.exp[ } +e.

Now, f("O) =30 no) = X, hence the condition (2.8) is satisfied.
For arbitrary p > ¢, we have

{K p~(T* + D)}/ =1

|a$l”°)| < exp{ } for arbitrarily large n .

Hence we have

An @(An) } <
{K p*(T* + D}/=D

An 9(An) { 1 1 }
*\1/(p*—1 * 1 1) * 1 *
(K p) /00 (T + 1)1/ =0) ~ (7 + 1)i/i=1)

|an|exp{

< exp +e€.

Since € > 0 is arbitrary and the first term on the R.H.S. — 0 as n — oo, we
find that the sequence {a,} satisfies (2.8). Then f(s) = 32, a, e** belongs to
X)\. |

Now, from (2.10), we have for ¢ = 1,2, ..., || fo — f|lq < €. Hence

&1 lfa— S L _
A(fa,f)—qz::lglﬂﬁa_;uq 1+e 22_‘1_ €)<6'

q=1

Since the above inequality holds for all a > ng, we finally get f, — f where
f € X. Hence X is complete. This proves Theorem 1. u
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Now, we characterize the linear continuous functionals on X,. We prove

Theorem 2. A continuous linear functional b on Xy is of the form
oo
~Sac
n=1

if and only if

An @(An
(2.11) Chl < A. exp[ o) __
K (T + DT
foralln > 1, q > 1, where A is a finite, positive number, f = f(s) = Y00, a, e**n

and A\ is sufficiently large.

Proof: Let ¢ € X). Then for any sequence {f,,} € X, such that f,, — f,
we have ¥(fn) — ¥(f) as m — oco. Now let

(%s)
_ Z an es.)\n ,
n=1

where a,,’s satisfy (2.8). Then f € X. Also, let

m
=S e
n=1

Then f,, € X, for m = 1,2,.... Let ¢ be any fixed positive integer and let
0<e< é. From (2.8), we can find an integer m such that

(K p"(T* + )}/ D

an]<exp[ }, n>m.

Then

m
Hf . Z an, o5 An
n=1

> An (An)
— Z |an|.exp[{Kp*(T* 4 ;)}1/(/7*_1)]

n=m-+1

< Z exp l%{ <T* + 3)_1/(/)*_1) —(T" + 6)_1/(”*_1)}]

n=m-+1

[eS)
= H > oan s
a n=m+1 d

< ¢ for sufficiently large values of m .
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Hence

&l .
NI m) = 2 3 T = flle = T+ 9)

q=1

<e,
i.e., f;, — f as m — oo in X. Hence by assumption that ¢ € X}, we have

lim ¢(fm) =(f) -

m—00

Let us denote by C,, = 1(e>*). Then

V(fm) = Z an lb(@s"\") = Z an Cy, .
n=1 n=1

Also |G| = [tp(e**)|. Since ¢ is continuous on X, it is continuous on X, Iy
for each ¢ = 1,2,3,.... Hence there exists a positive constant A independent of ¢
such that

()| = [Cnl < Allallg, a21,

where a(s) = e5*». Now using the definition of the form for a(s), we get

An 9(An) ]

e 1 — n>1
K (T + Dy

— Y

’Cn‘§A~eXp|: g=>1.

Hence we get ¥ (f) = > n2; an Cyp, where C,’s satisfy (2.11).
Conversely, suppose that ¥ (f) = >.7° a, Cy, and C), satisfies (2.11). Then for
q=1,
An $(\)
K@ + HHTe—)

Le. [W(N<Alfllg, a¢=1,

(f)| sAZmn.exp{

n=1

Now, since

=1 I gl
)\7 = a0 1 0 e
(19 =2 5 T4 77—,

therefore X} = (Jg2, X"| |,- Hence ¢ € X.

This completes the proof of Theorem 2. n
Lastly, we give the construction of total sets in X . Following [2], we give

Definition. Let X be a locally convex topological vector space. A set E C X
is said to be total if and only if for any ¢ € X’ with )(E) = 0, we have ¢ = 0.
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Now, we prove

Theorem 3. Consider the space X defined before and let f(s) =301 anes™»,
an # 0, forn = 1,2,..., f € X,. Suppose G is a subset of the complex plane
having at least one limit point in the complex plane. Define, for u € G,

Fuls) = Y (an ).
n=1
Then E = {f,: p € G} is total in X.

Proof: Since f € X, from (2.7) we have

lim sup —/\n $(An) = lim sup (An)
n—oo log|ay, et-An|—1 n—oo log|an|~1/* — R(u)

< (#)(P*T*)l/(ﬂ*_l), since R(u) < oo .

Hence, if we denote by M, (0) = sup_,ctco0 | fu(o +it)|, then from (2.6),

T—00 O'P* (o)

<T"<oo.

Therefore, f, € X for each p € G. Thus £ C X,.
Now, let ¢ be a linear continuous functional on X and suppose that ¢(f,) =0.
From Theorem 2, there exists a sequence {C),} of complex numbers such that

w(g):anC’n, g(s):aneS)‘” e Xy,
n=1

n=1

where

(2.12) |Cn| < A. exp[ An $(An) ] n>1 g>1,

* (T 1 *— ’ =
Ko (T + D/

A being a constant and A; is sufficiently large.
Hence

T/f(fu)zzancne“)‘”zo, [JEG

n=1

Let us consider the function F(s) = 35, a,, Cy, e¥ .
Then from (2.8) and (2.12), for any ¢, 0 < & < %,

-1/ 1) )
|anC| /A < AV exp [ﬂﬁ(An){(K’) ( *+q> )—<KP*<T*+5>—1/<” ‘”>}
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for all n > ng. By definition of ¢(t), ¢(A,) — 0o as n — oo and A\, — oco. Hence

we get
1 C
lim sup 208 [9n Tl [ Chn| = ,
n—oo >\n

i.e., F(s) satisfies (1.4). Hence F' € X.

Also, F(i) = 0 Vu € G. Thus the entire function F'(s) = 0 in the entire
complex plane. But this implies that a, C,, = 0, Vn = 1,2,.... Since we have
started with a,, # 0, thus we get C, =0, n =1,2,.... Hence v = 0. This proves
Theorem 3. n
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