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ALGEBRAIC OPERATORS AND MOMENTS
ON ALGEBRAIC SETS

Jan Stochel and F.H. Szafraniec

Abstract. Boundedness and essential normality of algebraic Hilbert space operators

with applications to complex moment problems on real algebraic sets is investigated here.

In solving the complex moment problem positive definiteness is insufficient.
Usually some additional assumptions on the sequence in question are required,
cf., for instance, [17], [2], [18], [5] and [15]. Inspired by the paper [12] (which goes
back to [11]) we consider here the complex moment problem on real algebraic
sets. It turns out that among additional assumptions needed in this case is the
natural requirement the underlying sequence to satisfy an algebraic condition (cf.
Proposition 1, ii)) which comes from the equation describing the algebraic set.
The results of Sections 5, 6 and 7, when confronted with discussion contained in
Section 8, show that an appropriate choice of positive definiteness is essential.

As Proposition 2 explains there is a link between the complex moment prob-
lem on real algebraic sets and essential normality of algebraic operators. This
is the reason why studying algebraic operators forms a substantial part of the
paper. The most important question in this matter is when algebraic operators
may have enough bounded or quasianalytic vectors. Bounded vectors for (a pri-
ori unbounded) algebraic operators force their boundedness. This leads to the
moment problem on compact subsets of algebraic sets. Quasianalytic vectors of
algebraic operators contribute to the moment problem on unbounded algebraic
sets.

The essential feature of our paper is that we do not restrict ourselves to the
complex dimension one. However, in the one dimensional case our considerations
cover algebraic sets described by polynomials having a dominating coefficient;
among them there are the standard algebraic curves (like lemniscates and so
on) or, more generally, equipotential ones. All this may impact Approximation
Theory like the very classical cases of the real line and the unit circle do (cf. [7],
[8] and [9]) as well as may have some connection with Stochastic Processes cf.,
for instance, [6].
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Algebraic operators

1. Let H be a complex Hilbert space with inner product 〈·,−〉. Let B(H)
stand for the ring of all bounded linear operators on H and let σap(A) denote the
approximate point spectrum of A ∈ B(H). For a given dense linear subspace D
of H we denote by L(D) the set of all linear operators A in H such that domain
D(A) = D and AD ⊂ D, and by L#(D) the set of all those A ∈ L(D) for which
there exists an operator A# ∈ L(D) such that 〈Af, g〉 = 〈f,A#g〉, f, g ∈ D.

Notice: A# = A∗|D where A∗ is the Hilbert space adjoint of A.

Define A′ for A ⊂ L#(D) as the set {T ∈ L#(D); TA = AT , A ∈ A}. We say
that two operators A and B from L#(D) doubly commute if A ∈ {B,B#}′.
N ∈ L#(D) is said to be formally normal if ‖Nf‖ = ‖N#f‖, f ∈ D, or equiva-
lently, if N#N = NN#.

Given A ∈ L(D), denote by Ba(A), a ≥ 0, the set of all f ∈ D for which there
is a non-negative number cf such that

‖Anf‖ ≤ cf a
n , n ≥ 0 .

Put B(A) =
⋃

a≥0 Ba(A). In fact Ba(A) as well as B(A) form linear subspaces of
D, which are invariant for A.

Denote by Q(A) the set of all f ∈ D such that

∞
∑

n=1

‖Anf‖−1/n = +∞ .

It is clear that B(A) ⊂ Q(A).

Lemma 1. Suppose A ∈ L(D) and X is a subset of D such that A(X ) ⊂ X .
If there are an integer d ≥ 1 and a non-negative number a such that

(1) ‖Adf‖ ≤ amax
{

‖Asf‖; 0 ≤ s < d
}

, f ∈ X ,

then linX ⊂ Ba′(A) where a
′ = max{1, a}.

If, in addition, A satisfies the following inequality

(2) ‖Af‖2 ≤ ‖f‖ ‖A2f‖ , f ∈ D ,

then ‖Af‖ ≤ a′ ‖f‖, f ∈ linX .

Proof: Set

bf = max
{

‖Asf‖; 0 ≤ s < d
}

, f ∈ X .
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Suppose A satisfies (1). We show that

(3) bAf ≤ max{1, a} bf , f ∈ X .

Indeed, using (1), we have, f ∈ X ,

bAf = max
{

‖Asf‖; 1 ≤ s < d+ 1
}

≤ max{bf , ‖A
df‖}

≤ max{bf , abf} = max{1, a} bf .

Since A(X ) ⊂ X , applying the induction argument to (1) and (3), we get

‖Ad+sf‖ ≤ (max{1, a})s+1 bf , s ≥ 0, f ∈ X ,

and, finally,
‖Anf‖ ≤ (max{1, a})n bf , n ≥ 0, f ∈ X .

This is precisely X ⊂ Ba′(A) and, consequently, linX ⊂ Ba′(A).
Assume (2). Then (cf. Proposition 1 of [19]), for f ∈ D, we have

(4) ‖Af‖ ≤ ‖f‖n/(n+1) ‖An+1f‖1/(n+1) , n = 1, 2, ... .

If, moreover, A satisfies (1), then, due to linX ⊂ Ba′(A) and inequality (4), we
get that ‖Af‖ ≤ a′ ‖f‖, f ∈ linX . For reader’s convenience we include the proof
of (4) here. First we show that

(5) ‖Anf‖ ≤ ‖f‖1/(n+1) ‖An+1f‖n/(n+1) , n = 1, 2, ... .

If n = 1 this is precisely (2). Assume (5) for n− 1. Then, by (2),

‖Anf‖2 = ‖AAn−1f‖2 ≤ ‖An−1f‖ ‖A2An−1f‖ ≤ ‖f‖1/n ‖Anf‖(n−1)/n ‖An+1f‖ .

Dividing both sides by ‖Anf‖(n−1)/n, we get (5) for n. Now pass to the proof
of (4). If n = 1 this is again (2). Assume (4) for n− 1. Then, by (5),

‖Af‖ ≤ ‖f‖(n−1)/n ‖Anf‖1/n ≤ ‖f‖(n−1)/n
{

‖f‖1/(n+1) ‖An+1f‖n/(n+1)
}1/n

= ‖f‖n/(n+1) ‖An+1f‖1/(n+1) .

This completes the proof of (4).

Remark 1. It is worthwhile to notice that there is a large class of un-
bounded operators satisfying (2), namely the class of hyponormal operators (cf.
[19, Proposition 3]). Even more, one can extend the class of operators for which
the second conclusion of Lemma 1 holds true replacing condition (2) by inequal-
ities of Kato–Protter type (cf. again [19]).
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We have to point out that any unbounded Hilbert space operator A with
invariant domain D(A) such that Ad = 0, for some d ≥ 2 (cf. [14]), satisfies
(1) with X = D(A). However it fails to satisfy (2). On the other hand, any
unbounded symmetric operator with invariant domain satisfies (2) and does not
(1) with X = D(A).

2. In the sequel we adapt the usual multiindex notation understanding by
IN the set {0, 1, ...}. Given a (not necessarily commutative) ring R, denote by
R[Z1, ..., Zκ, Z1, ..., Zι], as usually, the set of all polynomials in κ + ι indetermi-
nates with coefficients in R. Given p ∈ R[Z1, ..., Zκ, Z1, ..., Zι], we always denote
by Pij (and Pi = Pi0 if i = 0) the coefficients of p and by pH the homogenous
part of p of the highest degree. Occasionally we have to regard a polynomial
p ∈ R[Z1, ..., Zκ, Z1, ..., Zκ] as a member of R[Z2, ..., Zκ, Z2, ..., Zκ][Z1, Z1]; then,
to avoid any confusion with pH, we denote by pH the homogenous (with respect
to Z1 and Z1) part of p of the highest degree (again with respect to Z1 and Z1).

Caution: distinguish pH from pH when κ > 1.

If R is a ring of operators, then for A = (A1, ..., Aκ) ⊂ L(D) (resp. A =
(A1, ..., Aκ) ⊂ L#(D)) and p ∈ R[Z1, ..., Zκ] (resp. p ∈ R[Z1, ..., Zκ, Z1, ..., Zκ])
we put

p(A) =
∑

i∈INκ

Pi A
i (resp. p(A,A#) =

∑

i,j∈INκ

Pij A
iA#j) ,

where A# = (A#1 , ..., A
#
κ ).

The question we deal with now is when p(A,A#) = 0 for some nonconstant
p ∈ B(H)[Z,Z] implies that A is bounded. Consider first the case of B(H)[Z].
As an immediate consequence of our Lemma 1 we get

Theorem 1. Let A ∈ L(D) satisfy (2) and let p ∈ B(H)[Z] be a polynomial
of degree d ≥ 1 such that p(A) = 0. If 0 /∈ σap(Pd), then A is a bounded and

‖A‖ = max
{

1, ‖P−1d ‖
(

d−1
∑

j=0

‖Pj‖
)}

.

Proof: Since 0 does not belong to σap(A), the following inequality holds

‖f‖ ≤ ‖P−1d ‖ ‖Pdf‖ , f ∈ D .
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On the other hand, p(A) = 0 implies

‖P−1d ‖−1 ‖Adf‖ ≤ ‖PdA
df‖ =

∥

∥

∥

d−1
∑

j=0

PjA
jf
∥

∥

∥

≤ max
{

‖Asf‖; 0 ≤ s < d
}(

d−1
∑

j=0

‖Pj‖
)

.

Thus the operator A satisfies (1) with a = ‖P−1d ‖(
∑d−1

j=0 ‖Pj‖). Applying Lemma
1 we get the conclusion.

Now consider the case B(H)[Z,Z]. We say that Pkl is a dominating coefficient
of a polynomial p ∈ B(H)[Z,Z] of degree d ≥ 1, if k + l = d, 0 /∈ σap(Pkl) and

‖P−1kl ‖
−1 >

∑

i+j=d
i6=k, j 6=l

‖Pij‖ .

Extending the class of admissible polynomials we restrict the class of operators
to formally normal ones so as to get

Theorem 2. Let p ∈ B(H)[Z,Z] be of degree d ≥ 1. Suppose N ∈ L#(D)
is a formally normal operator such that p(N,N#) = 0. Let X be an arbitrary
subset of D such that N(X ) ⊂ X . If there is α > 0 such that

(6) ‖pH(N,N∗)f‖ ≥ α−1‖Ndf‖ , f ∈ X ,

then

(7) ‖Nf‖ ≤ max
{

1, α
(

∑

i+j<d

‖Pij‖
)}

‖f‖ , f ∈ linX .

In the case X = D, the closure N− of N is a bounded normal operator. If p has
a dominating coefficient, then (6) is satisfied with X = D and α = (‖P−1kl ‖

−1 −
∑

i+j=d
i6=k, j 6=l

‖Pij‖)
−1.

Proof: Assume (6). Since N satisfies (2), condition (7) follows directly from
Lemma 1 as well as from the inequalities

α−1‖Ndf‖ ≤ ‖pH(N,N∗)f‖ =
∥

∥

∥

∑

i+j<d

Pij N
iN∗jf

∥

∥

∥ ≤
∑

i+j<d

‖Pij‖ ‖N
iN∗jf‖ =

=
∑

i+j<d

‖Pij‖ ‖N
i+jf‖ ≤ max

{

‖N sf‖; 0 ≤ s < d
}(

∑

i+j<d

‖Pij‖
)

, f ∈ X .
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Since for X = D, the operator N− is formally normal and bounded, it must
necessarily be normal.

Suppose now that p has a dominating coefficient Pkl. Then the fact that
0 /∈ σap(Pkl) implies

‖pH(N,N∗)f‖ =
∥

∥

∥PklN
kN∗lf +

∑

i+j=d
i6=k, j 6=l

PijN
iN∗jf

∥

∥

∥

≥ ‖PklN
kN∗lf‖ −

∥

∥

∥

∑

i+j=d
i6=k, j 6=l

PijN
iN∗jf

∥

∥

∥

≥ ‖P−1kl ‖
−1 ‖NkN∗lf‖ −

∑

i+j=d
i6=k, j 6=l

‖Pij‖ ‖N
iN∗jf‖

=
(

‖P−1kl ‖
−1 −

∑

i+j=d
i6=k, j 6=l

‖Pij‖
)

‖Ndf‖ .

Thus N satisfies (6) with α = (‖P−1kl ‖
−1 −

∑

i+j=d
i6=k, j 6=l

‖Pij‖)
−1 and X = D.

Remark 2. If p and N satisfy all the assumptions of Theorem 2 and, in
addition, p ∈ C[Z,Z] has a dominating coefficient, then the conclusion (7) can
be strengthened as follows

‖N‖ ≤ max{a, a1/d}, where a =
(

|Pkl| −
∑

i+j=d
i6=k, j 6=l

|Pij |
)−1 ( ∑

i+j<d

|Pij |
)

.

This inequality differs from (7) only when a < 1. If so, because we have already
proved that N− is a bounded normal operator, ‖N‖ =diameter of the support
of the spectral measure of N− ≤ diameter{z; p(z, z) = 0} ≤ a1/d.

3. One of the main goals of this paper is the question of essential normality
of algebraic operators or their systems. From this point of view, the question
of boundedness of these operators becomes an intermediate (though interesting
for itself) step toward this goal. Essential normality of algebraic operators which
are, in fact, unbounded is a much more difficult question. The following theorem
(being in flavor of the paper [13] of Nelson) is a attempt in this direction. First
we state a version of Lemma 1.

Lemma 2. Let A ∈ L#(D) doubly commute with a formally normal operator
M ∈ L#(D). Suppose X is a subset of D such that A(X ) ⊂ X and M(X ) ⊂ X .
If there are an integer d ≥ 1 and a non-negative number a such that

(8) ‖Adf‖ ≤ amax
{

‖AiM jf‖; 0 ≤ i < d, j = 0, 1
}

, f ∈ X ,
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then X ∩Q(M) ⊂ Q(A).

Proof: Applying induction to (8) and employing invariance of X we get

‖Ad+sf‖ ≤ bs+1max
{

‖AiM jf‖; 0 ≤ i < d, 0 ≤ j ≤ s+ 1
}

, f ∈ X , s ≥ 0 ,

where b = max{1, a}. Since M is formally normal and doubly commutes with A,
this implies

‖Ad+sf‖ ≤ bs+1max
{

〈A#iAif,M#jM jf〉
1
2 ; 0 ≤ i < d, 0 ≤ j ≤ s+ 1

}

≤ bs+1max
{

‖A#iAif‖
1
2 ; 0 ≤ i < d

}

max
{

‖M2jf‖
1
2 ; 0 ≤ j ≤ s+ d

}

,

f ∈ X , s ≥ 0 .

Finally, we come to

(9) ‖Anf‖ ≤ anf max
{

‖M2jf‖
1
2 ; 0 ≤ j ≤ n

}

, f ∈ X , n ≥ d ,

with a suitable af . Take f ∈ X ∩Q(M) and set sn = ‖M2nf‖2, n ≥ 0. Since M
is formally normal, {sn} is a Stieltjes moment sequence. Since

∞
∑

n=1

‖Mnf‖−1/n = +∞ ,

we get, by (2)⇔(3) of [15, pg. 32], that

∞
∑

n=1

s−1/4nn = +∞ .

Applying the equivalence of Appendix with w = 1
4 we get

∞
∑

n=1

max
{

sj ; 0 ≤ j ≤ n
}−1/4n

= +∞ .

This and the inequality (9) implies that f ∈ Q(A).

Theorem 3. Let p ∈ L#(D)[Z,Z] be of degree d ≥ 1. Let M,N ∈ L#(D)
be doubly commuting formally normal operators such that p(N,N#) = 0. Let X
be a subset of D invariant for both M and N . Suppose there is β > 0 such that

(10) ‖Pklf‖ ≤ βmax{‖f‖, ‖Mf‖} , f ∈ D, k + l < d .

If either i) N satisfies (6) with α > 0 or ii) pH has a dominating coefficient(1),
then X ∩Q(M) ⊂ Q(N). In the case X = linQ(M) = D, N− is normal.

(1) In this case there is no need to require the coefficients of pH to have invariant domains.
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Proof: Suppose N satisfies (6). Then (10) implies (cf. the proof of Theorem
2) that

‖Ndf‖ ≤ α
∑

i+j<d

‖PijN
iN∗jf‖ ≤ αβ

∑

i+j<d

max
{

‖N i+jf‖, ‖N i+jMf‖
}

, f ∈X .

Thus N satisfies the assumptions of Lemma 2 with A = N . This gives the
conclusion for the case i). Under the assumption ii) we show the inequality (6)
in the same way as in the proof of Theorem 2. If X = linQ(M) = D, then
linQ(N) = D and, consequently, by Theorem 1 of [15], N− is normal.

The moment problem

4. For a given polynomial p ∈ C[Z1, ..., Zκ, Z1, ..., Zκ] of degree d ≥ 1 and
for a given multisequence c : INκ × INκ → C we define the set

Z(p) =
{

z ∈ Cκ; p(z, z) = 0
}

and the multisequence cp : IN
κ × INκ → C by

cp(k, l) =
∑

i,j

Pij c(i+ k, j + l) .

Recall that c is said to be

1) positive definite if for any function ξ : INκ × INκ → C of finite support

∑

i,j

∑

k,l

c(i+ l, j + k) ξ(i, j) ξ(k, l) ≥ 0 ;

2) a complex moment multisequence if there exists a positive Borel measure
µ on Cκ such that

(11) c(i, j) =

∫

Cκ
zi zj µ(dz) , i, j ∈ INκ .

The point is to characterize (in terms of positive definiteness) those c’s which
are complex moment multisequences with representing measures concentrated on
the set Z(p).

Proposition 1. Let p ∈ C[Z1, ..., Zκ, Z1, ..., Zκ] and let c : INκ × INκ → C
be a complex moment multisequence with representing measure µ. Then c is
positive definitive and the following conditions are equivalent
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i) The closed support of µ is contained in Z(p),

ii) cp = 0.

Proof: Positive definiteness of c is a matter of direct verification. If the
closed support of µ is contained in Z(p), then, by (11), we have

cp(k, l) =
∑

i,j

Pij c(i+ k, j + l) =

∫

Z(p)
p(z, z) zk zl µ(dz) = 0 , k, l ∈ INκ ,

and, consequently, cp = 0. Conversely, if cp = 0, then (11) implies once more

∫

Cκ
p(z, z) zk zl µ(dz) = 0 , k, l ∈ INκ .

Thus
∫

Cκ
|p(z, z)|2 µ(dz) = 0 ,

which implies i).

The next proposition makes transparent relationship between algebraic oper-
ators and the complex moment problem on algebraic sets.

Proposition 2. Suppose p ∈ C[Z1, ..., Zκ, Z1, ..., Zκ]. Then the following
conditions are equivalent

1) Each positive definite multisequence c : INκ × INκ → C satisfying cp = 0
is a moment multisequence on Z(p);

2) Each doubly commuting κ-tuple N of formally normal operators in L#(D)
such that D = lin{N#kNlf ; k, l ∈ INκ} for some f ∈ D, which satisfies
p(N,N#) = 0 extends to a κ-tuple of normal operators whose spectral
measures commute.

If, in addition, Z(p) is bounded, then either of the conditions 1) and 2) is
equivalent to the following one

3) Each doubly commuting κ-tupleN of formally normal operators in L#(D),
which satisfies p(N,N#) = 0 is composed of bounded operators.

Proof:

1)⇒2) Suppose N = (N1, ..., Nκ) is a doubly commuting κ-tuple of formally
normal operators such that D = lin{N#kNlf ; k, l ∈ INκ} for some f ∈ D.
Suppose N satisfies p(N,N#) = 0.

Set cmn = 〈Nmf,Nnf〉. Then c is positive definite and cp = 0. Thus c satisfies
(11) with µ concentrated on Z(p). This implies that N is unitarily equivalent
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to the restriction of a κ-tuple (Mz1 , ...,Mzκ) to C[Z1, ..., Zκ, Z1, ..., Zκ] ⊂ L
2(µ),

where Mzj is the operator of multiplication by the independent variable zj on
L2(µ). Thus (Mz1 , ...,Mzκ) is the required extension.

2)⇒1) Take c to be positive definite with cp = 0. Then there is (cf. [17] or
[5]) a Hilbert space H, f ∈ H and a doubly commuting κ-tuple N = (N1, ..., Nκ)
of formally normal operators in L#(D) such that D = lin{N#iNjf ; i, j ∈ INκ}
(D− = H) and

c(i, j) = 〈Nif,Njf〉 .

We show that cp = 0 implies p(N,N#) = 0. Take g = N#iNjf and h = N#kNlf .
Then, since N is doubly commuting, we have

〈p(N,N#)g, h〉 =
∑

s,t

Pst〈N
j+k+sf,Ni+l+tf〉 =

∑

s,t

Pst c(s+ j + k, t+ i+ l)

= cp(j + k, i+ l) = 0 .

Since D = lin{N#iNjf ; i, j ∈ INκ}, this forces p(N,N#) = 0. Since N extends
to a κ-tuple of normal operators with the joint spectral measure E, the spectral
theorem gives (11) with µ(·) = 〈E(·)f, f〉. Now Proposition 1 implies 1).

Suppose now Z(p) is bounded. Since 3)⇒2) trivially, pass to the proof of
1)⇒3). Take a doubly commuting κ-tuple N = (N1, ..., Nκ) of formally normal
operators such that p(N,N#) = 0. Take an arbitrary f ∈ D and set cmn =
〈Nmf,Nnf〉. Then c is positive definite and cp = 0. Thus c satisfies (11) with
µ = µf concentrated on Z(p).

Define Df = lin{Njf ; j ∈ INκ} and Nf = N|Df . Then one can show that Nf

is unitarily equivalent to the restriction of (Mz1 , ...,Mzκ) to C[Z1, ..., Zκ] ⊂ L
2(µ).

Since Z(p) is bounded, these operators are bounded with bound independent of
f . Consequently N comprises bounded operators too.

Note. Condition 2) without cyclicity of N looks as follows

4) Each doubly commuting κ-tupleN of formally normal operators in L#(D),
which satisfies p(N,N#) = 0 extends to a κ-tuple of normal operators
whose spectral measures commute.

When the set Z(p) is bounded, condition 4) is equivalent to 2). However, in
view of the examples of [4] it is very unlikely that, dropping boundedness of Z(p),
the implication 2)⇒4) may be still preserved.

5. Now we are ready to apply our operator-theoretical results to the complex
moment problem on algebraic sets proposing a few of the ways of doing this.
Start with κ = 1.
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Theorem 4. Suppose p ∈ C[Z,Z] has a dominating coefficient. Then for
any c : IN× IN→ C the following conditions are equivalent

1) c is positive definite and cp = 0;

2) c is a complex moment bisequence on Z(p).

Proof: The only implication we have to prove is 1)⇒2) (the reverse implica-
tion is in Proposition 1). Since Z(p) is bounded, the implication 1)⇒2) follows
from Theorem 2 and Proposition 2.

Remark 3. It should be noticed that Theorem 4 can be deduced from
Theorem 6 of [3]. More precisely, Cassier’s result, when applied to algebraic
curves, allows us to replace in Theorem 4 the assumption “p ∈ C[Z,Z] has a
dominating coefficient” by “|pH(z, z)| > 0 for z 6= 0”. This can be done by
reducing the whole story to the two parameter (real) moment problem on the
compact set

{

(x, y) ∈ IR2; −(Re p(x+ iy, x− iy))2 − (Im p(x+ iy, x− iy))2 ≥ 0
}

.

It is important to emphasize the fact that the Hilbert space approach of our paper,
as opposed to Cassier’s, is constructive. A rebours, though Cassier’s paper does
not involve any Operator Theory, we can use his result, via implication 1)⇒3) of
Proposition 2, to verify boundedness of some algebraic formally normal operators.
Namely we get a version of Theorem 2.

Corollary 1. Suppose p ∈ C[Z,Z] and |pH(z, z)| > 0 for z 6= 0. Then any
formally normal operator N ∈ L#(D), satisfying p(N,N#) = 0 must necessarily
be bounded.

We wish to point out that some classical curves fall in Theorem 4. Among
them there are the equipotential ones Z(p p−1), where p ∈ C[Z]. Then cpp−1 = 0
reads as

∑

k,l

Pk P l c(k + i, l + j) = c(i, j) , i, j ∈ IN ,

(the case of Bernoulli’s lemniscate, p(Z) = Z2 − 1, has been considered in [12]
where different kind of characterization appears). Also some other standard
curves like Cassini’s oval, Pascal’s helix and the four-leafed rose have dominating
coefficients.

Pass to the case of κ = 2.

Theorem 5. Suppose p ∈ C[Z1, Z2, Z1, Z2] is given by

p(z1, z2, z1, z2) = |q(z2, z2)|
2 + |r(z1, z2, z1, z2)|

2 , z1, z2 ∈ C ,
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where q ∈ C[Z2, Z2], r ∈ C[Z1, Z2, Z1, Z2] and rH ∈ C[Z1, Z1]. Let q as well as
rH have dominating coefficients. Then for any c : IN2 × IN2 → C the following
conditions are equivalent:

1) c is a positive definite and cp = 0,

2) c is a complex moment 4-sequence on Z(p).

Proof: As before the only implication we have to prove is 1)⇒2). Take a
doubly commuting pair N = (N1, N2) of formally normal operators such that
p(N,N#) = 0. This means that

q(N2, N
#
2 )# q(N2, N

#
2 ) + r(N1, N2, N

#
1 , N

#
2 )# r(N1, N2, N

#
1 , N

#
2 ) = 0 ,

so q(N2, N
#
2 ) = 0 and r(N1, N2, N

#
1 , N

#
2 ) = 0 . The first of these equali-

ties combined with Theorem 2 gives us that N−
2 is a bounded operator. Thus

s = r(Z,N−
2 , Z,N

∗
2 ) belongs to B(H)[Z,Z], it has a dominating coefficient and

s(N1, N
#
1 ) = 0. Applying again Theorem 2 we get that N−

1 is a bounded opera-
tor. Since Z(p) is bounded, the conclusion 2) follows from Proposition 2.

Notice that the Cartesian product of two circles is well suited to Theorem 5.

Remark 4. Making again (cf. Remark 3) use of a nonconstructive approach
of [3] we can get a stronger version of Theorem 5 replacing “q has a dominating
coefficient” by “q ∈ C[Z2, Z2] and |q

H(z, z)| > 0 for z 6= 0”. To prove this use
Corollary 1 instead of Theorem 2 in showing that N−

2 is bounded.

6. Another application of our operator methods to moment problems is as
follows.

Theorem 6. Let p ∈ C[Z1, ..., Zκ, Z1, ..., Zκ] be such that pH is of the form

qZi
1Z

j
1 with i+j ≥ 1, where q ∈ C[Z2, ..., Zκ, Z2, ..., Zκ]. Suppose a multisequence

c : INκ × INκ → C is positive definite and cp = 0. Suppose, moreover, c satisfies
the following conditions

(12) cqq(nδ1, nδ1)≥γ c(nδ1, nδ1) for some γ>0 and sufficiently large n∈ IN ,

(13) lim inf c(nδj , nδj)
1/n < +∞ for j = 2, ..., κ ,

where δj = (0, ..., 1, ..., 0) ∈ INκ with 1 on the j-th position. Then c is a complex
moment multisequence on a compact subset of Z(p).

Proof: Since c is positive definite, there is an κ-tuple N = (N1, ..., Nκ) of dou-
bly commuting formally normal operators in L#(D) such that D = lin{N#iNjf ;
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i, j ∈ INκ} for some f ∈ D and

(14) c(i, j) = 〈Nif,Njf〉 .

Using Remark 2 of [17], we infer from (13) that each Nl, l = 2, ..., κ, is bounded.
Like in the proof of Proposition 2 we show that cp = 0 implies p(N,N#) = 0.

Suppose (12) is satisfied for n ≥ n0. Then we have, with d = i+ j,

(15)

∥

∥

∥q(N2, ..., Nκ, N
∗
2 , ..., N

∗
κ)N

i
1N

∗j
1 Nn

1 f
∥

∥

∥

2
= cqq

(

(d+ n)δ1, (d+ n)δ1
)

≥

≥ γ c
(

(d+ n)δ1, (d+ n)δ1
)

= γ‖Nd+n
1 f‖2 , n ≥ n0 .

If q(N2, ..., Nκ, N
∗
2 , ..., N

∗
κ) = 0, then, by (15), Nn

1 f = 0 for n ≥ d+ n0. Thus,
by (14), lim inf c(nδ1, nδ1)

1/n = 0.
If q(N2, ..., Nκ, N

∗
2 , ..., N

∗
κ) 6= 0, then we can proceed as follows. Set

r = p(Z,N−
2 , ..., N

−
κ , Z,N

∗
2 , ..., N

∗
κ). Then r ∈ B(H)[Z,Z], r(N1, N

#
1 ) = 0 and

rH = q(N−
2 , ..., N

−
κ , N

∗
2 , ..., N

∗
κ)Z

iZ
j
. Since (15) implies (6) with N =N1, p= r

and X = {Nn
1 f : n ≥ n0}, we can apply Theorem 2 to get N1 is bounded on

linX . Consequently, since Nn0
1 f ∈ X , we have

lim inf c(nδ1, nδ1)
1/n = lim inf ‖Nn

1 f‖
2/n < +∞ .

Exploiting once more Remark 2 of [17] we infer that the operator N−
1 is bounded.

Now the joint spectral measure E of the family (N−
1 , ..., N

−
κ ) gives (11) with

µ(·) = 〈E(·)f, f〉 having compact support. Then Proposition 1 implies the con-
clusion.

Corollary 2. Let p ∈ C[Z1, ..., Zκ, Z1, ..., Zκ] be such that either
i) pH ∈ C[Z1, Z1] and pH has a dominating coefficient or

ii) pH is of the form qZi
1Z

j
1 with i+j≥1, where q∈C[Z2, ..., Zκ, Z2, ..., Zκ] and

(16) q q ≥ γ for some γ > 0 .

Then for any multisequence c : INκ × INκ → C the following conditions are
equivalent

1) c is positive definite, cp = 0 and c satisfies the condition (13),

2) c is a complex moment multisequence on a compact subset of Z(p).

Proof: The only implication which deserves proof is 1)⇒2). Let D, f and N
be as in the proof of Theorem 6. Like there, N−

2 , ..., N
−
κ are commuting bounded

normal operators.
Consider the case i). Since, according to our assumptions, the polynomial r

(being the same as in the proof of Theorem 6) has a dominating coefficient, it
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follows from Theorem 2 that N1 is bounded. Consequently, the joint spectral
measure E of the family (N−

1 , ..., N
−
κ ) leads us to the conclusion 2).

Consider the case ii). Let F be the joint spectral measure of (N−
2 , ..., N

−
κ ).

Then, by (16), we have

cqq(nδ1, nδ1) =
∥

∥

∥q(N2, ..., Nκ, N
∗
2 , ..., N

∗
κ)N

n
1 f
∥

∥

∥

2

=

∫

Cκ−1
|q(z, z)|2 〈F (dz)Nn

1 f,N
n
1 f〉

≥ γ

∫

Cκ−1
〈F (dz)Nn

1 f,N
n
1 f〉 = γ‖Nn

1 f‖
2 = γ c(nδ1, nδ1) , n≥0 .

Thus c satisfies condition (12). Applying Theorem 6 we get 2).

Notice that Theorem 6 as well as Corollary 2 accept unbounded Z(p) as well.
To present some further examples let

p(z1, z2, z1, z2) = |z1|
4 − |s(z2)|

2 (z21 + z21) ,

where s ∈ C[Z2]. Then the section {z1 ∈ C; p(z1, z2, z1, z2) = 0} is bounded for
any z2, while the projections of the set Z(p) on C×{0} as well as on {0}×C are
unbounded provided deg s > 0. This example also stresses another difference in
our approach and Cassier’s (he has to assume that Z(p) itself is bounded while
we, allowing Z(p) unbounded, get the resulting measure to have the bounded
support).

7. So far we have dealt with the situation where representing measures are
compactly supported. The noncompact case seems to be much more involved
at least from the operator theoretic point of view. First we wish to contribute
somewhat to this case considering parabolic curves.

Proposition 3. Suppose that a polynomial p ∈ C[Z,Z] is of the form
p = Z − Z + q(Z + Z) where q ∈ C[Z]. Then for any c : IN × IN → C the
following conditions are equivalent:

1) c is positive definite and cp = 0;

2) c is a complex moment bisequence on Z(p).

Proof: While the implication 2)⇒1) is trivial, the reverse follows from Propo-
sition 2. Indeed, let N ∈ L#(D) be a formally normal operator which satisfies
p(N,N#) = 0. Thus ImN = r(ReN) with r = 1

2 iq(2Z). Since the operator
ReN is symmetric, there is a selfadjoint extension T of ReN in K ⊃ H. Thus
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the normal operator T + ir(T )− extends N . The conclusion 2) is a consequence
of Proposition 2.

The next result is more advanced.

Theorem 7. Let p ∈ C[Z1, Z2, Z1, Z2] be such that pH is of the form qZi
1Z

j
1

with i + j ≥ 1 and q ∈ C[Z2, Z2]. Let c : IN2 × IN2 → C be a positive definite
4-sequence such that cp = 0. Suppose, moreover, that c satisfies the following
two conditions

cqq(n, n) ≥ γ c(n, n) for some γ > 0 and all n ∈ IN2(17)

and
∞
∑

n=1

c(wnδ2, wnδ2)
−1/2n = +∞ , w = max

{

1, deg pkl; k+l<i+j
}

,(18)

where pkl ∈ C[Z2, Z2] are the coefficients of p ∈ C[Z2, Z2][Z1, Z1]. Then c is a
complex moment 4-sequence on Z(p).

Proof: Let D, f and N = (N1, N2) be as in the proof of Theorem 6 (κ = 2).

Define r ∈ L#(D)[Z,Z] by r = p(Z,N2, Z,N
#
2 ). Then r(N1, N

#
1 ) = 0. Set

X = {Nmf ; m ∈ IN2}, M = Nw
2 and d = i + j. Condition (18) implies that

f ∈ Q(M) ⊂ Q(N2). Theorem 1 of [15] implies, in turn, that linQ(N2) = D
and N−

2 is normal. Let F be a spectral measure of N−
2 . Take h ∈ D and put

µ(·) = 〈F (·)h, h〉. Since the coefficients Rkl of r are equal to pkl(N2, N
#
2 ) we can

find constants β1, β2 and β3 such that (∆ being the closed unit disc at zero)

‖Rklh‖
2 =

∫

C
|pkl(z, z)|

2 µ(dz) =

∫

∆
|pkl(z, z)|

2 µ(dz) +

∫

C\∆
|pkl(z, z)|

2 µ(dz)

≤ β1‖h‖
2 + β2

∫

C
|z|2w µ(dz) ≤ β3max{‖h‖2, ‖Mh‖2} , k + l < d .

This means that assumption (10) of Theorem 3 is satisfied with p = r. It follows
from (17) that for any g = N k

1N
l
2f ∈ X we have

∥

∥

∥q(N2, N
#
2 )N i

1N
#j
1 g

∥

∥

∥

2
=
〈

qq(N2, N
#
2 )N i+j+k

1 N l
2f,N

i+j+k
1 N l

2f
〉

=

= cqq
(

(i+ j + k)δ1 + lδ2, (i+ j + k)δ1 + lδ2
)

≥ γ c
(

(i+ j + k)δ1 + lδ2, (i+ j + k)δ1 + lδ2
)

= γ‖N i+j
1 g‖2 .

If q(N2,N
#
2 )=0, then the above inequality leads to f ∈B(N1). If q(N2,N

#
2 ) 6=0,

then rH = q(N2, N
#
2 )ZiZ

j
and the same inequality implies that N1 and r satisfy
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assumption i) of Theorem 3 with N = N1. Consequently, f ∈ Q(N1). In any of
these two cases f ∈ Q(N1) ∩ Q(N2). Using Theorem 2 of [15], we get that the
spectral measures of N−

1 and N−
2 commute. The joint spectral measure of the

pair (N−
1 , N

−
2 ) does the job.

Corollary 3. Let p ∈ C[Z1, Z2, Z1, Z2] be such that either i) pH ∈ C[Z1, Z1]

and pH has a dominating coefficient or ii) pH is of the form qZi
1Z

j
1 with i+j≥1,

where q ∈ C[Z2, Z2] satisfies (16). Let c : IN2 × IN2 → C be a positive definite
4-sequence such that cp = 0. Suppose, moreover, c satisfies (18). Then c is a
complex moment 4-sequence on Z(p).

Proof: Let D, f , N = (N1, N2) and r be as in the proof of Theorem 7. Like
in that proof condition (18) implies that N−

2 is normal. Let F be the spectral
measure of N−

2 . Consider the case i). Then the polynomial r satisfies (10) with
M = Nw

2 and consequently, by Theorem 3, f ∈ Q(N1) ∩ Q(N2). This leads to
the conclusion.

Assume ii). Then, like in the proof of Corollary 2, we have

cqq(k, l, k, l) =
∥

∥

∥q(N2, N
#
2 )Nk

1N
l
2f
∥

∥

∥

2
=

∫

C
|q(z, z)zl|2

〈

F (dz)Nk
1 f,N

k
1 f
〉

≥ γ

∫

C
|zl|2

〈

F (dz)Nk
1 f,N

k
1 f
〉

= γ‖Nk
1N

l
2f‖

2 = γ c(k, l, k, l) .

In this case the conclusion follows from Theorem 7.

Remark 5. Notice that, in general, the noncompact case requires more than
positive definiteness of c and cp = 0. Indeed, the polynomial p = Z1 Z1 satisfies
all the assumptions of Corollary 3 though there are positive definite 4-sequences
c satisfying cp = 0, which are not moment 4-sequences on Z(p) = {0} × C (to
see this notice that an arbitrary bisequence can be identified with a 4-sequence c
satisfying cp = 0, and invoke [1, p. 193, Th. 3.5]). This is because such sequences
do not satisfy (18).

8. Considering the complex moment problem it is tempting to assume,
instead of positive definiteness of a bisequence c (in the sense of this paper), that
all the matrices

Cn = (c(i, j))ni,j=0

are positive definite. When Z(p) is the unit circle centered at 0, a bisequence
c satisfying cp = 0 must necessarily be of Toeplitz type (cf. [11]) and positive
definiteness of c and this of all the matrices Cn (as well as that on the group
of Z) coincide. However for other sets this is not longer true (for the Bernoulli
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lemniscate see [12]). Even if one wants to assume a little bit more, namely that
there is a Hilbert space operator S such that

(19) c(i, j) = 〈Sif, Sjf〉 ,

with some vector f , the situation does not improve too much. Indeed, consider
the matrix

S =

(

α 0
1 −α

)

,

where α satisfies the equality α2 = 1 − z with |z| = 1 and f = (1, 0). Then the
bisequence c defined by (19) (notice that here S is even bounded) satisfies the
condition ii) of Proposition 1 for the Bernoulli lemniscate, that is

c(m+ 2, n+ 2) = c(m+ 2, n) + c(m,n+ 2) , m, n ≥ 0 .

Then so defined c is not a complex moment bisequence, because S, being cyclic,
is not subnormal (cf. Proposition 3 of [16]); the latter follows from the fact that
‖S∗g‖ > ‖Sg‖ for g = (0, 1).

Consider now a polynomial q ∈ C[Z] and again a bisequence c satisfying (19)
with S ∈ B(H) and some f ∈ H. Suppose that

(20) cqq−1 = 0 .

Then, by (19),

〈

q(S)Smf, q(S)Snf
〉

= cqq(m,n) = c1(m,n) = 〈Smf, Snf〉 .

Consequently, V = q(S) is an isometry on clo lin{Snf ; n ≥ 0}. Suppose, more-
over, that

(21) H = clo lin
{

q(S)nf ; n ≥ 0
}

.

Because V is a cyclic subnormal operator and V S = SV , we can use Theorem
3 of [20] to get subnormality of S. This implies that c is a complex moment
bisequence and Proposition 1 localizes the representing measure on Z(p). Thus
we come to the following conclusion:

(*) A bisequence c given by (19) with S ∈ B(H) and satisfying (20) and (21)
is a complex moment bisequence on Z(p).

Notice that the conditions (19) and (21) can be expressed explicitly in terms
of the bisequence c itself. Also the assumption S ∈ B(H) in (*) can not be
removed.
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Come back to the Bernoulli lemniscate. Since in this case q = Z2 − 1 and,
consequently, clo lin{q(S)nf ; n≥ 0} = clo lin{S2nf ; n≥ 0}, then, assuming that
c(0, 0) = 1 and Gn = detCn > 0 for any n > 0, one can show that the condition
(21) is equivalent to the following one

{αn}
∞
n=0 ∈ `2 and

∑

n

αnGn,m = 0 for all m≥0 ⇒ {αn}
∞
n=0 = 0 ,

where G−1 = 1 and

Gn,m = (GnGn−1)
− 1

2 det









c(0, 0) c(0, 1) ... c(0, n− 1) c(0, 2m)
c(1, 0) c(1, 1) ... c(1, n− 1) c(1, 2m)
· · ... · ·

c(n, 0) c(n, 1) ... c(n, n− 1) c(n, 2m)









.

A natural question one may ask for is whether there are complex moment
sequences (viz. measures) on the Bernoulli lemniscate for which (21) is satisfied.
The latter is equivalent to

(22) H2(µ) = clo lin{Z2n : n ≥ 0} ,

where H2(µ) is the closure of C[Z] in L2(µ) for µ being a representing measure
of the underlying complex moment bisequence. Here we wish to give a partial
answer to this question. Let µ be a positive finite Borel measure on the Bernoulli
lemniscate, which is zero on the open lower half plane. Assume at least one of
the points 2

1
2 and −2

1
2 is not an atom of µ. Let ϕ(z) = z2−1 be understood as a

mapping of the Bernoulli lemniscate onto the circle IT and let m be the Lebesgue
measure on IT. Then

(**) The condition (22) is fulfilled provided

∫

IT
log(dµ ◦ ϕ−1/dm) dm = −∞ .

Indeed, it follows from the Szegö theorem [10] that the constant function 1 is
in the L2(µ◦ϕ−1)-closure of lin{Zn; n ≥ 1}. This implies 1 is in the L2(µ)-closure
of lin{(Z2−1)n; n ≥ 1}. Consequently, the L2(µ)-closure of lin{(Z2−1)n; n ≥ 1}
is the same as the L2(µ)-closure of lin{Z2n; n ≥ 0}. Fix a (measurable) branch of

the square root on C such that (z2)
1
2 = z for z in the upper half plane containing

only one of the real halfaxes (depending on which of the points 2
1
2 and −2

1
2 we

take into account). Since (Z + 1)
1
2 ∈ L2(µ ◦ ϕ−1) = the L2(µ ◦ ϕ−1)-closure of

lin{Zn; n ≥ 1} and at least one of the points 2
1
2 and −2

1
2 is not an atom of µ,

Z ∈ L2(µ)-closure of lin{(Z2 − 1)n; n ≥ 1} = L2(µ)-closure of lin{Z2n; n ≥ 0}.
This, in turn, implies that the condition (22) is fulfilled.
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Notice that if both 2
1
2 and −2

1
2 are atoms of µ, condition (22) may fail though

∫

IT log(dµ ◦ ϕ−1/dm)dm = −∞.

Considerations of this section may be regarded as being complementary to
those of [12].

Appendix

The following fact, of rather technical nature, has been isolated so as to make
it more convenient for further use.

Let {sn}
∞
n=0 be a Stieltjes moment sequence and let w ∈ (0,+∞). Then

∞
∑

n=1

s−w/nn = +∞ ⇔
∞
∑

n=1

max{sj ; 0 ≤ j ≤ n}−w/n = +∞ .

Indeed, supposing sn > 0 for all n, we can decompose the sequence (using the
representing measure) as sn = s0,n+ s1,n, where {s0,n} is the decreasing Stieltjes
moment sequence while {s1,n} is the increasing one. The only nontrivial case
happens when both s0,n and s1,n never vanish. Then

max{sj ; 0 ≤ j ≤ n}w/n ≤ (s0,0 + s1,n)
w/n ≤

(

(s0,0 s
−1
1,0 + 1) s1,n

)w/n

≤ (s0,0 s
−1
1,0 + 1)w/n sw/nn , n ≥ 1 .

This proves the implication “⇒”. The reverse implication is obvious.

Note added on May 15, 1991. The paper was completed around the end of
1989 and since then it has been widely circulating. In the meantime the paper
[21] by Schmüdgen was submitted (on May 14, 1990) and already published. He
proved a moment theorem (which in fact generalizes that of Cassier, cf. Remark 3)
making a substantial use of the Positivstellensatz of the theory of semi-algebraic
sets. Schmüdgen’s result impacts our Theorems 4, 5 and Corollary 1. Moreover,
when combined with our Proposition 2, it leads to the following:

Suppose p ∈ C[Z1, ..., Zκ, Z1, ..., Zκ]. If Z(p) is bounded, then a doubly
commuting κ-tuple N of formally normal operators in L#(D), which satisfies
p(N,N#) = 0 is composed of bounded operators.

The remaining parts of our paper are independent of [2]. Besides its simplicity,
the operator theoretic approach we develop is applicable to the unbounded case
as well.
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