SPACES OF ENTIRE FUNCTIONS OF SLOW GROWTH REPRESENTED BY DIRICHLET SERIES

Arvind Kumar and G.S. Srivastava

$$
\mathbf{1}-\text { Let }
$$

$$
\begin{equation*}
f(s)=\sum_{n=1}^{\infty} a_{n} e^{s \cdot \lambda_{n}} \tag{1.1}
\end{equation*}
$$

where $0<\lambda_{1}<\lambda_{2}<\ldots<\lambda_{n}<\ldots, \quad \lambda_{n} \rightarrow \infty$ as $n \rightarrow \infty, \quad s=\sigma+i t$ (σ, t being reals) and $\left\{a_{n}\right\}_{1}^{\infty}$ any sequence of complex numbers, be a Dirichlet series. Further, let

$$
\begin{align*}
& \limsup _{n \rightarrow \infty} \frac{n}{\lambda_{n}}=D<\infty \tag{1.2}\\
& \limsup _{n \rightarrow \infty}\left(\lambda_{n+1}-\lambda_{n}\right)=h>0 \tag{1.3}
\end{align*}
$$

and

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\log \left|a_{n}\right|}{\lambda_{n}}=-\infty \tag{1.4}
\end{equation*}
$$

Then the series in (1.1) represents an entire function $f(s)$. We denote by X the set of all entire functions $f(s)$ having representation (1.1) and satisfying the conditions (1.2)-(1.4). By giving different topologies on the set X, Kamthan [4] and Hussain and Kamthan [2] have studied various topological properties of these spaces. Hence we define, for any nondecreasing sequence $\left\{r_{i}\right\}$ of positive numbers, $r_{i} \rightarrow \infty$,

$$
\begin{equation*}
\|f\|_{r_{i}}=\sum\left|a_{n}\right| e^{r_{i} \lambda_{n}}, \quad i=1,2, \ldots \tag{1.5}
\end{equation*}
$$

where $f \in X$. Then from (1.4), $\|f\|_{r_{i}}$ exists for each i and is a norm on X. Further, $\|f\|_{r_{i}} \leq\|f\|_{r_{i+1}}$. With these countable number of norms, a metric d is defined on X as:

$$
\begin{equation*}
d(f, g)=\sum_{i=1}^{\infty} \frac{1}{2^{i}} \frac{\|f-g\|_{r_{i}}}{1+\|f-g\|_{r_{i}}}, \quad f, g \in X \tag{1.6}
\end{equation*}
$$

[^0]Further, following functions are defined for each $f \in X$, namely

$$
\begin{align*}
& p(f)=\sup _{n \geq 1}\left|a_{n}\right|^{1 / \lambda_{n}} \tag{1.7}\\
& \|f\|_{i}=\sup _{n \leq i}\left(\left|a_{n}\right|^{1 / \lambda_{n}}\right) . \tag{1.8}
\end{align*}
$$

Then $p(f)$ and $\|f\|_{i}$ are para-norms on X. Let

$$
\begin{equation*}
s(f, g)=\sum_{i=1}^{\infty} \frac{1}{2^{i}} \frac{\|f-g\|_{i}}{1+\|f-g\|_{i}} \tag{1.9}
\end{equation*}
$$

It was shown [2, Lemma 1] that the three topologies induced by d, s and p on X are equivalent. Many other properties of these spaces were also obtained (see [2], pp. 206-209).

For the space of entire functions of finite Ritt order [6] and type, yet another norm $\|f\|_{q}$ and hence a metric λ was introduced and the properties of this space X_{λ} were studied.

Let, for $f \in X$,

$$
M(\sigma, f) \equiv M(\sigma)=\sup _{-\infty<t<\infty}|f(\sigma+i t)|
$$

then $M(\sigma)$ is called the maximum modulus of $f(s)$. The Ritt order of $f(s)$ is defined as

$$
\begin{equation*}
\limsup _{\sigma \rightarrow \infty} \frac{\log \log M(\sigma)}{\sigma}=\rho, \quad 0 \leq \rho \leq \infty \tag{1.10}
\end{equation*}
$$

For $\rho<\infty$, the entire function f is said to be of finite order. A function $\rho(\sigma)$ is said to be proximate order [3] if

$$
\begin{align*}
& \rho(\sigma) \rightarrow \rho \quad \text { as } \quad \sigma \rightarrow \infty, \quad 0<\rho<\infty \tag{1.11}\\
& \sigma \rho^{\prime}(\sigma) \rightarrow 0 \quad \text { as } \quad \sigma \rightarrow \infty \tag{1.12}
\end{align*}
$$

For $f \in X$, define

$$
\begin{equation*}
\limsup _{\sigma \rightarrow \infty} \frac{\log M(\sigma)}{e^{\sigma \rho(\sigma)}} \leq A<\infty \tag{1.13}
\end{equation*}
$$

Then it was proved [3] that (1.13) holds if and only if

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \phi\left(\lambda_{n}\right)\left|a_{n}\right|^{1 / \lambda_{n}} \leq(\text { A.e } \rho)^{1 / \rho} \tag{1.14}
\end{equation*}
$$

where $\phi(t)$ is the unique solution of the equation $t=\exp [\sigma . \rho(\sigma)]$.
(Apparently the inequality (4.1) and the definition of $\phi(t)$ contain some misprints in [2, pp. 209-210]).

For each $f \in X$, define

$$
\|f\|_{q}=\sum_{n=1}^{\infty}\left|a_{n}\right|\left\{\frac{\phi\left(\lambda_{n}\right)}{\left[\left(A+\frac{1}{q}\right) e \rho\right]^{1 / \rho}}\right\}^{\lambda_{n}}
$$

where $q=1,2, \ldots$. For $q_{1} \leq q_{2},\|f\|_{q_{1}} \leq\|f\|_{q_{2}}$. It was proved that $\|f\|_{q^{\prime}}$, $q=1,2, \ldots$, induces on X a unique topology such that X becomes a convex topological vector space, where this topology is given by the metric λ,

$$
\lambda(f, g)=\sum_{q=1}^{\infty} \frac{1}{2^{q}} \frac{\|f-g\|_{q}}{1+\|f-g\|_{q}} .
$$

This space was denoted by X_{λ}. Various properties of this space were studied [2, pp. 209-216].

It is evident that if $\rho=0$, then the definition of the norm $\|f\|_{q}$ and proximate order $\rho(\sigma)$ is not possible. It is the aim of this paper to give a metric on the space of entire functions of zero order thereby studying some properties of this space.

2 - For an entire function $f(s)$ represented by (1.1), for which ρ defined by (1.10) is equal to zero, we define following Rahman [5]

$$
\begin{equation*}
\limsup _{\sigma \rightarrow \infty} \frac{\log \log M(\sigma)}{\log \sigma}=\rho^{*}, \quad 1 \leq \rho^{*} \leq \infty \tag{2.1}
\end{equation*}
$$

Then ρ^{*} is said to be the logarithmic order of $f(s)$. For $1<\rho^{*}<\infty$, we define the logarithmic proximate order [1] $\rho^{*}(\sigma)$ as a continuous piecewise differentiable function for $\sigma \geq \sigma_{0}$ such that

$$
\begin{align*}
& \rho^{*}(\sigma) \rightarrow \rho^{*} \quad \text { as } \sigma \rightarrow \infty \tag{2.2}\\
& \sigma \cdot \log \sigma \cdot \rho^{\prime *}(\sigma) \rightarrow 0 \quad \text { as } \sigma \rightarrow \infty \tag{2.3}
\end{align*}
$$

Then the logarithmic type T^{*} of f with respect to proximate order $\rho^{*}(\sigma)$ is defined as [7]:

$$
\begin{equation*}
\limsup _{\sigma \rightarrow \infty} \frac{\log M(\sigma)}{\sigma^{\rho^{*}(\sigma)}}=T^{*}, \quad 0<T^{*}<\infty \tag{2.4}
\end{equation*}
$$

It was proved by one of the authors [7] that $f(s)$ is of logarithmic order ρ^{*}, $1<\rho^{*}<\infty$, and logarithmic type $T^{*}, 0<T^{*}<\infty$, if and only if

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\lambda_{n} \phi\left(\lambda_{n}\right)}{\log \left|a_{n}\right|^{-1}}=\frac{\rho^{*}}{\left(\rho^{*}-1\right)}\left(\rho^{*} T^{*}\right)^{1 /\left(\rho^{*}-1\right)}, \tag{2.5}
\end{equation*}
$$

where $\phi(t)$ is the unique solution of the equation $t=\sigma^{\rho^{*}(\sigma)-1}$.
We now denote by X the set of all entire functions $f(s)$ given by (1.1), satisfying (1.2) to (1.4), for which

$$
\begin{equation*}
\limsup _{\sigma \rightarrow \infty} \frac{\log M(\sigma)}{\sigma^{\rho^{*}(\sigma)}} \leq T^{*}<\infty, \quad 1<\rho^{*}<\infty \tag{2.6}
\end{equation*}
$$

Then from (2.5), we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\lambda_{n} \phi\left(\lambda_{n}\right)}{\log \left|a_{n}\right|^{-1}} \leq\left(\frac{\rho^{*}}{\rho^{*}-1}\right) \cdot\left(\rho^{*} T^{*}\right)^{1 /\left(\rho^{*}-1\right)} \tag{2.7}
\end{equation*}
$$

In all our further discussion, we shall denote $\left(\rho^{*} /\left(\rho^{*}-1\right)\right)^{\left(\rho^{*}-1\right)}$ by the constant K. Then from (2.7) we have

$$
\begin{equation*}
\left|a_{n}\right|<\exp \left[-\frac{\lambda_{n} \cdot \phi\left(\lambda_{n}\right)}{\left\{K \cdot \rho^{*}\left(T^{*}+\varepsilon\right)\right\}^{1 /\left(\rho^{*}-1\right)}}\right] \tag{2.8}
\end{equation*}
$$

where $\varepsilon>0$ is arbitrary and $n>n_{0}$.
Now, for each $f \in X$, let us define

$$
\|f\|_{q}=\sum_{n=1}^{\infty}\left|a_{n}\right| \exp \left[\frac{\lambda_{n} \phi\left(\lambda_{n}\right)}{\left\{K \rho^{*}\left(T^{*}+\frac{1}{q}\right)\right\}^{1 /\left(\rho^{*}-1\right)}}\right]
$$

where $q=1,2,3, \ldots$. In view of (2.8), $\|f\|_{q}$ exists and for $q_{1} \leq q_{2},\|f\|_{q_{1}} \leq\|f\|_{q_{2}}$. This norm induces a metric topology on X.

We define

$$
\lambda(f, g)=\sum_{q=1}^{\infty} \frac{1}{2^{q}} \cdot \frac{\|f-g\|_{q}}{1+\|f-g\|_{q}}
$$

The space X with the above metric λ will be denoted by X_{λ}.
Now we prove
Theorem 1. The space X_{λ} is a Fréchet space.
Proof: It is sufficient to show that X_{λ} is complete. Hence, let $\left\{f_{\alpha}\right\}$ be a λ-Cauchy sequence in X. Therefore, for any given $\varepsilon>0$ there exists $n_{0}=n_{0}(\varepsilon)$ such that

$$
\left\|f_{\alpha}-f_{\beta}\right\|_{q}<\varepsilon \quad \forall \alpha, \beta>n_{0}, \quad q \geq 1
$$

Denoting $f_{\alpha}(s)=\sum_{1}^{\infty} a_{n}^{(\alpha)} e^{s . \lambda_{n}}, f_{\beta}(s)=\sum_{1}^{\infty} a_{n}^{(\beta)} e^{s . \lambda_{n}}$, we have therefore

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|a_{n}^{(\alpha)}-a_{n}^{(\beta)}\right| \cdot \exp \left[\frac{\lambda_{n} \phi\left(\lambda_{n}\right)}{\left\{K \cdot \rho^{*}\left(T^{*}+\frac{1}{q}\right)\right\}^{1 /\left(\rho^{*}-1\right)}}\right]<\varepsilon \tag{2.9}
\end{equation*}
$$

for $\alpha, \beta>n_{0}, q \geq 1$. Hence we obviously have

$$
\left|a_{n}^{(\alpha)}-a_{n}^{(\beta)}\right|<\varepsilon \quad \forall \alpha, \beta>n_{0},
$$

i.e., $\left\{a_{n}^{(\alpha)}\right\}$ is a Cauchy sequence of complex numbers for each fixed $n=1,2, \ldots$. Hence

$$
\lim _{\alpha \rightarrow \infty} a_{n}^{(\alpha)}=a_{n}, \quad n=1,2, \ldots
$$

Now letting $\beta \rightarrow \infty$ in (2.9), we have for $\alpha>n_{0}$,

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|a_{n}^{(\alpha)}-a_{n}\right| \cdot \exp \left[\frac{\lambda_{n} \phi\left(\lambda_{n}\right)}{\left\{K \rho^{*}\left(T^{*}+\frac{1}{q}\right)\right\}^{1 /\left(\rho^{*}-1\right)}}\right]<\varepsilon . \tag{2.10}
\end{equation*}
$$

Taking $\alpha=n_{0}$, we get for a fixed q,

$$
\left|a_{n}\right| \cdot \exp \left[\frac{\lambda_{n} \phi\left(\lambda_{n}\right)}{\left\{K \rho^{*}\left(T^{*}+\frac{1}{q}\right)\right\}^{1 /\left(\rho^{*}-1\right)}}\right] \leq\left|a_{n}^{\left(n_{0}\right)}\right| \cdot \exp \left[\frac{\lambda_{n} \phi\left(\lambda_{n}\right)}{\left\{K \rho^{*}\left(T^{*}+\frac{1}{q}\right)\right\}^{1 /\left(\rho^{*}-1\right)}}\right]+\varepsilon
$$

Now, $f^{\left(n_{0}\right)}=\sum_{n=1}^{\infty} a_{n}^{\left(n_{0}\right)} . e^{s . \lambda_{n}} \in X_{\lambda}$, hence the condition (2.8) is satisfied. For arbitrary $p>q$, we have

$$
\left|a_{n}^{\left(n_{0}\right)}\right|<\exp \left[\frac{-\lambda_{n} \phi\left(\lambda_{n}\right)}{\left\{K \rho^{*}\left(T^{*}+\frac{1}{p}\right)\right\}^{1 /\left(\rho^{*}-1\right)}}\right] \text { for arbitrarily large } n
$$

Hence we have

$$
\begin{aligned}
& \left|a_{n}\right| \exp \left[\frac{\lambda_{n} \phi\left(\lambda_{n}\right)}{\left\{K \rho^{*}\left(T^{*}+\frac{1}{q}\right)\right\}^{1 /\left(\rho^{*}-1\right)}}\right]< \\
& \quad<\exp \left[\frac{\lambda_{n} \phi\left(\lambda_{n}\right)}{\left(K \rho^{*}\right)^{1 /\left(\rho^{*}-1\right)}}\left\{\frac{1}{\left(T^{*}+\frac{1}{q}\right)^{1 /\left(\rho^{*}-1\right)}}-\frac{1}{\left(T^{*}+\frac{1}{p}\right)^{1 /\left(\rho^{*}-1\right)}}\right\}\right]+\varepsilon .
\end{aligned}
$$

Since $\varepsilon>0$ is arbitrary and the first term on the R.H.S. $\rightarrow 0$ as $n \rightarrow \infty$, we find that the sequence $\left\{a_{n}\right\}$ satisfies (2.8). Then $f(s)=\sum_{n=1}^{\infty} a_{n} e^{s \lambda_{n}}$ belongs to X_{λ}.

Now, from (2.10), we have for $q=1,2, \ldots,\left\|f_{\alpha}-f\right\|_{q}<\varepsilon$. Hence

$$
\lambda\left(f_{\alpha}, f\right)=\sum_{q=1}^{\infty} \frac{1}{2^{q}} \frac{\left\|f_{\alpha}-f\right\|_{q}}{1+\left\|f_{\alpha}-f\right\|_{q}} \leq \frac{\varepsilon}{(1+\varepsilon)} \sum_{q=1}^{\infty} \frac{1}{2^{q}}=\frac{\varepsilon}{(1+\varepsilon)}<\varepsilon .
$$

Since the above inequality holds for all $\alpha>n_{0}$, we finally get $f_{\alpha} \rightarrow f$ where $f \in X_{\lambda}$. Hence X_{λ} is complete. This proves Theorem 1.

Now, we characterize the linear continuous functionals on X_{λ}. We prove
Theorem 2. A continuous linear functional ψ on X_{λ} is of the form

$$
\psi(f)=\sum_{n=1}^{\infty} a_{n} C_{n}
$$

if and only if

$$
\begin{equation*}
\left|C_{n}\right| \leq A \cdot \exp \left[\frac{\lambda_{n} \phi\left(\lambda_{n}\right)}{\left\{K \rho^{*}\left(T^{*}+\frac{1}{q}\right)\right\}^{1 /\left(\rho^{*}-1\right)}}\right] \tag{2.11}
\end{equation*}
$$

for all $n \geq 1, q \geq 1$, where A is a finite, positive number, $f=f(s)=\sum_{n=1}^{\infty} a_{n} e^{s . \lambda_{n}}$ and λ_{1} is sufficiently large.

Proof: Let $\psi \in X_{\lambda}^{\prime}$. Then for any sequence $\left\{f_{m}\right\} \in X_{\lambda}$ such that $f_{m} \rightarrow f$, we have $\psi\left(f_{m}\right) \rightarrow \psi(f)$ as $m \rightarrow \infty$. Now let

$$
f(s)=\sum_{n=1}^{\infty} a_{n} e^{s . \lambda_{n}}
$$

where a_{n} 's satisfy (2.8). Then $f \in X_{\lambda}$. Also, let

$$
f_{m}(s)=\sum_{n=1}^{m} a_{n} e^{s . \lambda_{n}}
$$

Then $f_{m} \in X_{\lambda}$ for $m=1,2, \ldots$. Let q be any fixed positive integer and let $0<\varepsilon<\frac{1}{q}$. From (2.8), we can find an integer m such that

$$
\left|a_{n}\right|<\exp \left[\frac{-\lambda_{n} \phi\left(\lambda_{n}\right)}{\left\{K \rho^{*}\left(T^{*}+\varepsilon\right)\right\}^{1 /\left(\rho^{*}-1\right)}}\right], \quad n>m
$$

Then

$$
\begin{aligned}
& \left\|f-\sum_{n=1}^{m} a_{n} e^{s \cdot \lambda_{n}}\right\|_{q}=\left\|\sum_{n=m+1}^{\infty} a_{n} e^{s \cdot \lambda_{n}}\right\|_{q}= \\
& \quad=\sum_{n=m+1}^{\infty}\left|a_{n}\right| \cdot \exp \left[\frac{\lambda_{n} \phi\left(\lambda_{n}\right)}{\left\{K \rho^{*}\left(T^{*}+\frac{1}{q}\right)\right\}^{1 /\left(\rho^{*}-1\right)}}\right] \\
& \quad<\sum_{n=m+1}^{\infty} \exp \left[\frac{\lambda_{n} \phi\left(\lambda_{n}\right)}{\left(K \rho^{*}\right)^{1 /\left(\rho^{*}-1\right)}}\left\{\left(T^{*}+\frac{1}{q}\right)^{-1 /\left(\rho^{*}-1\right)}-\left(T^{*}+\varepsilon\right)^{-1 /\left(\rho^{*}-1\right)}\right\}\right]
\end{aligned}
$$

$<\varepsilon$ for sufficiently large values of m.

Hence

$$
\lambda\left(f, f_{m}\right)=\sum_{q=1}^{\infty} \frac{1}{2^{q}} \frac{\left\|f-f_{m}\right\|_{q}}{1+\left\|f-f_{m}\right\|_{q}} \leq \frac{\varepsilon}{(1+\varepsilon)}<\varepsilon
$$

i.e., $f_{m} \rightarrow f$ as $m \rightarrow \infty$ in X_{λ}. Hence by assumption that $\psi \in X_{\lambda}^{\prime}$, we have

$$
\lim _{m \rightarrow \infty} \psi\left(f_{m}\right)=\psi(f)
$$

Let us denote by $C_{n}=\psi\left(e^{s . \lambda_{n}}\right)$. Then

$$
\psi\left(f_{m}\right)=\sum_{n=1}^{m} a_{n} \psi\left(e^{s . \lambda_{n}}\right)=\sum_{n=1}^{m} a_{n} C_{n} .
$$

Also $\left|C_{n}\right|=\left|\psi\left(e^{s . \lambda_{n}}\right)\right|$. Since ψ is continuous on X_{λ}, it is continuous on $X_{\| \|_{q}}$ for each $q=1,2,3, \ldots$. Hence there exists a positive constant A independent of q such that

$$
\left|\psi\left(e^{s . \lambda_{n}}\right)\right|=\left|C_{n}\right| \leq A\|\alpha\|_{q}, \quad q \geq 1
$$

where $\alpha(s)=e^{s . \lambda_{n}}$. Now using the definition of the form for $\alpha(s)$, we get

$$
\left|C_{n}\right| \leq A \cdot \exp \left[\frac{\lambda_{n} \phi\left(\lambda_{n}\right)}{\left\{K \rho^{*}\left(T^{*}+\frac{1}{q}\right)\right\}^{1 /\left(\rho^{*}-1\right)}}\right], \quad n \geq 1, \quad q \geq 1
$$

Hence we get $\psi(f)=\sum_{n=1}^{\infty} a_{n} C_{n}$, where C_{n} 's satisfy (2.11).
Conversely, suppose that $\psi(f)=\sum_{1}^{\infty} a_{n} C_{n}$ and C_{n} satisfies (2.11). Then for $q \geq 1$,

$$
|\psi(f)| \leq A \sum_{n=1}^{\infty}\left|a_{n}\right| \cdot \exp \left[\frac{\lambda_{n} \phi\left(\lambda_{n}\right)}{\left\{K \rho^{*}\left(T^{*}+\frac{1}{q}\right)\right\}^{1 /\left(\rho^{*}-1\right)}}\right]
$$

i.e. $|\psi(f)| \leq A .\|f\|_{q}, \quad q \geq 1$,
i.e. $\psi \in X_{\| \|_{q}}^{\prime}, \quad q \geq 1$.

Now, since

$$
\lambda(f, g)=\sum_{q=1}^{\infty} \frac{1}{2^{q}} \frac{\|f-g\|_{q}}{1+\|f-g\|_{q}},
$$

therefore $X_{\lambda}^{\prime}=\bigcup_{q=1}^{\infty} X_{\| \|_{q}}^{\prime}$. Hence $\psi \in X_{\lambda}^{\prime}$.
This completes the proof of Theorem 2.
Lastly, we give the construction of total sets in X_{λ}. Following [2], we give
Definition. Let X be a locally convex topological vector space. A set $E \subset X$ is said to be total if and only if for any $\psi \in X^{\prime}$ with $\psi(E)=0$, we have $\psi=0$.

Now, we prove
Theorem 3. Consider the space X_{λ} defined before and let $f(s)=\sum_{n=1}^{\infty} a_{n} e^{s . \lambda_{n}}$, $a_{n} \neq 0$, for $n=1,2, \ldots, f \in X_{\lambda}$. Suppose G is a subset of the complex plane having at least one limit point in the complex plane. Define, for $\mu \in G$,

$$
f_{\mu}(s)=\sum_{n=1}^{\infty}\left(a_{n} e^{\mu \cdot \lambda_{n}}\right) \cdot e^{s \cdot \lambda_{n}}
$$

Then $E=\left\{f_{\mu}: \mu \in G\right\}$ is total in X_{λ}.
Proof: Since $f \in X_{\lambda}$, from (2.7) we have

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} \frac{\lambda_{n} \phi\left(\lambda_{n}\right)}{\log \left|a_{n} e^{\mu \cdot \lambda_{n}}\right|^{-1}} & =\limsup _{n \rightarrow \infty} \frac{\phi\left(\lambda_{n}\right)}{\log \left|a_{n}\right|^{-1 / \lambda_{n}}-R(\mu)} \\
& \leq\left(\frac{\rho^{*}}{\rho^{*}-1}\right)\left(\rho^{*} T^{*}\right)^{1 /\left(\rho^{*}-1\right)}, \quad \text { since } R(\mu)<\infty
\end{aligned}
$$

Hence, if we denote by $M_{\mu}(\sigma)=\sup _{-\infty<t<\infty}\left|f_{\mu}(\sigma+i t)\right|$, then from (2.6),

$$
\limsup _{\sigma \rightarrow \infty} \frac{\log M_{\mu}(\sigma)}{\sigma^{\rho^{*}(\sigma)}} \leq T^{*}<\infty
$$

Therefore, $f_{\mu} \in X_{\lambda}$ for each $\mu \in G$. Thus $E \subset X_{\lambda}$.
Now, let ψ be a linear continuous functional on X_{λ} and suppose that $\psi\left(f_{\mu}\right)=0$. From Theorem 2, there exists a sequence $\left\{C_{n}\right\}$ of complex numbers such that

$$
\psi(g)=\sum_{n=1}^{\infty} b_{n} C_{n}, \quad g(s)=\sum_{n=1}^{\infty} b_{n} e^{s \lambda_{n}} \in X_{\lambda}
$$

where

$$
\begin{equation*}
\left|C_{n}\right|<A \cdot \exp \left[\frac{\lambda_{n} \phi\left(\lambda_{n}\right)}{\left\{K \rho^{*}\left(T^{*}+\frac{1}{q}\right)\right\}^{1 /\left(\rho^{*}-1\right)}}\right], \quad n \geq 1, \quad q \geq 1 \tag{2.12}
\end{equation*}
$$

A being a constant and λ_{1} is sufficiently large.
Hence

$$
\psi\left(f_{\mu}\right)=\sum_{n=1}^{\infty} a_{n} C_{n} e^{\mu \lambda_{n}}=0, \quad \mu \in G
$$

Let us consider the function $F(s)=\sum_{n=1}^{\infty} a_{n} C_{n} e^{s . \lambda_{n}}$.
Then from (2.8) and (2.12), for any $\varepsilon, 0<\varepsilon<\frac{1}{q}$,
$\left|a_{n} C_{n}\right|^{1 / \lambda_{n}}<A^{1 / \lambda_{n}} \exp \left[\phi\left(\lambda_{n}\right)\left\{\left(K \rho^{*}\left(T^{*}+\frac{1}{q}\right)^{-1 /\left(\rho^{*}-1\right)}\right)-\left(K \rho^{*}\left(T^{*}+\varepsilon\right)^{-1 /\left(\rho^{*}-1\right)}\right)\right\}\right]$
for all $n>n_{0}$. By definition of $\phi(t), \phi\left(\lambda_{n}\right) \rightarrow \infty$ as $n \rightarrow \infty$ and $\lambda_{n} \rightarrow \infty$. Hence we get

$$
\limsup _{n \rightarrow \infty} \frac{\log \left|a_{n} C_{n}\right|}{\lambda_{n}}=-\infty
$$

i.e., $F(s)$ satisfies (1.4). Hence $F \in X$.

Also, $F(\mu)=0 \forall \mu \in G$. Thus the entire function $F(s) \equiv 0$ in the entire complex plane. But this implies that $a_{n} C_{n}=0, \forall n=1,2, \ldots$. Since we have started with $a_{n} \neq 0$, thus we get $C_{n}=0, n=1,2, \ldots$. Hence $\psi \equiv 0$. This proves Theorem 3.

REFERENCES

[1] Awasthi, K.N. - A study in the mean values and the growth of entire functions, Thesis, Kanpur University, 1968.
[2] Hussain, Taqdir and Kamthan, P.K. - Spaces of entire functions represented by Dirichlet series, Collectania Mathematica, 19(3) (1968), 203-216.
[3] Kamthan, P.K. - Proximate order R of entire functions represented by Dirichlet Series, Collectania Mathematica, 14(3) (1962), 275-278.
[4] Kamthan, P.K. - FK-space for entire Dirichlet functions, Collectania Mathematica, 20 (1969), 271-280.
[5] Rahman, Q.I. - On the maximum modulus and coefficients of an entire Dirichlet series, Tohoku Math. J., 8 (1956), 108-113.
[6] Ritt, J.F. - On certain points in the theory of Dirichlet series, Amer. J. Math., 50 (1928), 73-83.
[7] Srivastava, G.S. - A note on the proximate order of entire functions represented by Dirichlet series, Bull. de L'Academie Polonaise des Sciences, 19(3) (1971), 199-202.

Arvind Kumar,
Department of Mathematics, U.O.R. Roorkee, Roorkee 247667 , U.P. - INDIA
and
G.S. Srivastava,

Department of Mathematics, U.O.R. Roorkee, Roorkee 247667, U.P. - INDIA

[^0]: Received: April 19, 1991.

