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QUASI-ORTHOGONALITY ON THE UNIT CIRCLE
AND SEMI-CLASSICAL FORMS (*)

MANUEL ALFARO and LEANDRO MORAL

Abstract. In this paper we study a new concept of quasi-orthogonality on the unit
circle, depending of the structure of the orthogonal polynomials on the unit circle, and
we consider its relation with the semi-classical linear forms.

1 — Introduction

In several topics concerning orthogonal polynomials (O.P.) it is more conve-
nient to use a weaker substitute of the concept of the orthogonality. One of the
possible substitutes is the notion of quasi-orthogonality:

Let u be a linear form on the linear space of all real polynomials and let (P,,)
be a sequence of polynomials with deg P,, = n, (P,) is quasi-orthogonal of order
k with respect to u if

u(Pp(z)z™) =0,
w(Pa(w) 2" k) £ 0,
whenever 0 <m<n—k—1andn >k + 1.

This concept was introduced by M. Riesz for k = 1 in relation to the moment
problem ([20]). Subsequently, in papers concerning the formulas of mechanical
quadrature, it was considered by Fejér ([8]) for k = 2 and by Shohat ([22]) for any
k € IN. Several questions on quasi-orthogonal polynomials have been studied,
for instance, in [4], [7], [1], [21], [3], [13], [2], [18] and [19].
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The above definition can be formally generalized to the case of the orthogo-
nality on the unit circle T, as follows

Definition. Let u be an Hermitian and regular linear functional on the linear
space of Laurent polynomials and let (P,) be a sequence of complex polynomials
with deg P, = n. The sequence (P,) is called quasi-orthogonal of order k£ with
respect to w if

w(Po(2) 2= "Ry £ 0,

whenever 0 <m <n—k—1andn>k+1.

However, this concept is not so appropriate as in the real case and only the
Bernstein—Szegd polynomials satisfy the above definition ([17] and [10]).

In [14], sequences of polynomials, called para-orthogonal because their or-
thogonality properties, have been considered. These polynomials turn out to be
adequate for some applications in quadrature formulas on T as well as in the
trigonometric moment problem, but they are not adequate in order to develop
other topics concerning the O.P. on T

Then, it seems convenient to introduce a new concept of quasi-orthogonality
more depending of the structure of the O.P. on T. How to do this can be derived
by pointing out the relation between the orthogonal polynomials on T and the
orthogonal polynomials on [—1,1] ([23], §11.4) or how the trigonometric moments
on T may be transformed in moments on [—1, 1] ([1], p. 30 and ff.).

The aim of this paper is to study this kind of quasi-orthogonality and its
relation with the semi-classical forms in a parallel way to the one developed by
Maroni in the real case, as a first step to establish a classification of the O.P. on
T in terms of ordinary differential equations.

This paper is organized as follows. In section 2, we define this new notion
and we prove that a sequence of monic orthogonal polynomials on T associated
with a regular linear form u is quasi-orthogonal on T of order s with respect to
a regular linear form v, v # 0, if and only if there exists only one polynomial A
with deg A = s, such that v = [A(2) + A(z71)] u. In section 3, we consider semi-
classical forms on the unit circle and we show a characterization of these forms
by using the derivation operator. In section 4, we study the relation between
sequences of quasi-orthogonal polynomials on T and semi-classical forms and
we find a necessary and sufficient condition for a sequence of polynomials to be
quasi-orthogonal with respect to a semi-classical form.
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2 — Quasi-orthogonal polynomials on T

Let A be the linear space of Laurent polynomials
q
L(z) = Z cn 2",
n=p

with ¢, € € and p, ¢ integers, where p < ¢, P is the space of all complex
polynomials and we denote by A’ the dual algebraic space of A and by H the
subspace of A’ of all Hermitian linear forms.

Let uw € ‘H. Then, the Toeplitz Hermitian matrix associated with u is

Co C1 C2

c_1 C
M = 0
C_9 C_1 (

C
' = (ci—j)ijeN ,

where ¢, = u(z") for every n € Z and c_,, = ¢,. (Here, IN denotes the set
of non-negative integer numbers {0, 1,2,...} and Z denotes the set of integers
{0,£1,£2,...}).

Definition 2.1. A linear form wu is called regular or quasi-definite if and
only if A,, # 0 for every n > 0, where A,, denotes the (n+ 1) x (n + 1) principal
minor of M (see [5] or [19]).

It is well known (see [11] or [5]) that the regularity of u is a necessary and
sufficient condition for the existence of a sequence of orthogonal polynomials on
T. In this case, if we suppose that (¢, (z)) is the sequence of monic orthogonal
polynomials on T (SMOP), then

uln(z) -2 =0,

for every k=0,1,...,n— 1 and

Ay

u[pn(2) - 27" =en = A

£0.

In the other hand, the polynomials ¢,, satisfy the so-called Szeg6 recurrence
relations

(2'1> ¢n+1(z) = z¢n(z> + an+1 (ﬁ:(Z) )
(2.2) Gnt1(2) = (1= lant1[?) 2 ¢n(2) + anp1 G (2)
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with a, = ¢,(0), |a,| # 1 for every n > 1 and ¢%(2) = 2" ¢, (27 1). Conversely,
given a sequence of monic polynomials (¢,,), with deg ¢,, = n, satisfying (2.1) or
(2.2) there exists only one u € H (up to constant real factors) such that

u[pn(2) - 277 = en O
with e, # 0, for every k =0,1,...,n.
Definition 2.2. Let v € H, s € IN and let (¢,) be a sequence of monic

polynomials, ¢, (z) = 2" +.... We say (¢,,) is T-quasi-orthogonal of order s with
respect to v provided

i) v[pn(2)-27¥]=0, for every k with s<k<n—s—1 and for every n>2s+1;
ii) There exists ng > 2s such that v[dp,(2) - 270 T5] £ 0.

With the above conditions,
Definition 2.3. The sequence (¢,,) is strictly T-quasi-orthogonal of order s
with respect to v if (¢,) is T-quasi-orthogonal of order s and besides

iii) For every n > 2s, v[¢,(z) - 27"+*] # 0.

Remark. When s = 0, the usual definition of orthogonality on T appears.

The above concepts are related by

Proposition 2.4. Let u,v € H be with u regular and let (¢,,) be the SMOP
associated with u. Then, (¢,,) is T-quasi-orthogonal of order s with respect to v
if and only if it is strictly T-quasi-orthogonal of order s with respect to v.

Proof: Because of the T-quasi-orthogonality of (¢,,), from (2.1) and taking
into account

v[gn(2) 2T = 0[gn(271) - 2] = v[gn(z) 2] =0
we get
n
olpn(z) - =) = (T (1= lajP)) olpaa(z) - 2]
j=2s+1
for every m > 2s 4+ 1. From the last relation the result follows directly. m

An easy consequence is the following

Corollary 2.5. Let u, v and (¢,) be as in the above proposition, then (¢,,)
is strictly T-quasi-orthogonal of order s with respect to v if and only if there
exists ng > 2s such that
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a) v[dny+1(2) - z_k] =0, for every k with s < k < ng — s,

b) v[gng(2) - 27"0F] £ 0,
c) v[pn(z) - 27°] =0, for every n > ng + 1,
holds.

If w € ‘H, by using a standard argument, it is easy to show that there exists a
sequence (¢, ) of T-quasi-orthogonal polynomials of order s with respect to u if
and only if A, # 0 for every n > 25+ 1. In this case, there exist infinitely many
sequences of monic polynomials T-quasi-orthogonal with respect to u.

Proposition 2.6. Let w € H, then w = 0 if and only if there exists a SMOP
(¢n) and ng € IN such that w[¢,(z)-27*] = 0 for every n > ng and k = 0,1, ..., n.

Proof: If w = 0, the result is trivial. Conversely, from (2.1) it follows that
w[pn(z) - 27%] = 0 for every n > 0 and k = 0,1,...,n. As A is generated by the
family

{¢n(z) 2% neNand k=0,1, ,n} ,

we have w(P) = 0 for every P € A. u

Let u € A’ and f € A. We define the form fu € A’ as
(fu)lg(2)] = ulf(2) 9(2)]

for every g € A.
Now we are going to characterize the forms wu such that a given SMOP (¢,,)
is T-quasi-orthogonal with respect to wu.

Theorem 2.7. Let u € H be regular and let (¢,) be the SMOP associated
with u. Then, (¢,,) is T-quasi-orthogonal of order s with respect tov € H — {0}
if and only if there exists only one polynomial A (A # 0), with deg A = s, such
that

(2.3) v=[A(z) +AE"]u.

Proof: Uniqueness. Let A be a polynomic solution of (2.3) with deg A = s
and let us suppose that the polynomial Ay, with deg A; = s1, is a solution too. If
we define Ay = A— Ay, we can write Ay = %—Fzgzl 1 2, where r = max{s, s1}.
Then the formula

[Ag(z) —i—z‘TQ(z_l)} u= XT: 2 u=0

j=—r
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holds. So, for n > 2r 4+ 1 and k > 0, we have

XT: 1 u{qﬁn(z) : z_kﬂ} =0.

j=—r

Taking k = n — r,...,n, we obtain a system of equations in the unknowns ;
whose unique solution is pg = ... = p, = 0. Hence, 4o = A — A1 = 0.

Existence. If there exists a polynomial A satisfying (2.3) it is easy to verify
that (¢,) is T-quasi-orthogonal of order deg A with respect to v. Conversely, let
(¢n) be as in the hypothesis. We define w =v —3>>%__ 23 u with a; € €. By
the orthogonality and the T-quasi-orthogonality of the SMOP (¢,,) with respect
to u and v, respectively, the relation

w]pn(z) - z_k] =0

holds for every a; € € whenever n > 2s+1and k =s,...,n — 5 — 1.
If k =n—s,...,n, then w[p,(2)-27¥] = 0, whenever the coefficients (a(n))o_
are the solutions of the system

v[on(2) - 2] = " ulpn(z) - 27,

V[pn(2) - 27" = oz(_ns) ulpn(z) - 27" + .+ oz(()n) u[pn(z) - 27",

which has a unique solution with a&”) #0.
Now, let us suppose a, 11 # 0. Then, if k = 0,...,s — 1, w[pn(2) - 27%] = 0

s

whenever the coeflicients (ozg-n)) j=1 are the solutions of the system

(25)n ................

V[gn(2)] = " ulgn(2) - 2] + o+ ol ulpn(z) - 2] -

As u[pn(2) - 2] = —epn ant1 # 0, the system (2.5),, has a unique solution.
Let us write (ozg-n))‘;:fs, (agnﬂ))j:fs the solutions of the systems (2.4),,
(2.5), and (2.4)5,41, (2.5)p+1, respectively. Using the recurrence relations (2.1),
(2.2) and an induction on j, after straightforward computations, we obtain

(n) _ (nt1)

whenever —s < j < s; and
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for1 <j <s.

So, if any1 # 0, we have w[pm,(2) - 27%] = 0 for every m > n > 25+ 1 and
k =0,...,m. Hence, from Proposition 2.6 it follows that w = 0.

Otherwise, w[l] = 0 and thus v[l] = ajulz’] € R; and consequently
ag € R.

Therefore, there exists one and only one A(2) = P+ o 2, with deg A=s,
such that v = [A(z) + A(z71)] u.

Finally, if ap41 = ... = any-1 = 0 and an,yy # 0 for some [ > 2, then
bni1(2) = 2L dn(2) + anyy @1 (2) and using the systems (2.4),4;_1 and (2.5),47-1
the above situation becomes. If a,,4; = 0 for every [ > 1, the coefficients in (2.5),,
vanish and this system is verified by a_; = @j, when 1 < j < s. Because of the
uniqueness of the polynomial A the result follows. u

S
j==s

3 — Semi-classical forms

Definition 3.1. For v € A/, we define the form Dv € A’ as

(Do)[f] = —i(z0)[f'] = —iv]z f'(2)]

for every f € A.

Then, if v € H, Dv € H. Besides, if v € A’ and f,g € A, then
[D(gu)]lf] = =iz g(2) V][] = —iv[zg(2) f'(2)] ,
that is, D is the derivation operator with respect to 6, where z = r €. (See [24]).

Definition 3.2. If u € H is a regular form, we say that u is semi-classical if
and only if there are polynomials A # 0 and B such that D(Au) = Bu.

Proposition 3.3. Let u € H be a regular form. Then, u is semi-classical if
and only if there are polynomials A # 0 and B such that

S~

DAz YHYul =Bz Yu.

Proof: For every k € Z, we have
[D(A(z) w)][2*] = [D(A(=" 1) w)][=7*]
because v € H. Similarly,

[B(2)ull2k] = [B(z"Y) ull=7"] .
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Thus, the characteristic condition for a semi-classical form
[D(A)][4] = (Bu)[=*
is verified if and only if
(DAY w][] = [B(z"1) u][2']
holds for every j € Z. n

If v € A and P € P let us write v’ = [P(z) + P(z~1)]v. Note that, if v € H,
then vf’ € H.

Theorem 3.4. Let u € H be a regular form. Then, u is semi-classical if and
only if there exist polynomials A # 0 and B such that

(3.1) Dlu?] =P .

Proof: (=) It is straightforward from Proposition 3.3.

(<) From (3.1), the k-th moments corresponding to the forms D[u4] and u”

(D)4 = —iku[(A(2) + A(z71) 2F] = —iku[2*(A(2) + A(=71)24]
uPlM = u[(B(2) + B(=) 24| = u[=*(B(2) + B(="1)) 2],
where s = max{deg A, deg B} (if B = 0, then s = deg A). As
A(z) = 2°(A(2) + A(z™Y)  and  Bi(z) = 2*(B(z) + B(z™))
belong to P, and
[D(A1(2)) ul[#7] = [(Bu(2) + isAu(2)) ][]
holds for every j € Z, with A; # 0 and By + isA; € P, the result holds. u

4 — Semi-classical forms and T-quasi-orthogonality

The main aim of this paragraph is to prove the following:

Theorem 4.1. Let u € H be regular and let (¢,) be the SMOP associated
to u. Let us write

{uw) = i) (21,
Qbo(z) =1.



QUASI-ORTHOGONALITY ON THE UNIT CIRCLE 55

The following assertions are equivalent:
i) u is a semi-classical form;

ii) There exists u € H — {0} such that the sequences (¢,) and (v,,) are
T-quasi-orthogonal with respect to u;

iii) There exists u € H—{0} such that the sequence (1,,) is T-quasi-orthogonal
with respect to 1.

First of all, let us remember that to give a regular form v € H is equivalent
to known any of the following data:

1) A sequence of monic polynomials (¢, ), orthogonal with respect to u;

2) A sequence of complex numbers (¢,(0)) with |¢,(0)| # 1 for every n > 1
(Schur parameters);

3) A quasi-definite sequence of moments (c¢y),ez, with ¢, = wu(z") and
C—n = Cp;

4) A formal series F(2) = co+2 312 c—, 2", with ¢, = u(2"). (If u is positive
definite, F'(z) is a Carathéodory function);

5) A formal Laurent series G(2) = S5° _c_,, 2", with ¢, = u(z").

(For the positive definite case see [25], [12]; for the regular case see [12], [15]
and [24]).

Before to prove the above theorem we need to establish some previous lemmas.

Lemma 4.2. A regular form u € 'H is semi-classical if and only if there exist
two polynomials C and D (C # 0) such that

izC(2)G'(2) = D(2) G(2) ,
where G(z) is the formal Laurent series associated to u.
Proof: See [24]. n
As an immediate consequence we obtain

Corollary 4.3. If F(z) or G(z) are rational functions, the form w is semi-
classical. u

Lemma 4.4. The SMOP (¢,) and (x,) such that

mno
e

n+1’

@n(o) = ’ Xn(o) =
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with n > 1 and « € [0,27), are semi-classical.

Proof: From induction arguments the following relations:

1 n—1 ]
on(z) =2"+ p kz_:(k +1)ln=ha gk
=0
1 n—1
(2) = = g 3 e
=0
hold and hence,
n—1
* -1 k 1 —io \k
P = 1 g DD )
1 n—1 ] N
* =1 —iQ )
G = )

Since (xy) is the SMOP of the second kind with respect to (¢y,), the Carathéodory
functions Fi(z) and Fi(z), associated to (¢n) and (x.) respectively, satisfy

2) = L(Z) Zn+1 ) = @:L(z) Zn—l—l
(4.1) Fi(z) = 25 (2) +O0E""),  Fiz) ) +0(=z"")
(see [12], p. 11). ‘
Thus, we get F1(z) =1 —e "z and Fy(z) = ﬁ

By Corollary 4.3, the SMOP (¢,,) and (x,) are semi-classical.

Remark. We want point out that ¢, (z) = e ®,(e~**z) where (®,,) is the
SMOP satistying ®,,(0) = %H’ for every n € IN.
Lemma 4.5. Let {a;; j =1,...,n0} C € be with |a;| # 1 and o, 8 € [0, 27).
Let us consider the SMOP (®,,) defined by
(I)](O) = aj, if ] = 1, N T

gi(na+g)

Dy (0) = . ifn>1,

n+ny

where n; € IN is fixed. Then, (®,,) is associated to a semi-classical form.

Proof: The difference equation of second order

1 ele z ela { 1

Yn+1 = (n+n1)2

n+1 ntmtl ntn) T nrm ]y”l
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has the polynomic solutions (¢n)n>nys (Xn)n>n1, (Pn)n>ne and (Vy,)p>n,, Wwhere
(¢n), (xn) are as in the above lemma and (¥,,) is the SMOP of the second kind
associated to (®,). Since the two first solutions are linearly independent, there
exist unique polynomials Pi, P», (1, Q2 such that

q>n+n0(z) = Pl(z) Qpn+n1*1(z) + PQ(Z) Xn+n171(z) )

(4.2)
‘1’n+n0 (Z) = Ql(z) 9071+n1—1(z) + QZ(Z) Xn+n1—1(z) )

for every n > 1. So, the generating function F'(z) associated to (®,,) satisfy

Witn (2)
F(z) = 202 4 Q(pntnotly
(I)n+n0 (Z)
By substituting the values of ¥}, (z) and @}, (z) derived from (4.2) and

taking into account (4.1) we have

M)+ Q3 () Fie)
F&) = B v PR () Rie)

where k = max{deg P|,deg P, deg Q1,deg Q2} and P**(z) = zFP(z71) with
k > deg P. Since, Fi(z) = 1 — ez, it follows that F(2) is a rational function. u

Remark. Let us note that the SMOP (®,,) is a modified of the SMOP (¢,,)
in the sense used in ([6]). So Lemma 4.5 gives an improvement of Proposition 3.1
in [9].

Proof of the theorem: The implication ii)=-iii) is obvious. We will prove
iil)=ii)<i).

i)=-i) Let u be a semi-classical form in H. Then there exist A, B € P with
A # 0 such that D[ul] = u®.

If B # 0, from Theorem 2.7, (¢y,) is (strictly) T-quasi-orthogonal of order
p = degA with respect to u? and (strictly) T-quasi-orthogonal of order
p’ = deg B with respect to ©?. Thus, we can deduce

wAn(2) 74 = LuBlgn(e) -2 + L ufpa(z) -2

for every n > 1. From the T-quasi-orthogonality for the SMOP (¢,),
uhn(2) - 27 F] = 0if r <k <n—r—1, (n>2r+ 1), where r = max{p,p'}.

If B = 0, the above expression remains as u“ i, (2) - 27%] = %uA [fn(2) - 27F],
which vanishes for p <k <n—p—1(n > 2p+1). Now, we are going to show
that u”[in(2) - 27"F"] # 0 for some n > 2r. If p # p' or p’ = 0 or B = 0 the
proof is trivial. Let p = p’ = r and let us suppose that u [y, (2) - 277" = 0 for
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some n > 2r. By using the recurrence relation (2.1) and by the strict T-quasi-
orthogonality of (¢,) with respect to u” we get

A e e S 1_’a”+1|2 A LAt
WA (z) - = Tl gy ) o .

ii)=-1) Let (¢,) and (1)) be T-quasi-orthogonal of orders p and r, respectively,
with respect to @ € H — {0}. By Theorem 2.7, there exists A € P — {0} such
that 4 = u'. Let @ € H be the form defined by @ = D(u?). For every n > 1 and
k € Z we get

(4.3) lgn(2) - 27 F] = —iut[z¢),(2) - 2] +iku[pn(2) - 27
' = —inu[n(2) - 27 F +ikulpn(z) - 27,

which vanishes if s <k <n-—s—1, (n>2s+ 1), with s = max{p,r}.
We distinguish two possible situations:

a) If p # r, writing the relation (4.3) for k = n — s and n > 2s we have
Ulpn(2) - 27" ) = —inu[Pa(z) - 2] +i(n = s) ulda(z) - 27

Since in the above relation, at least for some n > 2s, the right member has a
term equal zero and the other term different zero, the SMOP (¢,,) is T-quasi-
orthogonal of order s with respect to u and there exists a polynomial B of degree
s such that @ = u®B. Therefore, u is a semi-classical form.

b) If p = r = s, let us suppose there exists ¢t € IN such that
ildn(z)- =" =0, n=2t,
Ulpn(z) -2 F =0, t<k<n—t-1 n>2t+1.

From (4.3) it follows that, if there exists a non-negative integer t verifying the
above conditions, then ¢ < s is true. Now, using (2.2), an induction on ¢ implies
that either there exists g with 0 < ¢ < s such that

ldn(z) 27" #0
holds for every n > 2¢, and
lpn(z) - 27" =0
holds for every n > 2g + 1 with ¢ <k <n —q — 1, or either

lpn(z) - 27" =0
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holds for every n > 2t and for every t € IN. In the first case, the SMOP (¢,,)
is T-quasi-orthogonal of order ¢ with respect to u and, from Theorem 2.7, there
exists a polynomial B of degree s such that @ = u?; in the second one, @ = 0
and B = 0. In both cases, D[u?] = u? with B different zero or not.

iii)=-i) In [16], it has been proved that
(4.4) (6n(2)) = = [81(2) —vn(2)]

Derivating the recurrence relations (2.1) and (2.2) and taking into account (4.4)
we obtain

(n+ 1) ¢Ynt1(2) = 2[on(2) + nYn(2)] + 1 an41 [ (2) — Pp(2)]
(n+ 1) ¥ns1(2) = (1= lans1[) 2[pn(2) +ntpn(2)]
+ (04 1) ania[@p41(2) = Yppa (2)] -

Let us suppose the SMOP (1),,) is T-quasi-orthogonal of order r with respect
to u. If r = 0, the only SMOP such that (¢,,) is orthogonal with respect to any
u € His pp(z) = 2" (see [16]). Thus, we suppose r > 1 and we do not consider
the trivial case r = 0. Then, [t (2)-27%] = 0 is true for every r <k <n—r—1
and n > 2r + 1, and besides the following

lpn(z) - 2 M+ nanpialgn(z) -2 =0,
(1= Jan1[) @pn(2) - 27H + (0 + 1) a1 Alpeq (2) - 27F7 1 =0,

holds when r < k < n—r —1and n > 2r + 1. By substituting in (4.5) the
values of ¢} (z) and ¢}, (z) derived from the relations (2.1) and (2.2), we have
the system

a[¢n(2) ’ Zﬁk] -

(4.5)

n

u[pn11(2) - Zﬁkil] =0,

n—1

(1= lans1 ) algn(z) - 2]

(4.6)
M () 2 =0,

withr <k <n-—r—1and n > 2r + 1, whose determinant is

1

Mu= -

[1 = (nlans1])?] -

If M, # 0 for some n > 2r + 1, it follows directly that [¢,(2) - z7%] = 0
whenever 2r +1 <m<nandr<k<m-r—1.

Let us suppose that every ng > 2r+1 there exists n > ng such that |a,+1| # %
Then, by the above argument, the relation

ufgn(2) - Z_k] =0
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holds for every n > 2r + 1 with r < k < n —r — 1. Now, by using the same
argument as in the first part of this proof, we can conclude that the SMOP (¢,,)
is T-quasi-orthogonal of order s (with s < r) with respect to w.

Finally, let us suppose |a,11] = % is true for every n > ng > 2r + 1. Then the
determinant M,, vanishes and the system (4.5) reduces to

(4.7) lgn(2) - 27 + P aln(z) - 2] = 0,

and the system (4.6) becomes

(1) Wni(2) 57 = 7 Eba(z) ¥ =0,

where 0, = argapyi,n >ngpand r <k <n-—r—1.
Let us denote my,x = |u[¢n(2)-27%]| and wpp = arg(t[¢n(2)-27*]). From (4.7)
and (4.8), we get

w _ 1(0n—wWn n—f—1+T
mnke nk — mn,n—k—l 6( n n,n—k—1 ) ,

, n .
mn+1’k+1 67"’-"7L+1,k+1 — Mk eZUJnk .
n—1
Therefore, myy = mp; = m, whenever k,j € {r,...,n —r — 1}, and my,41 =
”T_l My,. Moreover, wyr = Wp41 k+1 and Wy +wy n—k—1 = O, -+ for every n > ng,
which implies the relation 0,49 = 26,,41 — 6, is true for every n > ng. It follows

easily that 0,,4; =l o + 3 is true with a = 0,,,41 — 85, and 38 = 0,,,, and thus
0 etllatp)
(Z)nOJrl( ) - m

for every | > 0. From Lemma 4.5, the SMOP (¢,,) is associated to a semi-classical
form. m

Corollary 4.6. Let u € H be semi-classical and let A, B € P (with A #0)
such that D[u?] = uB. Then, (v,) is T-quasi-orthogonal of order r with respect
to u?, where r = max{deg A, deg B}. u

Corollary 4.7. Let w€H be semi-classical and let us suppose that |a,1] :%

for some n > r+ 1. Then
ei(la+ﬁ)

an+l:n+l_1
for every 1 > 1. n
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