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A STUDY OF KW -SPACES AND K∗
W -SPACES

Carlos R. Borges

Abstract: Further study of KW -spaces leads to the introduction of K∗
W -spaces.

We obtain a characterization of K∗
W -spaces in terms of continuous real-valued functions

which is dual to a characterization of K0-spaces. We also get two characterizations of

KW -spaces, one of which exhibits their remarkable similarities with K1-spaces; a conse-

quence of the latter characterization is that KW -spaces are collectionwise normal.

Throughout, we will use the terminology of [1].

We introduced the concept of KW -spaces in [1; Definition 10], as follows:
A space (X, τ) is a KW -space provided that, for each closed F ⊂ X, there exists
a function k : τ |F → τ (k is called a KW -function) which satisfies the following:

(1) F ∩ k(U) = U , for each U ∈ τ |F , k(F ) = X and k(∅) = ∅;

(2) k(U) ⊂ k(V ) whenever U ⊂ V ;

(3) k(U) ∪ k(V ) = X whenever U ∪ V = F ;

(4) k(U) ∩ F = U .

Condition (3) naturally leads to one question if it can be replaced by the stronger
condition below, without affecting the concept of a KW -space:

(3∗) k(U) ∪ k(V ) = k(U ∪ V ).

We do not yet know the answer to this question. However, replacing (3) by
(3∗) in the definition of KW -spaces leads to a (possibly new) class of spaces which
we will call K∗

W -spaces, with remarkable properties which are dual to those of
K0-spaces (see Theorem 2 of [1] and compare it with Theorem 2 ahead). It is
noteworthy that a K0-function is a KW -function if and only if it is a K∗

W -function
(this follows from Theorem 12 of [1], and Theorems 2 c) and 3 b) v) ahead).
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Remark. Note that, for each closed subspace F of any space (X, τ) there
exists k : τ |F → τ which satisfies (1), (2) and (3) above: Simply, let k(U) =
U ∪ (X − F ), for U 6= ∅, and k(∅) = ∅.

Proposition 1. Every KW -space is completely normal.

Proof: Let A, B be subsets of a KW -space (X, τ) such that A ∩ B =
∅ = A ∩ B. Let F = A ∪ B and let k : τ |F → τ be a KW -function. Then
B−A = F −A = U ∈ τ |F , B ⊂ U and U ∩A = ∅ (note that a ∈ A implies a /∈ B
which implies that a ∈ X − B ∈ τ , since (X − B) ∩ (B − A) = ∅, a /∈ U). Since
k(U) ∩ F = U , by (4), we get that k(U) ∩ A = ∅; therefore, k(U) and X − k(U)
are disjoint τ -open subsets of X such that B ⊂ k(U) and A ⊂ X − k(U). This
completes the proof.

Theorem 2. For any space X, the following are equivalent:

a) X is a K∗
W -space;

b) X is completely normal and, for each nonempty closed subspace F of X,
there exist extenders φ : C∗

usc(F ) → C∗
usc(X) and ψ : C∗

lsc(F ) → C∗
lsc(X)

such that

i) φ(f) ≤ φ(g), whenever f ≤ g,

ii) φ(f + g) ≥ φ(f) + φ(g),

iii) ψ(f) ≤ ψ(g), whenever f ≤ g,

iv) ψ(f + g) ≤ ψ(f) + ψ(g),

v) φ(f) ≤ ψ(f), whenever f ∈ C∗(F ),

vi) φ(aF ) = aX = ψ(aF ), for a ∈ IR,

vii) ψ(sup(f, g)) = sup(ψ(f), ψ(g)),

viii) φ(inf(f, g)) = inf(φ(f), φ(g)),

ix) φ(f) = −ψ(−f), for each f ∈ C∗(F ),

x) for any {fα|α∈Λ}⊂C
∗(F ),

⋃

α φ(fα)
−1(]−∞,0[)∩F =

⋃

α f
−1
α (]−∞,0[);

c) X is completely normal and, for any nonempty closed F ⊂ X there exists
an extender φ : C∗(F )→ C∗

usc(X) which satisfies i), vi), viii) and x) of b)
for functions in C∗(F ).

Proof: a) implies b). By Proposition 1, X is completely normal. Let
k : τ |F → τ be a K∗

W -function. For each x ∈ X, let

φ(f)(x) = inf
{

t ∈ IR | x ∈ k(f−1(]−∞, t[))
}

,

ψ(g)(x) = sup
{

t ∈ IR | x ∈ k(g−1(]t,∞[))
}

,
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where f ∈ C∗
usc(F ) and g ∈ C∗

lsc(F ). Since k is monotone, we immediately get
that φ and ψ satisfy i) and iii), respectively. Since we also get that

φ(f)−1(]−∞, t[) =
⋃

{

k(f−1(]−∞, s[)) | s < t
}

,

ψ(g)−1(]t,∞[) =
⋃

{

k(f−1(]s,∞[)) | s > t
}

,

we immediately get that φ is a usc-extender and ψ is an lsc-extender. (It is clear
that, for x ∈ F , φ(f)(x) = f(x) and ψ(g)(x) = g(x).)

Next, we show that φ satisfies ii): Pick x∈X and say φ(f)(x)= t1, φ(g)(x)= t2,
with t1 ≤ t2. Let t = t1 + t2 and note that, for any ε > 0,

(f + g)−1(]−∞, t− ε[) ⊂ f−1(]−∞, t1 −
ε
2
[) ∪ g−1(]−∞, t2 −

ε
2
) .

(Pick any z ∈ F such that f(z) + g(z) < t − ε. Note that if f(z) < t1 −
ε
2

then z ∈ f−1(]−∞, t1 −
ε
2
[); if f(z) ≥ t1 −

ε
2
then g(z) < t2 −

ε
2
which implies

that z ∈ g−1(]−∞, t2 −
ε
2
[).) Since φ(f)(x) = t1 and φ(g)(x) = t2, we get that

x /∈ k(f−1(]−∞, t1−
ε
2
[)) and x /∈ k(g−1(]−∞, t2−

ε
2
[)); hence x /∈ k(f−1(]−∞,

t1−
ε
2
[)) ∪ k(g−1(]−∞, t2 −

ε
2
[)) ⊃ k((f + g)−1(]−∞, t − ε[)), by (2) and (3∗),

which implies that φ(f + g)(x) ≥ t = φ(f)(x) + φ(g)(x), as required.
Next, we show that ψ satisfies iv): Pick x ∈ X and say ψ(f)(x) = t1,

ψ(g)(x) = t2, with t1 ≤ t2. Let t = t1 + t2 and note that, for any ε > 0,

(f + g)−1(]t+ ε,∞[) ⊂ f−1(]t1 +
ε
2
,∞[) ∪ g−1(]t2 +

ε
2
,∞[) .

(Pick any z ∈ F such that f(z) + g(z) > t + ε. Note that if f(z) > t1 +
ε
2

then z ∈ f−1(]t1 + ε
2
,∞[); if f(z) ≤ t1 + ε

2
then g(z) > t2 + ε

2
which im-

plies that z ∈ g−1(]t2 + ε
2
,∞[).) Since ψ(f)(x) = t1 and ψ(g)(x) = t2, we

get that x /∈k(f−1(]t1+
ε
2
,∞[)) and x /∈k(g−1(]t2+

ε
2
,∞[)); hence x /∈k(f−1(]t1+

ε
2
,

∞[)) ∪ k(g−1(]t2 +
ε
2
,∞[)) ⊃ k((f + g)−1(]t + ε,∞[)), by (2) and (3∗), which

implies that ψ(f + g)(x) ≤ t = ψ(f)(x) + ψ(g)(x), as required.
In order to show that v) is satisfied, let f ∈ C∗(F ) and say φ(f)(x) = t0. Then

x /∈ k(f−1(]−∞, t[)) for t < t0. Therefore, by conditions (3) for a KW -function,
x ∈ k(f−1(]s,∞[)) for s < t < t0 (because F = f−1(]s,∞[) ∪ f−1(]− ∞, t[));
therefore, ψ(f)(x) ≥ t0 = φ(f)(x).

It is easily seen from the definitions of φ and ψ that they satisfy vi).
Next, we show that ψ satisfies vii): Note that, for f, g ∈ C∗

lsc(F ) and t ∈ IR,

sup(f, g)−1(]t,∞[) = f−1(]t,∞[) ∪ g−1(]t,∞[) .

Pick x ∈ X and let ψ(f)(x) = t1, ψ(g)(x) = t2; say t1 ≤ t2. Then x /∈
k(f−1(]t,∞[)) for t > t1, and x /∈ k(g

−1(]t,∞[)) for t > t2; therefore, by (3∗),

x /∈ k(f−1(]t,∞[)) ∪ k(g−1(]t,∞[)) for t > t2 .
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Therefore, x /∈k(sup(f, g)−1(]t,∞[)) for t>t2, which implies that ψ(sup(f, g))(x)
≤ t2 = sup(ψ(f)(x), ψ(g)(x)). Since ψ(sup(f, g)) ≥ sup(ψ(f), ψ(g)), because of
iii), we get that ψ satisfies vii).

Similarly, one can prove that φ satisfies viii); also, ix) follows immediately
from the definitions of φ and ψ.

Finally, we show that x) is satisfied: Note that

⋃

α

φ(fα)
−1(]−∞, 0[) =

⋃

α

(

⋃

{

k(f−1
α (]−∞, r[)) | r < 0

})

⊂
⋃

α

k(f−1
α (]−∞, 0[))

⊂ k(
⋃

α

f−1
α (]−∞, 0[)).

Hence,

⋃

α

φ(fα)−1(]−∞, 0[) ∩ F ⊂ k(
⋃

α

f−1
α (]−∞, 0[)) ∩ F =

⋃

α

f−1
α (]−∞, 0[) ,

by (4). Since, for A ⊂ X, A ∩ F ⊃ A ∩ F , letting A =
⋃

α φ(fα)
−1(]−∞, 0[), we

then get that

⋃

α

φ(fα)−1(]−∞, 0[) ∩ F =
⋃

α

f−1
α (]−∞, 0[) .

This completes the proof that a) implies b).
Since it is obvious that b) implies c), let us prove that c) implies a). Define

k : τ |F → τ by

k(U) =
⋃

{

φ(f)−1(]−∞, 0[) | f ∈ C∗(F, ]−∞, 1]), f(F − U) ⊂ {1}
}

.

Since φ is a usc-extender and F is a Tychonoff space, one easily gets that k(U) ∈ τ
and k(U) ∩ F = U , for each U ∈ τ |F ; also, k(∅) = ∅ and k(F ) = X, because of
vi).

Next, note that k is monotone: Let U, V ∈ τ |F such that U ⊂ V . Note
that f(F − U) ⊂ {1} implies that f(F − V ) ⊂ {1}, by i), which shows that
k(U) ⊂ k(V ).

Next, we prove that, for each U, V ∈ τ |F , k(U ∪ V ) = k(U) ∪ k(V ); i.e., k
satisfies (3∗): Since k is monotone, we need only prove that k(U ∪ V ) ⊂ k(U) ∪
k(V ). Let x ∈ k(U ∪ V ). Then there exists a function f ∈ C∗(F, ]−∞, 1]) such
that f(F − U ∪ V ) ⊂ {1} and φ(f)(x) < 0. By Lemma 1 in the Appendix, there
exist functions f1, f2, f3 ∈ C∗(F, ]− ∞, 1]) such that f1(F − U) ∪ f2(F − V ) ∪
f3(F − U ∩ V ) ⊂ {1} and inf(f1, f2, f3) ≤ f . Then

0 > φ(f)(x) ≥ φ(inf(f1, f2, f3))(x) = inf(φ(f1)(x), φ(f2)(x), φ(f3)(x)) .
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Note that if φ(f1)(x) < 0 then x ∈ k(U); if φ(f2)(x) < 0 then x ∈ k(V ); if
φ(f3)(x) < 0 then x ∈ k(U ∩ V ) ⊂ k(U) ∪ k(V ). Hence, x ∈ k(U) ∪ k(V ).

Finally, we prove that k(U) ∩ F = U : Let us say that k(U) =
⋃

{φ(fα)
−1

(]−∞, 0[) | α ∈ Λ}. Then, since φ satisfies property x) of b), we get that

µ(U) ∩ F =
⋃

α

φ(fα)−1(]−∞, 0[) ∩ F =
⋃

α

f−1
α (]−∞, 0[) = U .

Hence, k(U) ∩ F = U , which completes the proof that c) implies a).

Theorem 3. For any space X, the following are equivalent:

a) X is a KW -space;

b) X is a normal space and, for each nonempty closed subspace F of X, there
exist extenders φ : C∗

usc(F ) → C∗
usc(X) and ψ : C∗

lsc(F ) → C∗
lsc(X) such

that

i) φ(f) ≤ φ(g) whenever f ≤ g,

ii) ψ(f) ≤ ψ(g) whenever f ≤ g,

iii) φ(aF ) = aX = ψ(aF ), for each a ∈ IR,

iv) φ(f) ≤ ψ(f) whenever f ∈ C∗(F ),

v) For any subset {fα | α ∈ Λ} of C∗(F ) and a ∈ IR,

⋃

α

φ(fα)−1(]−∞, a[) ∩ F =
⋃

α

f−1
α (]−∞, a[) ,

⋃

α

ψ(fα)−1(]a,∞[) ∩ F =
⋃

α

f−1
α (]a,∞[) .

c) X is normal and, for any nonempty closed F ⊂ X, there exist extenders
φ : C∗(F ) → C∗

usc(X) and ψ : C∗(F ) → C∗
lsc(X) which satisfy iii), iv) and

v) of b) for functions in C∗(F ).

Proof: a) implies b). This is essentially Proposition 11 of [1]. (The proof
of condition v) in Proposition 11 of [1] can obviously be adapted to the more
general condition v) of this result.)

Clearly, b) implies c).

c) implies a). (The proof of Theorem 4.1 in [2] surely helped us in devising this
argument.) Let F be a nonempty closed subspace of (X, τ). For each U ∈ τ |F ,
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let

µ(U) =
⋃

{

φ(f)−1(]−∞, 1[) | f ∈ C(F, [−2, 2]), f(F − U) ⊂ {2}
}

,

ν(U) =
⋃

{

ψ(f)−1(]− 1,∞[) | f ∈ C(F, [−2, 2]), f(F − U) ⊂ {−2}
}

,

k(U) = µ(U) ∪ ν(U) .

If U ∈ τ |F and z ∈ U , then there exists f ∈ C(F, [−2, 2]) such that f(z) = −2
and f(F − U) ⊂ {2} (because X is Tychonoff). Since φ is an extender, we get
that U ∩ µ(U) = U ; similarly, U ∩ ν(U) = U . Hence, F ∩ k(U) = U , for each
U ∈ τ |F . Clearly, k(F ) = X and k(∅) = ∅, because of iii).

It is easily seen that k(U) ⊂ k(V ) whenever U ⊂ V (indeed, µ(U) ⊂ µ(V )
and ν(U) ⊂ ν(V )).

Next, we prove that if U ∪ V = F then k(U) ∪ k(V ) = X (Wlog, let us
assume that U 6= F 6= V ). Let x ∈ X and suppose that x /∈ µ(U). Then, for
each f ∈ C(F, [−2, 2]) such that f(F − U) = 2, we get that φ(f)(x) ≥ 1. Pick
h ∈ C(F, [−2, 2]) such that h(F − V ) = −2 and h(F − U) = 2 (this can be done
because F is normal). It follows that ψ(h)(x) ≥ φ(h)(x) ≥ 1, which implies that
x ∈ ν(V ). Similarly, if x /∈ µ(V ) then x ∈ ν(U). Consequently, we get that
x ∈ k(U) ∪ k(V ), as required.

Finally, we prove that, for each U ∈ τ |F , k(U) ∩ F = U , by proving that
µ(U) ∩ F = U = ν(U) ∩ F (we will prove the first equality and note that the
second equality can be similarly proved): Let us assume that µ(U) =

⋃

{φ(fα)
−1

(]−∞, 1[) | α ∈ Λ}. Since φ satisfies condition v) of b), we get that

µ(U) ∩ F =
⋃

α

φ(fα)−1(]−∞, 1[) ∩ F =
⋃

α

f−1
α (]−∞, 1[) = U .

This completes the proof.

Theorem 4. For a space (X, τ), the following are equivalent:

i) X is a KW -space;

ii) For each closed subspace F of X there exists a function k : τ |F → τ such
that

(1′) F ∩ k(U) = U , for each U ∈ τ |F , k(F ) = X, k(∅) = ∅,

(2′) k(U) ⊂ k(V ) whenever U ⊂ V ,

(3′) U, V ∈ τ |F , U ∩ V = ∅ implies k(U) ∩ k(V ) = ∅,

(4′) k(U) ∩ F = U .
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Proof: i) implies ii). Let σ: τ |F→τ be a KW -function and define k: τ |F→τ

by k(U) = U ∪ (X − [F ∪ σ(F − U)]). (Note that

k(U) = U ∪
(

(X − F ) ∩ (X − σ(F − U))
)

=
(

U ∪ (X − F )
)

∩
(

U ∪ [X − σ(F − U)]
)

and X − σ(F − U) ⊃ U because, by (4),

(

X − σ(F − U)
)

∩ F = F −
(

σ(F − U) ∩ F
)

= F − F − U ⊃ U .

Hence, we do get that k(U) ∈ τ .)
From the definition of k we immediately get that k satisfies (1′).

k satisfies (2′): U ⊂ V implies U ⊂ V implies F − V ⊂ F − U implies

σ(F − V ) ⊂ σ(F − U) implies k(U) ⊂ k(V ).

k satisfies (3′): U ∩V = ∅ implies (F −U)∪ (F −V ) = F implies σ(F −U)∪
σ(F − V ) = X implies

X − [F ∪ σ(F − U)] ∩X − [F ∪ σ(F − V )] =

= X − [F ∪ σ(F − U)]0 ∩X − [F ∪ σ(F − V )]0

= X −
(

[F ∪ σ(F − U)]0 ∪ [F ∪ σ(F − V )]0
)

⊂

⊂ X −
(

σ(F − U)0 ∪ σ(F − V )0
)

⊂ X −
(

σ(F − U) ∪ σ(F − V )
)

= ∅ .

Also, U ∩V = ∅ implies U ⊂ F −V implies U ⊂ σ(F −V ) implies U ⊂ σ(F − V )0

implies U ∩ (X− [F ∪σ(F − V )]0) = ∅; similarly, V ∩ (X− [F ∪σ(F − U)]0) = ∅.
Consequently, k(U) ∩ k(V ) = ∅.

k satisfies (4′): k(U) ∩ F = U ∪ ((X − [F ∪ σ(F − U)]) ∩ F ) ⊃ U ; since

X − [F ∪ σ(F − U)] ∩ F ⊂ X − σ(F − U) ∩ F =
(

X − [σ(F − U)]0
)

∩ F =

= F −
(

F ∩ [σ(F − U)]0
)

⊂ F −
(

F ∩ σ(F − U)
)

= F − (F − U) = U ,

we then get that k(U) ∩ F = U .

ii) implies i). One need only check that the preceding arguments are essen-
tially reversible; that is, starting with k, which satisfies (1′)–(4′), define σ by

σ(U) = U ∪ (X − [F ∪ k(F − U)]); then σ is a KW -function: It is easily seen
that F ∩ σ(U) = U , for each U ∈ τ |F , σ(F ) = X, σ(∅) = ∅, and σ(U) ⊂ σ(V )
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whenever U ⊂ V . Also, U, V ∈ τ |F and U ∪ V = F implies U
0
∪ V

0
= F

(here, interiors refer to τ |F ) implies (F − U
0
) ∩ (F − V

0
) = ∅ if and only if

(F − U) ∩ (F − V ) = ∅ implies k(F − U) ∩ k(F − V ) = ∅ implies

U ∪
(

X − [F ∪ k(F − U)]
)

∪ V ∪
(

X − [F ∪ k(F − V )]
)

=

= (U ∪ V ) ∪
(

X − [F ∪ k(F − U)] ∩ [F ∪ k(F − V )]
)

= F ∪
(

X − [F ∪ (k(F − U) ∩ k(F − V ))]
)

= F ∪ (X − F ) = X .

Therefore, σ(U) ∪ σ(V ) = X whenever U ∪ V = F . Finally, σ(U) ∩ F =

U ∪ (X − [F ∪ k(F − U)] ∩ F ) ⊃ U ; since X − [F ∪ k(F − U)] ∩ F ⊂ U , we then
get that σ(U) ∩ F = U . We have thus shown that σ is a KW -function, which
completes the proof.

Corollary 5. KW -spaces are collectionwise normal.

Proof: Let (X, τ) be a KW -space and A = {Aα | α ∈ Λ} be a discrete
collection of closed subsets of X. Letting F =

⋃

A, we get that each Aα ∈ τ |F .
Letting k : τ |F → τ be a function which satisfies conditions (1′) and (3′) of
Theorem 4, we then get that {k(Aα) | α ∈ Λ} is a pairwise-disjoint collection of
closed subsets of X with each Aα ⊂ k(Aα). This shows that X is collectionwise
normal.

Appendix

The following result is crucial to our work. It probably is folklore.

Lemma 1. Let F be a completely normal space, U and V open subsets of
F and f : F → ]−∞, 1] be a continuous function such that f(F −U ∪ V ) ⊂ {1}.
Then there exist continuous functions f1, f2, f3 : F → ]−∞, 1] such that

i) f1(F − U) ∪ f2(F − V ) ∪ f3(F − U ∩ V ) ⊂ {1};

ii) inf(f1, f2, f3) ≤ f .

Proof: Let us first consider the case U ∪ V 6= F . Since F is completely
normal and U − V ∩ (V − U) = ∅ = (U − V ) ∩ V − U , pick disjoint open U ′, V ′

such that U − V ⊂ U ′ and V − U ⊂ V ′. Let f1 = f on U − V ′ and f1 = 1 on
F − U and extend f1 to f1 : F → ]−∞, 1]. Let f2 = f on V − U ′ and f2 = 1
on F − V and extend f2 to f2 : F → ]−∞, 1]. Let f3 = f on U ∩ V − (U ′ ∪ V ′)
and f3 = 1 on F − U ∩ V and extend f3 to f3 : F → ]−∞, 1]. Since U ∪ V =
(U−V ′)∪(V−U ′)∪[(U∩V )−(U ′∪V ′)], we immediately get that inf(f1, f2, f3) ≤ f .
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It is now clear that the result is also valid if U ∩ V = ∅. Finally, let us show
that it also remains valid if U ∪ V = F : (Wlog, assume U 6= F 6= V ). Simply
pick open U ′, V ′ such that U

′
⊂ U , V

′
⊂ V and U

′
∪ V

′
= F . Let f1 = f on

U ′ and f1 = 1 on F − U and extend f1 to f1 : F → ]−∞, 1[. Let f2 = f on V ′

and f2 = 1 on F − V and extend f2 to f2 : F → ]−∞, 1[. Let f3 = 1F . One
immediately gets that inf(f1, f2, f3) ≤ f .

Remark. Clearly, the preceding result remains valid for f : F → [−1,∞[,
f(F − U ∪ V ) ⊂ {−1} and sup(f1, f2, f3) ≥ f .

REFERENCES

[1] Borges, C.R. – Extension properties of Ki-spaces, Q & A in General Topology, 7
(1989), 81–97.

[2] Douwen, E.K. van – Simultaneous extensions of continuous functions, Ph. D.
Thesis, Academische Pers-Amsterdam, 1975.

Carlos R. Borges,

Dep. of Mathematics, University of California,

Davis, California 95616-8633 – U.S.A.


