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SPACES OF ENTIRE FUNCTIONS OF SLOW GROWTH
REPRESENTED BY DIRICHLET SERIES
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1 – Let

(1.1) f(s) =
∞
∑

n=1

an e
s.λn ,

where 0 < λ1 < λ2 < ... < λn < ..., λn → ∞ as n → ∞, s = σ + it
(σ, t being reals) and {an}

∞
1 any sequence of complex numbers, be a Dirichlet

series. Further, let

lim sup
n→∞

n

λn
= D <∞ ,(1.2)

lim sup
n→∞

(λn+1 − λn) = h > 0 ,(1.3)

and

lim sup
n→∞

log |an|

λn
= −∞ .(1.4)

Then the series in (1.1) represents an entire function f(s). We denote by X
the set of all entire functions f(s) having representation (1.1) and satisfying the
conditions (1.2)–(1.4). By giving different topologies on the set X, Kamthan
[4] and Hussain and Kamthan [2] have studied various topological properties of
these spaces. Hence we define, for any nondecreasing sequence {ri} of positive
numbers, ri →∞,

(1.5) ‖f‖ri
=
∑

|an| e
riλn , i = 1, 2, ... ,

where f ∈ X. Then from (1.4), ‖f‖ri
exists for each i and is a norm on X.

Further, ‖f‖ri
≤ ‖f‖ri+1

. With these countable number of norms, a metric d is
defined on X as:

(1.6) d(f, g) =
∞
∑

i=1

1

2i
‖f − g‖ri

1 + ‖f − g‖ri

, f, g ∈ X .
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Further, following functions are defined for each f ∈ X, namely

p(f) = sup
n≥1

|an|
1/λn ;(1.7)

‖f‖i = sup
n≤i

(

|an|
1/λn

)

.(1.8)

Then p(f) and ‖f‖i are para-norms on X. Let

(1.9) s(f, g) =
∞
∑

i=1

1

2i
‖f − g‖i

1 + ‖f − g‖i
.

It was shown [2, Lemma 1] that the three topologies induced by d, s and p on X
are equivalent. Many other properties of these spaces were also obtained (see [2],
pp. 206–209).
For the space of entire functions of finite Ritt order [6] and type, yet another

norm ‖f‖q and hence a metric λ was introduced and the properties of this space
Xλ were studied.
Let, for f ∈ X,

M(σ, f) ≡M(σ) = sup
−∞<t<∞

|f(σ + it)| ,

then M(σ) is called the maximum modulus of f(s). The Ritt order of f(s) is
defined as

(1.10) lim sup
σ→∞

log logM(σ)

σ
= ρ , 0 ≤ ρ ≤ ∞ .

For ρ <∞, the entire function f is said to be of finite order. A function ρ(σ)
is said to be proximate order [3] if

ρ(σ)→ ρ as σ →∞, 0 < ρ <∞ ,(1.11)

σ ρ′(σ)→ 0 as σ →∞ .(1.12)

For f ∈ X, define

(1.13) lim sup
σ→∞

logM(σ)

eσρ(σ)
≤ A <∞ .

Then it was proved [3] that (1.13) holds if and only if

(1.14) lim sup
n→∞

φ(λn) |an|
1/λn ≤ (A.e ρ)1/ρ ,

where φ(t) is the unique solution of the equation t = exp[σ.ρ(σ)].
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(Apparently the inequality (4.1) and the definition of φ(t) contain some mis-
prints in [2, pp. 209–210]).
For each f ∈ X, define

‖f‖q =
∞
∑

n=1

|an|

{

φ(λn)

[(A+ 1
q ) e ρ]

1/ρ

}λn

,

where q = 1, 2, ... . For q1 ≤ q2, ‖f‖q1 ≤ ‖f‖q2 . It was proved that ‖f‖q,
q = 1, 2, ..., induces on X a unique topology such that X becomes a convex
topological vector space, where this topology is given by the metric λ,

λ(f, g) =
∞
∑

q=1

1

2q
‖f − g‖q

1 + ‖f − g‖q
.

This space was denoted by Xλ. Various properties of this space were studied
[2, pp. 209–216].
It is evident that if ρ = 0, then the definition of the norm ‖f‖q and proximate

order ρ(σ) is not possible. It is the aim of this paper to give a metric on the space
of entire functions of zero order thereby studying some properties of this space.

2 – For an entire function f(s) represented by (1.1), for which ρ defined by
(1.10) is equal to zero, we define following Rahman [5]

(2.1) lim sup
σ→∞

log logM(σ)

log σ
= ρ∗ , 1 ≤ ρ∗ ≤ ∞ .

Then ρ∗ is said to be the logarithmic order of f(s). For 1 < ρ∗ <∞, we define
the logarithmic proximate order [1] ρ∗(σ) as a continuous piecewise differentiable
function for σ ≥ σ0 such that

ρ∗(σ)→ ρ∗ as σ →∞ ,(2.2)

σ. log σ.ρ′∗(σ)→ 0 as σ →∞ .(2.3)

Then the logarithmic type T ∗ of f with respect to proximate order ρ∗(σ) is
defined as [7]:

(2.4) lim sup
σ→∞

logM(σ)

σρ∗(σ)
= T ∗ , 0 < T ∗ <∞ .

It was proved by one of the authors [7] that f(s) is of logarithmic order ρ∗,
1 < ρ∗ <∞, and logarithmic type T ∗, 0 < T ∗ <∞, if and only if

(2.5) lim sup
n→∞

λn φ(λn)

log |an|−1
=

ρ∗

(ρ∗ − 1)
(ρ∗ T ∗)1/(ρ

∗−1) ,
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where φ(t) is the unique solution of the equation t = σρ
∗(σ)−1.

We now denote by X the set of all entire functions f(s) given by (1.1), satis-
fying (1.2) to (1.4), for which

(2.6) lim sup
σ→∞

logM(σ)

σρ∗(σ)
≤ T ∗ <∞ , 1 < ρ∗ <∞ .

Then from (2.5), we have

(2.7) lim sup
n→∞

λn φ(λn)

log |an|−1
≤

(

ρ∗

ρ∗ − 1

)

.(ρ∗ T ∗)1/(ρ
∗−1) .

In all our further discussion, we shall denote (ρ∗/(ρ∗−1))(ρ
∗−1) by the constant

K. Then from (2.7) we have

(2.8) |an| < exp

[

−
λn.φ(λn)

{K.ρ∗(T ∗ + ε)}1/(ρ∗−1)

]

,

where ε > 0 is arbitrary and n > n0.
Now, for each f ∈ X, let us define

‖f‖q =
∞
∑

n=1

|an| exp

[

λn φ(λn)

{K ρ∗(T ∗ + 1
q )}

1/(ρ∗−1)

]

,

where q = 1, 2, 3, ... . In view of (2.8), ‖f‖q exists and for q1 ≤ q2, ‖f‖q1 ≤ ‖f‖q2 .
This norm induces a metric topology on X.
We define

λ(f, g) =
∞
∑

q=1

1

2q
·
‖f − g‖q

1 + ‖f − g‖q
.

The space X with the above metric λ will be denoted by Xλ.
Now we prove

Theorem 1. The space Xλ is a Fréchet space.

Proof: It is sufficient to show that Xλ is complete. Hence, let {fα} be a
λ-Cauchy sequence in X. Therefore, for any given ε > 0 there exists n0 = n0(ε)
such that

‖fα − fβ‖q < ε ∀α, β > n0, q ≥ 1 .

Denoting fα(s) =
∑∞

1 a
(α)
n es.λn , fβ(s) =

∑∞
1 a

(β)
n es.λn , we have therefore

(2.9)
∞
∑

n=1

|a(α)
n − a(β)

n |. exp

[

λn φ(λn)

{K.ρ∗(T ∗ + 1
q )}

1/(ρ∗−1)

]

< ε
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for α, β > n0, q ≥ 1. Hence we obviously have

|a(α)
n − a(β)

n | < ε ∀α, β > n0 ,

i.e., {a
(α)
n } is a Cauchy sequence of complex numbers for each fixed n = 1, 2, ... .

Hence

lim
α→∞

a(α)
n = an , n = 1, 2, ... .

Now letting β →∞ in (2.9), we have for α > n0,

(2.10)
∞
∑

n=1

|a(α)
n − an|. exp

[

λn φ(λn)

{K ρ∗(T ∗ + 1
q )}

1/(ρ∗−1)

]

< ε .

Taking α = n0, we get for a fixed q,

|an|. exp

[

λn φ(λn)

{K ρ∗(T ∗ + 1
q )}

1/(ρ∗−1)

]

≤ |a(n0)
n |. exp

[

λn φ(λn)

{K ρ∗(T ∗ + 1
q )}

1/(ρ∗−1)

]

+ ε .

Now, f (n0) =
∑∞

n=1 a
(n0)
n .es.λn ∈ Xλ, hence the condition (2.8) is satisfied.

For arbitrary p > q, we have

|a(n0)
n | < exp

[

−λn φ(λn)

{K ρ∗(T ∗ + 1
p)}

1/(ρ∗−1)

]

for arbitrarily large n .

Hence we have

|an| exp

[

λn φ(λn)

{K ρ∗(T ∗ + 1
q )}

1/(ρ∗−1)

]

<

< exp

[

λn φ(λn)

(K ρ∗)1/(ρ∗−1)

{

1

(T ∗ + 1
q )

1/(ρ∗−1)
−

1

(T ∗ + 1
p)

1/(ρ∗−1)

}

]

+ ε .

Since ε > 0 is arbitrary and the first term on the R.H.S. → 0 as n → ∞, we
find that the sequence {an} satisfies (2.8). Then f(s) =

∑∞
n=1 an e

sλn belongs to
Xλ.

Now, from (2.10), we have for q = 1, 2, ..., ‖fα − f‖q < ε. Hence

λ(fα, f) =
∞
∑

q=1

1

2q
‖fα − f‖q

1 + ‖fα − f‖q
≤

ε

(1 + ε)

∞
∑

q=1

1

2q
=

ε

(1 + ε)
< ε .

Since the above inequality holds for all α > n0, we finally get fα → f where
f ∈ Xλ. Hence Xλ is complete. This proves Theorem 1.
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Now, we characterize the linear continuous functionals on Xλ. We prove

Theorem 2. A continuous linear functional ψ on Xλ is of the form

ψ(f) =
∞
∑

n=1

anCn

if and only if

(2.11) |Cn| ≤ A. exp

[

λn φ(λn)

{K ρ∗(T ∗ + 1
q )}

1/(ρ∗−1)

]

for all n ≥ 1, q ≥ 1, where A is a finite, positive number, f = f(s) =
∑∞

n=1 an e
s.λn

and λ1 is sufficiently large.

Proof: Let ψ ∈ X ′λ. Then for any sequence {fm} ∈ Xλ such that fm → f ,
we have ψ(fm)→ ψ(f) as m→∞. Now let

f(s) =
∞
∑

n=1

an e
s.λn ,

where an’s satisfy (2.8). Then f ∈ Xλ. Also, let

fm(s) =
m
∑

n=1

an e
s.λn .

Then fm ∈ Xλ for m = 1, 2, ... . Let q be any fixed positive integer and let
0 < ε < 1

q . From (2.8), we can find an integer m such that

|an| < exp

[

−λn φ(λn)

{K ρ∗(T ∗ + ε)}1/(ρ∗−1)

]

, n > m .

Then

∥

∥

∥f −
m
∑

n=1

an e
s.λn

∥

∥

∥

q
=
∥

∥

∥

∞
∑

n=m+1

an e
s.λn

∥

∥

∥

q
=

=
∞
∑

n=m+1

|an|. exp

[

λn φ(λn)

{K ρ∗(T ∗ + 1
q )}

1/(ρ∗−1)

]

<
∞
∑

n=m+1

exp

[

λn φ(λn)

(K ρ∗)1/(ρ∗−1)

{(

T ∗ +
1

q

)−1/(ρ∗−1)

− (T ∗ + ε)−1/(ρ∗−1)
}

]

< ε for sufficiently large values of m .
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Hence

λ(f, fm) =
∞
∑

q=1

1

2q
‖f − fm‖q

1 + ‖f − fm‖q
≤

ε

(1 + ε)
< ε ,

i.e., fm → f as m→∞ in Xλ. Hence by assumption that ψ ∈ X
′
λ, we have

lim
m→∞

ψ(fm) = ψ(f) .

Let us denote by Cn = ψ(es.λn). Then

ψ(fm) =
m
∑

n=1

an ψ(e
s.λn) =

m
∑

n=1

anCn .

Also |Cn| = |ψ(e
s.λn)|. Since ψ is continuous on Xλ, it is continuous on X‖ ‖q

for each q = 1, 2, 3, ... . Hence there exists a positive constant A independent of q
such that

|ψ(es.λn)| = |Cn| ≤ A‖α‖q , q ≥ 1 ,

where α(s) = es.λn . Now using the definition of the form for α(s), we get

|Cn| ≤ A. exp

[

λn φ(λn)

{K ρ∗(T ∗ + 1
q )}

1/(ρ∗−1)

]

, n ≥ 1, q ≥ 1 .

Hence we get ψ(f) =
∑∞

n=1 anCn, where Cn’s satisfy (2.11).

Conversely, suppose that ψ(f) =
∑∞

1 anCn and Cn satisfies (2.11). Then for
q ≥ 1,

|ψ(f)| ≤ A
∞
∑

n=1

|an|. exp

[

λn φ(λn)

{K ρ∗(T ∗ + 1
q )}

1/(ρ∗−1)

]

i.e. |ψ(f)| ≤ A.‖f‖q , q ≥ 1 ,

i.e. ψ ∈ X ′‖ ‖q
, q ≥ 1 .

Now, since

λ(f, g) =
∞
∑

q=1

1

2q
‖f − g‖q

1 + ‖f − g‖q
,

therefore X ′λ =
⋃∞
q=1X

′
‖ ‖q
. Hence ψ ∈ X ′λ.

This completes the proof of Theorem 2.

Lastly, we give the construction of total sets in Xλ. Following [2], we give

Definition. LetX be a locally convex topological vector space. A set E ⊂ X
is said to be total if and only if for any ψ ∈ X ′ with ψ(E) = 0, we have ψ = 0.
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Now, we prove

Theorem 3. Consider the spaceXλ defined before and let f(s)=
∑∞

n=1 ane
s.λn ,

an 6= 0, for n = 1, 2, ..., f ∈ Xλ. Suppose G is a subset of the complex plane

having at least one limit point in the complex plane. Define, for µ ∈ G,

fµ(s) =
∞
∑

n=1

(an e
µ.λn).es.λn .

Then E = {fµ : µ ∈ G} is total in Xλ.

Proof: Since f ∈ Xλ, from (2.7) we have

lim sup
n→∞

λn φ(λn)

log |an eµ.λn |−1
= lim sup

n→∞

φ(λn)

log |an|−1/λn −R(µ)

≤

(

ρ∗

ρ∗ − 1

)

(ρ∗T ∗)1/(ρ
∗−1), since R(µ) <∞ .

Hence, if we denote by Mµ(σ) = sup−∞<t<∞ |fµ(σ + it)|, then from (2.6),

lim sup
σ→∞

logMµ(σ)

σρ∗(σ)
≤ T ∗ <∞ .

Therefore, fµ ∈ Xλ for each µ ∈ G. Thus E ⊂ Xλ.
Now, let ψ be a linear continuous functional onXλ and suppose that ψ(fµ)=0.

From Theorem 2, there exists a sequence {Cn} of complex numbers such that

ψ(g) =
∞
∑

n=1

bnCn , g(s) =
∞
∑

n=1

bn e
sλn ∈ Xλ ,

where

(2.12) |Cn| < A. exp

[

λn φ(λn)

{K ρ∗(T ∗ + 1
q )}

1/(ρ∗−1)

]

, n ≥ 1, q ≥ 1 ,

A being a constant and λ1 is sufficiently large.
Hence

ψ(fµ) =
∞
∑

n=1

anCn e
µλn = 0 , µ ∈ G .

Let us consider the function F (s) =
∑∞

n=1 anCn e
s.λn .

Then from (2.8) and (2.12), for any ε, 0 < ε < 1
q ,

|anCn|
1/λn<A1/λn exp

[

φ(λn)

{(

Kρ∗
(

T ∗+
1

q

)−1/(ρ∗−1))

−(Kρ∗(T ∗+ε)−1/(ρ∗−1))

}

]
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for all n > n0. By definition of φ(t), φ(λn)→∞ as n→∞ and λn →∞. Hence
we get

lim sup
n→∞

log |anCn|

λn
= −∞ ,

i.e., F (s) satisfies (1.4). Hence F ∈ X.
Also, F (µ) = 0 ∀µ ∈ G. Thus the entire function F (s) ≡ 0 in the entire

complex plane. But this implies that anCn = 0, ∀n = 1, 2, ... . Since we have
started with an 6= 0, thus we get Cn = 0, n = 1, 2, ... . Hence ψ ≡ 0. This proves
Theorem 3.
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