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A SUBDIRECTLY IRREDUCIBLE SYMMETRIC
HEYTING ALGEBRA WHICH IS NOT SIMPLE

A. Galli and M. Sagastume

Abstract: The aim of this paper is to provide a negative answer to the question

of whether every subdirectly irreducible symmetric Heyting algebra (that is a Heyting

algebra with a De Morgan negation) is simple or not.

Introduction

An algebra 〈A,∨,∧,→,′ , 0, 1〉 is a symmetric Heyting algebra (briefly: sym-
metric algebra) if 〈A,∨,∧,→, 0, 1〉 is a Heyting algebra and 〈A,∨,∧,′ , 0, 1〉 is a De
Morgan algebra. If a Heyting algebra 〈A,∨,∧,→, 0, 1〉 is also a dual Heyting al-
gebra (that is, if the dual of A is also a Heyting algebra) then 〈A,∨,∧,→,←, 0, 1〉
is a double Heyting algebra, ← denoting the dual implication.

For each symmetric algebra A, B(A) denotes the center of A (the subalgebra
of all complemented elements of A) and K(A) the subalgebra of B(A) formed
by the elements k such that the De Morgan negation, k′, coincides with the
complement k of k. We denote x∗ = x → 0 (the pseudocomplement of x). We
define inductively the operator ν by:

ν0(x) = x , νn+1(x) = (νn(x))′∗ .

Also, it can be defined ([8])

t0(x) = x , tn+1(x) = tn(x) ∧ νn+1(x) .

We can express B(A) and K(A) in terms of ν by:

B(A) =
{

x ∈ A : ν2(x) = x
}

,

K(A) =
{

x ∈ A : ν(x) = x
}

.
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It is well known that congruences of double Heyting algebras are in
1–1-correspondence with normal filters ([5]). Analogously ([6]), congruences of
symmetric algebras are in 1–1-correspondence with homomorphism kernels and
this correspondence preserves order. This enables us to study properties (sim-
plicity, reducibility, etc.) by means of kernels instead of congruences. We will
use the following characterization of a kernel ([6], Ch. III, §4, 4.11): a filter F is
a kernel if and only if ν(F ) ⊂ F . Given a subset X of A, the kernel generated
by X, N(X), is the set N(X) = {y ∈ A : y ≥ y1 ∧ ... ∧ yk, yi = tpi

(xi), with
xi ∈ X} ([8]). It is easy to see that a principal kernel N(x) is the principal filter
generated by x if and only if x ∈ K(A).

In [6], Ch. III, §7, Theorem 7.1, Monteiro shows that every finite symmet-
ric Heyting algebra is semisimple. (This property does not hold for every vari-
ety. For instance, there are finite Heyting algebras that are not semisimple). In
some varieties every algebra (finite and infinite) is semisimple. This is the case
for monadic boolean algebras, which are the algebraic counterpart of first-order
monadic functional calculus. Therefore, Monteiro poses the problem of whether
infinite symmetric Heyting algebras are also semisimple.

The purpose of this paper is to exhibit an example of symmetric Heyting
algebra that is not semisimple. Indeed, in Theorem 2.6 P+ is a subdirectly
irreducible symmetric algebra that is not simple.

In [5] Köhler gives a construction of a double Heyting algebra L1 ∗ϕ L2 where
L1, L2 are double Heyting algebras and ϕ is a bounded (∗, 1)-homomorphism. By
taking L1 = L2 = 2N and some ϕ he finds an example of subdirectly irreducible
double Heyting algebra that is not simple. In 2.7 we present a much simpler
example obtained by completely different methods of construction and proof.
However, it is isomorphic to Köhler’s example. In fact, it suffices to take Z
instead of IN in L1 and L2.

1 – Let P be a partially ordered set (briefly: a poset) and P+ the class of all
increasing or hereditary subsets of P (subsets C such that x ∈ C, y ≥ x implies
y ∈ C). It is easy to see that P+ is a complete sublattice of 2P . P+ is indeed a
Heyting algebra whose elements are interpretations of sentences of intuitionistic
logic in the “Kripke semantics” ([4], Ch. 8, 8.4). The implication can be expressed
by A → B = (A ∩ Bc]c (A,B ∈ P+); here c denotes set complementation and
(X] = {y ∈ P : y ≤ x, for some x ∈ X}. The dual implication can be defined by:
A← B = [Ac ∪B). Thus, P+ has a structure of double Heyting algebra.

Let R(P+) = {C ∈ P+ : C∗∗ = C} (the set of regular elements). Then R(P+)
is a Boolean algebra that is complete (see [1], VIII, 4, Theorem 4).

Consider the following condition in P .
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(M) For every q there is a maximal element p such that q ≤ p.

In the rest of the section we assume that (M) holds.

1.1 Lemma. If A ∈ R(P+), A 6= P , then there is a maximal element p such
that p /∈ A.

For a maximal p we will write in the following p∗ instead of {p}∗ and (p]
instead of ({p}].

1.2 Proposition. If p is a maximal element of P then p∗ is a coatom of

R(P+). Conversely, for every coatom C of R(P+) there is a maximal p such that

p∗ = C.

Proof: If A is a regular element of P+ that contains p∗, then A contains
every maximal q for q 6= p. Moreover, if some r belongs to A − p∗, then by (M)
we have that r ≤ p. So, A contains every maximal, that is, by 1.1, A = P .

On the other hand, let C be a coatom of R(P+). Therefore, by 1.1, there
exists a maximal p such that p /∈ C. Since C is increasing, (p] ⊂ Cc, which
implies p∗ ⊃ C. Thus p∗ = C.

1.3 Proposition. R(P+) is atomic.

Proof: It suffices to prove ([1], III, 1) that O is the infimum of the set of all
coatoms. Indeed, the intersection of all p∗ with p maximal do not contain any
maximal.

1.4 Corollary. For every A ∈ R(P+): A =
⋂

p∗, the intersection over all

maximal element p such that p /∈ A.

If there exists an anti-isomorphism g of P onto P such that g2 = idP , then
P+ admits a De Morgan negation given by: A′ = (g(A))c. In fact, ′ (the Birula–
Rasiowa operator, [7]) is a De Morgan operator in 2P ([6], Ch. II, 1) that is closed
in P+. So, 〈P+,∩,∪,→,′ , ∅, P 〉 is a symmetric Heyting algebra. We assume the
existence of g in the rest of the section.

1.5 Definition. For p and q maximal elements of P and n ≥ 1 we define:
p ==n== q iff there exist r0, r1, ..., rn, such that r1, r3, ..., r2k+1, ... are minimal
elements and r0, r2, r4, ..., r2k, ... maximal elements of P , r0 = q, r0≥ r1, r1 ≤ r2,
r2 ≥ r3, ..., and rn−1 comparable with gn(p).

We note some properties of ==n== whose proofs are straightforward:

1) ==n== is symmetric for all n.
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2) p ==1== q iff q ≥ g(p).

3) p ==2== p.

4) p ==n== q and q ==m== r imply p ==n+m== r.

1.6 Lemma. Let p be a maximal element of P , n ≥ 1. Then: νn(p∗) =
⋂

t∗,
the intersection being over all t ==n== p.

Proof: By induction; 1.4 implies that ν(p∗) =
⋂

{t∗ : t /∈ ν(p∗)}. By using
the fact that t is a maximal element and the definitions of ∗ and ′ we can see
that t /∈ ν(p∗) if and only if t ≥ g(p). If we suppose that the equality holds for
k = n− 1, then property 4) of 1.5 implies that it also holds for k = n.

2 – The aim of this section is to provide an example of subdirectly irreducible
symmetric Heyting algebra that is not simple. The same algebra, considered as
a double Heyting algebra, is also subdirectly irreducible but not simple.

Let P be the poset whose underlying set is {pk : k ∈ Z} ∪ {qi : i ∈ Z} and
whose order relation is given by the following diagram:

r r r r r r r

r r r r r r r

A
A
A
AA

A
A
A
AA

A
A
A
AA

A
A
A
AA

A
A
A
AA

A
A
A
AA¢

¢
¢
¢¢

¢
¢
¢
¢¢

¢
¢
¢
¢¢

¢
¢
¢
¢¢

¢
¢
¢
¢¢

¢
¢
¢
¢¢

p−2 p−1 p0 p1 p2

q−3 q−2 q−1 q0 q1 q2

Then, P satisfies condition (M) of §1.

Let g : P → P be defined by g(p0) = q0, g(pk) = q−k. We characterize the
elements of P+ in the following lemma.

2.1 Lemma. Let Xi = {qi}
c, for i ∈ Z. Then C ∈ P+ if and only if

C =
⋂

i∈I Xi ∩
⋂

k∈K p∗k, where I = {i ∈ Z : qi /∈ C}, K = {k ∈ Z : pk /∈ C}.

Let IF be the set of all C ∈ P+ whose complement Cc is finite.

2.2 Lemma. IF is a filter that contains Xj , ν(Xj) and ν2(Xj) for every

integer j.

Proof: It is obvious that IF is a filter and that Xj ∈ IF. Moreover: X ′
j =

{p−j}, so ν(Xj) = p∗−j which belongs to IF. By 1.6, ν2(Xj) =
⋂

pk≥qj
p∗k =

p∗j ∩ p∗j+1, which also belongs to IF.

2.3 Proposition. IF is a non trivial kernel of P+.
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Proof: Let C ∈ IF. By Lemmas 2.1 and 2.2, C =
⋂

i∈I Xi ∩
⋂

k∈K ν(X−k),
with I and K finite. So ν(C) =

⋂

i∈I ν(Xi) ∩
⋂

k∈K ν2(X−k) belongs to IF.

2.4 Lemma. For every j, k, i there is an r > 0 such that pk /∈ ν2r(Xj),
qi /∈ ν2r(Xj).

Proof: Let r be such that j − r + 1 < k < j + r. By 1.6 it is easy to see
that ν2r(Xj) =

⋂j+r
h=j−r+1 ph. So, pk /∈ ν2r(Xj). We can choose r such that we

also have pi /∈ ν2r(Xj). Then qi /∈ ν2r(Xj) because ν2r(Xj) is increasing.

2.5 Proposition. IF is contained in every non-trivial kernel G of P+.

Proof: Let G be a non-trivial kernel. Then, there is some j such that
Xj ∈ G. Let C ∈ IF, K and I as in 2.1. Let k be the maximum of the set
{|t| : t ∈ K}, i the maximum of the set {|s| : s ∈ I}. Then, by 2.4, there exists
an r > 0 such that ν2r(Xj) do not contain any pt with |t| ≤ k and any qs with
|s| ≤ i. Therefore ν2r(Xj) ⊂ C which implies that C ∈ G.

2.6 Theorem. P+ is a subdirectly irreducible symmetric algebra which is

not simple.

In the following remark we denote by D− the dual pseudocomplement of D.

2.7 Remark. P+ is a subdirectly irreducible double Heyting algebra which
is not simple.

Indeed: Let IF be as in 3.1. Let C ∈ IF. Then C−∗ = ([Cc)]c and trivially
(C−∗)c is finite. So, IF is a non-trivial normal filter. Let G be a non-trivial
normal filter, Xj ∈ G. It is easy to see that (Xj)

−∗ = p∗j ∩ p∗j+1. Since (p∗i )
−∗ =

p∗i−1 ∩ p∗i ∩ p∗i+1, we have: X
(−∗)n

j =
⋂j+n

i=j−n+1 p
∗
i . The sequence {X

(−∗)n

j } is
decreasing. So, it is clear that for any C ∈ IF there is an n > 0 such that

C ⊃ X
(−∗)n

j . Thus, IF is a minimum normal filter.

In this sense, it is interesting to note the following fact. Consider the construc-
tion of the double Heyting algebra L1 ∗ϕ L2 given in [5], where L1, L2 are double
Heyting algebras and ϕ is a bounded (∗, 1)-homomorphism. Let L1 = L2 = 2Z

and ϕ be defined by ϕ(X) = X ∩ X + 1. Then 2Z ∗ϕ 2Z is isomorphic to the
double Heyting algebra P+. The isomorphism is given by α(C) = (X,Y ), with
X = {k ∈ Z : pk ∈ C}, Y = {k ∈ Z : qk−1 ∈ C}, for C ∈ P+. It is clear that α−1

is defined by α−1(X,Y ) =
⋃

k∈Y {pk−1, qk−1, pk} ∪
⋃

r∈X{pr}.
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