PORTUGALIAE MATHEMATICA
Vol. 51 Fasc. 1 — 1994

A STUDY OF Ky -SPACES AND Kj;,-SPACES

CARLOS R. BORGES

Abstract: Further study of Ky -spaces leads to the introduction of K -spaces.
We obtain a characterization of Kjj,-spaces in terms of continuous real-valued functions
which is dual to a characterization of Ky-spaces. We also get two characterizations of
Kyy-spaces, one of which exhibits their remarkable similarities with K;-spaces; a conse-
quence of the latter characterization is that Ky -spaces are collectionwise normal.

Throughout, we will use the terminology of [1].

We introduced the concept of Kyy-spaces in [1; Definition 10|, as follows:
A space (X, 1) is a Kyy-space provided that, for each closed F' C X, there exists
a function k: 7|F — 7 (k is called a Ky-function) which satisfies the following:

(1) FNk(U)=U, for each U € 7|F, k(F) = X and k(0) = 0;
(2) k(U) C (V) whenever U C V;
(3) k(U)UKk(V) = X whenever UUV = F}

(4) kK(U)NF =T.
Condition (3) naturally leads to one question if it can be replaced by the stronger
condition below, without affecting the concept of a Ky -space:

(3%) k(U) UK(V) = k(U UV).

We do not yet know the answer to this question. However, replacing (3) by
(3*) in the definition of Kyy-spaces leads to a (possibly new) class of spaces which
we will call Kjj-spaces, with remarkable properties which are dual to those of
Ky-spaces (see Theorem 2 of [1] and compare it with Theorem 2 ahead). It is
noteworthy that a Ko-function is a Kyy-function if and only if it is a Kjj-function
(this follows from Theorem 12 of [1], and Theorems 2c¢) and 3b) v) ahead).
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Remark. Note that, for each closed subspace F' of any space (X, 7) there
exists k: 7|F — 7 which satisfies (1), (2) and (3) above: Simply, let k(U) =
UU(X —F), for U # 0, and k(0) = 0.

Proposition 1. Every Ky -space is completely normal.

Proof: Let A, B be subsets of a Kys-space (X, 7) such that AN B =
) = ANB. Let F = AUB and let k: 7|F — 7 be a Ky-function. Then
B-A=F-A=Uc7|F,BCUand UNA = () (note that a € A implies a ¢ B
which implies that a € X — B € 7, since (X — B)N(B—A) =0, a ¢ U). Since
k(U)NF =T, by (4), we get that k(U) N A = §; therefore, k(U) and X — k(U)
are disjoint 7-open subsets of X such that B C k(U) and A € X — k(U). This
completes the proof. n

Theorem 2. For any space X, the following are equivalent:
a) X is a Ky -space;

b) X is completely normal and, for each nonempty closed subspace F of X,
there exist extenders ¢: Cy (F) — Ci(X) and ¢: CL (F) — CL.(X)
such that

i) ¢(f) < ¢(g), whenever f < g,

ii) o(f +g) = o(f) + 6(9),

iii) ¥ (f) < (g), whenever f < g,

iv) (f +9) <o(f) +¢(9),

v) ¢(f) < ¢(f), whenever f € C*(F),

vi) ¢(ar) = ax = ¢Y(ap), for a € R,
vii) ¢ (sup(f, g)) = sup(¢(f), ¥ (g)),
viii) ¢(inf(f,g)) = inf(o(f), ¢(9)),

)

ix) §(f) = —w(~f), for cach f € C*(F),
x) for any { fo| € A} C C*(F), Uy 0(fa) (- 00,00NF =Up fa (|—00,0);

¢) X is completely normal and, for any nonempty closed F C X there exists
an extender ¢: C*(F) — C},.(X) which satisfies i), vi), viii) and x) of b)
for functions in C*(F).

Proof: a) implies b). By Proposition 1, X is completely normal. Let
k: T|F — 7 be a Kj-function. For each z € X, let

o(f)(x) = inf{t e R| & € k(7' 00.t])} ,

¥(9)(x) = sup{t € R| z € k(g™ (t,o0]) } .
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where f € Ci.(F) and g € C} (F). Since k is monotone, we immediately get
that ¢ and v satisfy i) and iii), respectively. Since we also get that

6(f) (=00, th) = U{k(F (= 008D | s < ¢}
¥9) (It 00l) = U{k(F 7 (500D | 5> £}

we immediately get that ¢ is a usc-extender and 1) is an lsc-extender. (It is clear
that, for @ € F, 6(f)(x) = f(x) and v(g)(x) = g().)

Next, we show that ¢ satisfies ii): Pick x € X and say ¢(f)@) =t1, ¢(g) @) =t2,
with t1 < to. Let t = t1 + to and note that, for any € > 0,

(f+9) =00t =) € M= 00,1 — $DUg T (=00t — 5)

(Pick any z € F such that f(z) + g(z) < t —e. Note that if f(z) < t; — §
then z € f~1(]— oo, t1 — §[); if f(2) > t1 — § then g(z) < t — § which implies
that z € g_l(] 00,1 — §[).) Since ¢( )(x) = t1 and ¢(g)(z) = t2, we get that
o ¢ () (=00, ~ 50) and @ ¢ klg (o0, t2— 50 hence @ ¢ k(71 (|-,
t1—50) U k(g™ (= 00, ta — 5) D k((f +9)7 (1= o0, t —€[)), by (2) and (3%),
which implies that ¢(f + g)(z) >t = ¢(f)(x) + ¢(g)(x), as required.

Next, we show that 1 satisfies iv): Pick = € X and say ¢(f)(z) = ti,
P(g)(x) = to, with t; < t9. Let t = t1 + t2 and note that, for any £ > 0,

(f +9) 7t +e,00D) © fTH(Jt + 5,00) Ug™ (2 + 5, 00]) -

(Pick any z € F such that f(z) + g(z) > t +¢e. Note that if f(z) > t; + §
then z € f~'(Jt1 + §,00)); if f(2) < t1 + § then g(z) > ta + § which im-
plies that z € g7'(Jt2 + §,00[).) Since ¥(f)(z) = ¢1 and ¥(g)(z) = ta, we
get that ¢ k(f~'(Jt1+5,00[)) and x ¢ k(g™ (Jta+5, o0[)); hence z ¢ k(f~(Jt1+5,
oo[)) U k(g™ (Jt2 + 5,00) D k((f +¢)7!(]t + &,00[)), by (2) and (3%), which
implies that ¥ (f + g)(z) <t =¥(f)(z) + ¥ (g9)(x), as required.

In order to show that v) is satisfied, let f € C*(F) and say ¢(f)(z) = top. Then
x ¢ k(f~1(]— o0o,t[)) for t < ty. Therefore, by conditions (3) for a Ky -function,
r € k(f~(Js,00[) for s < t < ty (because F = f~1(]s,00]) U f~1(]— 00,t[));
therefore, ¥(f)(x) > to = o(f)(x).

It is easily seen from the definitions of ¢ and 1 that they satisfy vi).

Next, we show that 1) satisfies vii): Note that, for f,g € C};\.(F) and t € IR,

sup(f, )~ ([t 00]) = f7H (]t 00)) U g™ (Jt, o) -

Pick x € X and let ¢(f)(x) = t1, ¥(g9)(z) = to; say t1 < ta. Then x ¢
k(f~(Jt,00[)) for t > t1, and x ¢ k(g~'(]t,00])) for ¢t > to; therefore, by (3*),

@ @ k(f7H(t00) Uk(g™ (Jt,00))  for ¢ > 15 .



112 C.R. BORGES

Therefore, x ¢ k(sup(f, g)~*(Jt, o0[)) for t >t5, which implies that ¥ (sup(f, 9))(x)

< to = sup(¥(f)(2), ¥ (g9)(x)). Since ¢(sup(f,g)) = sup(¥(f),¥(g)), because of
iii), we get that ¢ satisfies vii).

Similarly, one can prove that ¢ satisfies viii); also, ix) follows immediately
from the definitions of ¢ and 1.

Finally, we show that x) is satisfied: Note that

Uélfa) ™ (1= 00,00 = U(U{ k(£ (= s0irD) | < 0}) € k(" (1= 00, 0D)
k(U £ (1= o<,0D).

Hence,

Ugb(fa)*l(]—oo,O[)ﬂFCk‘(Ufojl(]—oo,O[))ﬂF:Ufojl(]—oo,()[),

by (4). Since, for AC X, ANF D ANF, letting A =, ¢(fa) 1 (]— o0,0[), we
then get that

U¢(fa)_1(]_ 0070[) NF= Ufo?l(]_ O0,0D :

«

This completes the proof that a) implies b).
Since it is obvious that b) implies c), let us prove that ¢) implies a). Define
k: 7|F — 7 by

k(U) = {671 (= 00, 0D | f € C*(F]—00,1]), f(F—U) C{1}} .

Since ¢ is a usc-extender and F' is a Tychonoff space, one easily gets that k&(U) € 7
and k(U)NF = U, for each U € 7|F}; also, k() = () and k(F) = X, because of
vi).

Next, note that k is monotone: Let U,V € 7|F such that U C V. Note
that f(F — U) C {1} implies that f(F — V) C {1}, by i), which shows that
E(U) C (V).

Next, we prove that, for each U,V € 7|F, k(UUV) = kE(U) U k(V); ie., k
satisfies (3*): Since k is monotone, we need only prove that k(U U V) C k(U) U
E(V). Let € k(U UV). Then there exists a function f € C*(F,]— oo, 1]) such
that f(F—UUV) C {1} and ¢(f)(x) < 0. By Lemma 1 in the Appendix, there
exist functions fi, fo, f3 € C*(F,]— 00,1]) such that fi(F —U)U fo( FF — V) U
fg(F -Un V) C {1} and inf(fl,fg,fg) < f. Then

0> ¢(f)(x) = ¢(inf(f1, fa, f3))(x) = inf(o(f1)(x), ¢(f2)(x), ¢(f3)(x)) -
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Note that if ¢(f1)(x) < 0 then x € k(U); if ¢(f2)(x) < O then z € k(V); if
#(f3)(x) <0then z € K(UNV) C k(U)Uk(V). Hence, z € k(U) Uk(V).

Finally, we prove that k(U) N F = U: Let us say that k(U) = U{é(fa) !
(]— 00,0]) | @ € A}. Then, since ¢ satisfies property x) of b), we get that

p(O)NF =Jo(fa) (= 00,0 NF = fa'(]-00,0) =T .

Hence, k(U) N F = U, which completes the proof that c) implies a). u

Theorem 3. For any space X, the following are equivalent:
a) X is a Kyy-space;

b) X is a normal space and, for each nonempty closed subspace F' of X, there
exist extenders ¢ : Ch (F) — Ci(X) and ¢ : Cf (F) — Cf.(X) such
that

(f) < ¢(g) whenever f < g,

(f) < ¥(g) whenever f <g,

(ap) = ax =Y(ap), for each a € R,

(f) < ¥(f) whenever f € C*(F),

or any subset {fo| @ € A} of C*(F) and a € R,

S

U¢(fa)_1(]_ OO,G,D NF= Ufojl(]_ oo,a[) ’

Uv(fa) " (a,00) N F =] fa (Ja, 00]) -

c) X is normal and, for any nonempty closed F C X, there exist extenders
¢: C*(F) — Cro(X) and ¢p: C*(F) — Cf.(X) which satisfy iii), iv) and

usc

v) of b) for functions in C*(F).

Proof: a) implies b). This is essentially Proposition 11 of [1]. (The proof
of condition v) in Proposition 11 of [1] can obviously be adapted to the more
general condition v) of this result.)

Clearly, b) implies c).

c) implies a). (The proof of Theorem 4.1 in [2] surely helped us in devising this
argument.) Let F' be a nonempty closed subspace of (X, 7). For each U € 7|F,
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let

o(f) " (-0, 1) | f € C(F,[-2,2]), f(F-U)C {2}} ;

()N (- 1,00) | f€C(F,[-2,2]), f(F-U)C {—2}} ;
k(U) = p(U) U (U) .

If U € 7|F and z € U, then there exists f € C(F,[—2,2]) such that f(z) = —2
and f(F —U) C {2} (because X is Tychonoff). Since ¢ is an extender, we get
that U N pw(U) = U, similarly, U Nv(U) = U. Hence, F N k(U) = U, for each
U € 7|F. Clearly, k(F) = X and k() = ), because of iii).

It is easily seen that k(U) C k(V) whenever U C V (indeed, u(U) C w(V)
and v(U) Cc v(V)).

Next, we prove that if U UV = F then k(U) U k(V) = X (Wlog, let us
assume that U # F # V). Let x € X and suppose that ¢ p(U). Then, for
each f € C(F,[-2,2]) such that f(F —U) = 2, we get that ¢(f)(x) > 1. Pick
h € C(F,[-2,2]) such that h(F — V) = —2 and h(F — U) = 2 (this can be done
because F' is normal). It follows that ¥ (h)(x) > ¢(h)(z) > 1, which implies that
x € v(V). Similarly, if ¢ p(V) then x € v(U). Consequently, we get that
x € k(U)UE(V), as required.

_ Finally, we prove that, for each U € 7[F, E(U)N F = U, by proving that
wU)NF =TU = v({U)NF (we will prove the first equality and note that the
second equality can be similarly proved): Let us assume that u(U) = U{¢(fa) "
(]—00,1]) | @ € A}. Since ¢ satisfies condition v) of b), we get that

pO)NF=Jo(fa) (=00, 1N F =] fa'(]-00,1) =T .

This completes the proof. m

Theorem 4. For a space (X, ), the following are equivalent:
i) X is a Ky -space;

ii) For each closed subspace F' of X there exists a function k: 7|F — 7T such
that
() FNk(U)=U, for each U € 7|F, k(F) = X, k(0) =0,
(2") k(U) C k(V) whenever U C V,

)
(3) U,V er|F,UNV =0 implies k(U) Nk(V) = 0,
(4) k(U)NF=T.
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Proof: i) implies ii). Let o: 7|FF— 7 be a Ky -function and define k: 7|F — 1
by k(U) =U U (X — [FUa(F —U)]). (Note that

k({U) =UU ((X—F)m(X—a(F—U)))
= (VU -F)n (VX -o(F-T))

and X —o(F —U) D U because, by (4),

(X=o(F-U))NF=F—(o(F-U)NF)=F-F-U>U.

Hence, we do get that k(U) € 7.)

From the definition of k£ we immediately get that k satisfies (1').

k satisfies (2): U C V implies U C V implies F —V C F — U implies
o(F—V)Co(F—U) implies k(U) C k(V).

k satisfies (3'): UNV = () implies (F —U) U (F —V) = F implies o(F —U) U
o(F —V) = X implies

X—-[FUe(F-U)NX—-[FUo(F-V)] =
=X-[FUs(F-U)°NX —[FUo(F-V)]°
=X - ([FUo(F-T)"U[Fue(F-V))

=

cX—(a(F—U)OuU(F—V)O) cX—(a(F—U)uU(F—V)) =

Also, UNV = () implies U C F =V implies U C o(F —V) implies U C a(F —V)o
implies UN (X — [FUa(F 1) = 0; similarly, VN (X — [FUo(F — U)]°) = 0.

Consequently, k(U) N k‘(V)
nF

V)
0.
=UU((X—-[FUce(F—-U)))NF) DU, since

k satisfies (4'): k(U)

X—[FUU(F—U)]chX—a(F—U)mF:(X—[U(F—U)]O)sz

=F—(Fnlo(F-0))cF-(FNno(F-T))=F-(F-T)=T,

we then get that k(U) N F =U.

ii) implies i). One need only check that the preceding arguments are essen-
tially reversible; that is, starting with k, which satisfies (1')-(4’), define o by
o(U) =UU(X — [FUKk(F —U))); then o is a Ky-function: It is easily seen
that FNo(U) = U, for each U € 7|F, o(F) = X, o(0) =0, and o(U) C (V)
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whenever U C V. Also, U,V € 7|F and U UV = F implies Tuv = F
(here, interiors refer to 7|F) implies (F — UO) Nn(F — VO) = () if and only if
(F-U)N(F—V)=0implies k(F —U) Nk(F — V) = () implies

UU(X = [FUKF-T)])UVU(X = [FUKF-V)]) =

:(UUV)U(X—[FUk(F—U)]ﬂ[FUk(F—V)])

=FU(X - [FURKF -T)Nk(F-V))])=FU(X -F)=X .
oV

Therefore, o(U) U ) = X whenever UUV = F. Finally, o(U)NF =

Uu(X [FUk:( U)] F) > U;since X — [FUK(F —U)]NF C U, we then
get that o(U) N F = U. We have thus shown that o is a Ky -function, which
completes the proof. ]

Corollary 5. Ky -spaces are collectionwise normal.

Proof: Let (X,7) be a Ky-space and A = {A,| a € A} be a discrete
collection of closed subsets of X. Letting F' = |J.A, we get that each A, € T|F.
Letting k: 7|F — 7 be a function which satisfies conditions (1’) and (3’) of
Theorem 4, we then get that {k(A,)| @ € A} is a pairwise-disjoint collection of
closed subsets of X with each A, C k(A,). This shows that X is collectionwise
normal. m

Appendix

The following result is crucial to our work. It probably is folklore.

Lemma 1. Let F' be a completely normal space, U and V open subsets of
F and f: F —]— 00,1] be a continuous function such that f(F —UUV) C {1}.
Then there exist continuous functions f1, fo, f3: F —]— 00, 1] such that

i) i(F —U)U fo(F = V)U f3(F -UNV) C{l};
ii) inf(f1, f2, f3) < f.

Proof: Let us first consider the case U UV # F. Since F' is completely
normal and U —VN(V-U)=0=(U—-V)NV —U, pick disjoint open U’, V'
such that U =V c U’ and V—-U CcV’'. Let ff = fon U —-V' and f; =1 on
F — U and extend f; to f1: F —]—o00,1]. Let fo = fon V—U" and f, =1
on F —V and extend f2 to fo: F —]—o00,1]. Let fs=fonUNV — (U UV
and fs =1 on F—UNV and extend f3 to f3: F —]— 00,1]. Since UUV =
(U-VHU(V-=U"U[(UNV)—(U'UV")], we immediately get that inf(f1, fa, f3) < f.
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It is now clear that the result is also valid if U N’V = (. Finally, let us show
that it also remains valid if U UV = F: (Wlog, assume U # F # V). Simply
pick open U’, V' such that U c U, V' ¢ V and U UV = F. Let fi = fon
U' and fi =1 on F —U and extend f1 to f1: F —]—o00,1[. Let fo = f on V'
and fo =1 on F —V and extend fs to fo: F —]—o00,1[. Let f3 = 1p. One
immediately gets that inf(f1, fa, f3) < f. »

Remark. Clearly, the preceding result remains valid for f: F — [—1, 0],
f(F=UUV) C{-1} and sup(fi, fo, f3) > f.
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