EQUATIONS LINÉAIRES DANS LES ANNEAUX NILPOTENTS AU SENS DE LIE

GÉRARD ENDIMIONI

Abstract: Linear equations in Lie nilpotent rings. Let A be a ring and let $(\mathcal{L}_n(A))_{n\geq 1}$ be the family of two-sided ideals defined by $\mathcal{L}_1(A)=A$ and $\mathcal{L}_n(A)=A[\mathcal{L}_{n-1}(A),A]$ with [x,y]=xy-yx. Assume that $\bigcap_{n\geq 1}\mathcal{L}_n(A)=0$. In the usual way, we regard the family $(\mathcal{L}_n(A))_{n\geq 1}$ as a fondamental system of neighbourhoods of 0 for a separated topology such that A is a topological ring. Let $\widehat{A}=\lim_{k \to \infty}(A/\mathcal{L}_n(A))$ the completion of A. If $a_1,\dots,a_k,b_1,\dots,b_k\in A$, we prove that the linear equation $a_1xb_1+\dots+a_kxb_k=c$ is soluble in \widehat{A} for all $c\in \widehat{A}$ if and only if $a_1b_1+\dots+a_kb_k$ is invertible in \widehat{A} . Moreover, solution is unique and is given by the limit of a certain sequence. If A is strongly Lie nilpotent (i.e. $\mathcal{L}_n(A)=0$ for some n), we can take $\widehat{A}=A$ in the previous result. We give an application to linear equations in an arbitrary ring. In particular, we prove that in a ring A, if $a_1b_1+\dots+a_kb_k$ is invertible, then all the solutions of the equation $a_1xb_1+\dots+a_kxb_k=0$ are in $\bigcap_{n\geq 1} \mathcal{L}_n(A)=0$, where $\mathcal{L}_n(A)$ is the two-sided ideal generated by elements of the form $[x_1,\dots,x_n]$.

1 - Introduction

Dans tout cet article, A désigne un anneau ayant un élément unité. Le commutateur de deux éléments x et y de A est défini par [x,y]=xy-yx. Plus généralement, on définit $[x_1,...,x_n]$ par $[x_1,...,x_n]=[[x_1,...,x_{n-1}],x_n]$. Si n est un entier supérieur ou égal à 1, nous noterons $\lambda_n(A)$ (resp. $L_n(A)$) le sous-groupe additif (resp. l'idéal bilatère) de A engendré par les éléments de la forme $[x_1,...,x_n]$ $(x_1,...,x_n \in A)$. En d'autres termes, $\lambda_n(A)$ est le n-ième terme de la suite centrale descendante de la \mathbb{Z} -algèbre de Lie associée à A. La suite $(\mathcal{L}_n(A))_{n\geq 1}$ d'idéaux de A est définie par $\mathcal{L}_1(A) = A$ et $\mathcal{L}_n(A) = A[\mathcal{L}_{n-1}(A), A]$ pour n > 1 (plus précisément, $\mathcal{L}_n(A)$ est l'idéal bilatère de A engendré par les éléments de

Received: December 10, 1993.

la forme [x, y], où $x \in \mathcal{L}_{n-1}(A)$ et $y \in A$). Il est clair que l'on a les inclusions $\lambda_n(A) \subseteq L_n(A) \subseteq \mathcal{L}_n(A)$. S'il existe un entier $n \geq 1$ tel que $\lambda_n(A) = 0$ (i.e. si la **Z**-algèbre de Lie associée à A est nilpotente), nous dirons que A est nilpotent au sens de Lie, ou plus rapidement que A est L-nilpotent. S'il existe un entier $n \geq 1$ tel que $\mathcal{L}_n(A) = 0$, nous dirons que A est fortement L-nilpotent. Enfin, si B est un sous-ensemble de A et s'il existe un entier $n \geq 1$ tel que chaque produit de n éléments de B soit nul, on dit que B est nilpotent. Les suites $(\lambda_n(A))_{n\geq 1}$ et $(\mathcal{L}_n(A))_{n\geq 1}$ ont souvent été étudiées, en particulier dans le cadre des algèbres de groupes (on pourra par exemple consulter [5, Chap. V] ou [4]).

2 - Principaux résultats

Nous montrerons d'abord les résultats suivants, qui précisent les liens entre les différentes notions de nilpotence:

Théorème 1. Si A est un anneau, les conditions suivantes sont équivalentes:

- i) A est fortement L-nilpotent.
- ii) A est L-nilpotent et $\lambda_2(A)$ est nilpotent.

Théorème 2. Si A est un anneau engendré par un nombre fini d'éléments, les conditions suivantes sont équivalentes:

- i) A est fortement L-nilpotent.
- ii) A est L-nilpotent.

Le théorème précédent ne peut pas s'étendre à un anneau quelconque: il est construit dans [1] un anneau tel que $\mathcal{L}_n(A) \not\subseteq L_3(A)$ pour tout entier $n \geq 1$. L'anneau quotient $A/L_3(A)$ est donc L-nilpotent sans être fortement L-nilpotent.

Dans les anneaux vérifiant certaines conditions de nilpotence, nous nous proposons d'étudier la résolution d'une équation linéaire de la forme $\sum_{i=1}^k a_i x b_i = c$. Il est commode d'exprimer les résultats obtenus en termes topologiques. Le procédé qui permet d'associer à une famille d'idéaux une topologie compatible avec les opérations de l'anneau est bien connu. Soit A un anneau tel que $\bigcap_{n\geq 1} \mathcal{L}_n(A) = 0$ (i.e. A est résiduellement fortement L-nilpotent). La famille d'idéaux $(\mathcal{L}_n(A))_{n\geq 1}$ peut être considérée comme un système fondamental de voisinages de 0 pour une topologie faisant de A un anneau topologique séparé. La limite projective $\widehat{A} = \lim_{\longleftarrow} (A/\mathcal{L}_n(A))$ s'interprète comme l'anneau complété de A pour cette topologie. En particulier, nous identifierons A avec son image par l'injection canonique de A dans \widehat{A} .

Théorème 3. Soient A un anneau tel que $\bigcap_{n\geq 1} \mathcal{L}_n(A) = 0$ et \widehat{A} le complété de A pour la topologie associée à la famille d'idéaux $(\mathcal{L}_n(A))_{n\geq 1}$. Si $a_1, ..., a_k, b_1, ..., b_k$ sont des éléments fixés de A, on pose $\varphi(x) = \sum_{i=1}^k a_i x b_i$ pour tout $x \in \widehat{A}$. Alors, les conditions suivantes sont équivalentes:

- i) $\varphi(1)$ est inversible dans \widehat{A} .
- ii) Pour tout $c \in \widehat{A}$, l'équation $\varphi(x) = c$ possède exactement une solution dans \widehat{A} .
- iii) Pour tout $c \in \widehat{A}$, l'équation $\varphi(x) = c$ possède au moins une solution dans \widehat{A} .

De plus, si une de ces conditions est satisfaite, la suite $(x_n)_{n\geq 1}$ définie par son premier terme x_1 (choisi arbitrairement dans \widehat{A}) et la relation de récurrence $x_n = x_{n-1} + \varphi(1)^{-1}(c - \varphi(x_{n-1}))$ (où c est un élément fixé de \widehat{A}) est convergente, de limite égale à la solution de l'équation $\varphi(x) = c$.

En fait, ce théorème est vrai si plus généralement $a_1, ..., a_k, b_1, ..., b_k$ sont des éléments de \widehat{A} . De plus, dans l'hypothèse i), on peut se contenter de supposer que $\varphi(1)$ est inversible à droite (ou à gauche) dans \widehat{A} (Proposition 2).

Dans le cas particulier d'un anneau fortement L-nilpotent, la famille d'idéaux $(\mathcal{L}_n(A))_{n\geq 1}$ induit sur A la toplogie discrète et l'on a $\widehat{A}=A$. Le théorème précédent s'écrit donc sous la forme suivante:

Corollaire 1. Soit A un anneau fortement L-nilpotent. Alors, si φ est l'application de A dans A définie par $\varphi(x) = \sum_{i=1}^k a_i \, x \, b_i$ (où $a_1, ..., a_k, b_1, ..., b_k$ sont des éléments fixés de A), les conditions suivantes sont équivalentes:

- i) $\varphi(1)$ est un élément inversible de A.
- ii) Pour tout $c \in A$, l'équation $\varphi(x) = c$ possède exactement une solution dans A (i.e. φ est bijective).
- iii) Pour tout $c \in A$, l'équation $\varphi(x) = c$ possède au moins une solution dans A (i.e. φ est surjective).

De plus, si une de ces conditions est satisfaite, la suite $(x_n)_{n\geq 1}$ définie par son premier terme x_1 (choisi arbitrairement dans A) et la relation de récurrence $x_n = x_{n-1} + \varphi(1)^{-1}(c - \varphi(x_{n-1}))$ (où c est un élément fixé de A) est constante à partir d'un certain rang, cette constante étant égale à la solution de l'équation $\varphi(x) = c$.

Corollaire 2. Soient A un anneau L-nilpotent et φ l'application définie dans le corollaire précédent. Alors, si $\varphi(1)$ est inversible, l'équation $\varphi(x) = c$ possède exactement une solution dans A pour tout $c \in A$.

En effet, sous les hypothèses de ce corollaire, le sous-anneau de A engendré par $a_1, ..., a_k, b_1, ..., b_k, c, \varphi(1)^{-1}$ est fortement L-nilpotent (Théorème 2). Le Corollaire 1 appliqué à ce sous-anneau et à l'application induite par φ montre l'existence d'une solution pour l'équation $\varphi(x) = c$. De même, si x' et x'' sont des solutions de cette équation, on montre que x' = x'' en appliquant le Corollaire 1 au sous-anneau engendré par $a_1, ..., a_k, b_1, ..., b_k, \varphi(1)^{-1}, x', x''$.

Le corollaire précédent ne s'étend pas à un anneau quelconque (ou même résoluble pour sa structure de **Z**-algèbre de Lie). Par exemple, dans l'anneau A des matrices triangulaires supérieures d'ordre 2 à coefficients dans un anneau non nul, posons $a=\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, b=\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ et $c=\begin{pmatrix} \alpha & \gamma \\ 0 & \beta \end{pmatrix}$. La matrice a+b est inversible mais l'équation ax+xb=c possède plus d'une solution dans A si $\gamma=0$, et aucune si $\gamma\neq 0$.

Dans le cas d'un anneau A quelconque, on peut appliquer le Corollaire 2 à l'anneau quotient $A/L_n(A)$. Il vient:

Corollaire 3. Soient $a_1, ..., a_k, b_1, ..., b_k$ des éléments fixés d'un anneau A tels que $\sum_{i=1}^k a_i b_i$ soit inversible. Alors, si $x', x'' \in A$ sont deux solutions de l'équation $\sum_{i=1}^k a_i x b_i = c$ $(c \in A)$, on a $x' \equiv x'' \mod \bigcap_{n \geq 1} L_n(A)$. En particulier, l'ensemble des solutions de l'équation $\sum_{i=1}^k a_i x b_i = 0$ est inclus dans $\bigcap_{n>1} L_n(A)$.

Si $\sum_{i=1}^k a_i b_i$ n'est pas inversible, une telle propriété n'est pas nécessairement vraie: prenons à nouveau A égal à l'anneau des matrices triangulaires supérieures d'ordre 2 à coefficients dans un anneau non nul. Il est facile de voir que $\bigcap_{n\geq 1} L_n(A)$ est constitué des matrices de A dont les éléments de la diagonale sont nuls. Si $a=\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, l'ensemble des solutions dans A de l'équation ax=0 est égal à l'ensemble des matrices de A dont la deuxième ligne est nulle. Il n'est donc pas inclus dans $\bigcap_{n>1} L_n(A)$.

3 – Anneaux fortement *L*-nilpotents

Si $p \ge 1$ est un entier, nous appellerons commutateur de poids p tout élément $x \in A$ pouvant s'écrire sous la forme $x = [x_1, ..., x_p]$ $(x_1, ..., x_p \in A)$. En particulier, les commutateurs de poids 1 sont les éléments de A.

Proposition 1. Soit A un anneau. Alors, pour tout entier $n \geq 1$, $\mathcal{L}_n(A)$ est égal à l'ensemble des sommes d'éléments de la forme $x_1 \cdots x_r$ $(r \geq 1)$, où $x_1, ..., x_r$ sont des commutateurs de poids respectifs $p_1, ..., p_r$, avec $p_1 + ... + p_r = n + r - 1$.

Démonstration: Soit A_n l'ensemble des sommes d'éléments de la forme $x_1 \cdots x_r$ $(r \ge 1, x_i$ de poids $p_i, p_1 + \ldots + p_r = n + r - 1)$. Nous allons montrer l'égalité $\mathcal{L}_n(A) = A_n$ à l'aide d'une récurrence sur n. Le cas n = 1 étant immédiat, supposons cette égalité vérifiée jusqu'au rang n - 1 (n > 1). Pour établir l'inclusion $\mathcal{L}_n(A) \subseteq A_n$, il suffit de montrer que $z[y_1 \cdots y_r, y] \in A_n$ pour tout $y, z \in A$ et pour tout commutateur y_i de poids p_i (avec $p_1 + \ldots + p_r = (n-1) + r - 1$). Or, on a la relation

$$z[y_1 \cdots y_r, y] = \sum_{i=1}^r z \, y_1 \cdots y_{i-1}[y_i, y] \, y_{i+1} \cdots y_r .$$

L'égalité $1 + p_1 + ... + p_{i-1} + (p_i + 1) + p_{i+1} + ... + p_r = n + (r+1) - 1$ prouve alors que $z[y_1 \cdots y_r, y] \in A_n$, donc $\mathcal{L}_n(A) \subseteq A_n$.

Pour établir l'inclusion $A_n \subseteq \mathcal{L}_n(A)$, considérons un élément de la forme $x = x_1 \cdots x_r$ $(r \ge 1, x_i$ de poids $p_i, p_1 + \ldots + p_r = n + r - 1)$ et montrons que $x \in \mathcal{L}_n(A)$ par une récurrence sur r. Si r = 1, x est un commutateur de poids n donc $x \in \mathcal{L}_n(A)$ car $\lambda_n(A) \subseteq \mathcal{L}_n(A)$. Supposons maintenant r > 1, la propriété étant vérifiée jusqu'au rang r - 1. Si $p_r = 1$, on a $p_1 + \ldots + p_{r-1} = n + (r-1) - 1$, donc $x_1 \cdots x_{r-1} \in \mathcal{L}_n(A)$ d'après l'hypothèse de récurrence, d'où a fortiori $x = x_1 \cdots x_{r-1} x_r \in \mathcal{L}_n(A)$. Si $p_r > 1$, il existe $x', x'' \in A$ tels que $x_r = [x', x''], x'$ étant un commutateur de poids $p_r - 1$. On peut écrire:

$$x = x_1 \cdots x_{r-1}[x', x''] = [x_1 \cdots x_{r-1} x', x''] - [x_1 \cdots x_{r-1}, x''] x'$$
.

L'égalité $p_1 + \ldots + p_{r-1} + (p_r - 1) = (n-1) + r - 1$ prouve que $x_1 \cdots x_{r-1} x' \in A_{n-1}$, d'où $x_1 \cdots x_{r-1} x' \in \mathcal{L}_{n-1}(A)$ d'après l'hypothèse de récurrence sur n, ce qui entraı̂ne $[x_1 \cdots x_{r-1} x', x''] \in \mathcal{L}_n(A)$. On en déduit que

$$x \equiv -\sum_{i=1}^{r-1} x_1 \cdots x_{i-1}[x_i, x''] x_{i+1} \cdots x_{r-1} x' \operatorname{mod} \mathcal{L}_n(A)$$

(avec $p_1 + ... + p_{i-1} + (p_i + 1) + p_{i+1} + ... + p_{r-1} + (p_r - 1) = n + r - 1$). Une récurrence sur p_r permet alors de conclure en montrant que x est dans $\mathcal{L}_n(A)$.

Démonstration du Théorème 1: i) \Rightarrow ii) Si $\mathcal{L}_{n+1}(A) = 0$ $(n \geq 1)$, on a aussi $\lambda_{n+1}(A) = 0$ car $\lambda_{n+1}(A) \subseteq \mathcal{L}_{n+1}(A)$, ce qui prouve que A est L-nilpotent. De plus, pour tout $x_1, ..., x_n, y_1, ..., y_n$ dans A, on a $[x_1, y_1]...[x_n, y_n]$ dans $\mathcal{L}_{n+1}(A)$

d'après la Proposition 1, donc $\lambda_2^n(A) = 0$ (ce dernier résultat peut aussi se déduire de [3] où il est montré que si A est fortement L-nilpotent, alors $\mathcal{L}_2(A)$ est nilpotent).

 $\mathbf{ii})\Rightarrow\mathbf{i}$) Supposons maintenant que $\lambda_m(A)=\lambda_2^n(A)=0$, avec m,n>1 (l'implication est triviale si m=1 ou n=1). Soit x un élément de A pouvant s'écrire sous la forme $x=x_1\cdots x_r$, où $x_1,...,x_r$ sont des commutateurs de poids respectifs $p_1,...,p_r$ liés par la relation

$$(\pi)$$
 $p_1 + \dots + p_r = ((m-2)(n-1) + 2) + r - 1.$

Nous allons montrer que l'on a nécessairement x=0, d'où $\mathcal{L}_{(m-2)(n-1)+2}(A)=0$ d'après la Proposition 1. Pour cella, notons s le nombre d'indices $i\in\{1,...,r\}$ tels que $p_i>1$. L'égalité

$$x_1 \cdots x_i \, x_{i+1} \cdots x_r = x_1 \cdots [x_i, x_{i+1}] \cdots x_r + x_1 \cdots x_{i+1} \, x_i \cdots x_r$$

permet de déplacer les commutateurs de poids 1 dans le produit $x_1 \cdots x_r$, la relation (π) étant conservée pour chaque terme de la somme. Nous pouvons donc supposer que $p_1, ..., p_s > 1$ et $p_{s+1} = ... = p_r = 1$. Si l'un des poids p_i est supérieur ou égal à m, on a $x_i = 0$, d'où x = 0. Si $p_i \leq (m-1)$ pour tout $i \in \{1, ..., r\}$, la relation (π) entraîne

$$p_1 + ... + p_s = (m-2)(n-1) + s + 1$$
,

d'où

$$(m-2)(n-1) + s + 1 \le s(m-1)$$
,
 $(m-2)(n-1) + 1 \le s(m-2)$.

Cette inégalité montre que l'on ne peut pas avoir $s \leq (n-1)$. Il vient $s \geq n$ d'où l'égalité $\lambda_2^s(A) = 0$ car $\lambda_2^n(A) = 0$. Les éléments $x_1, ..., x_s$ étant dans $\lambda_2(A)$, on en déduit que $x_1 \cdots x_s = 0$, ce qui prouve que x = 0.

Démonstration du Théorème 2: Il suffit de montrer que ii) entraîne i), l'application réciproque étant triviale. Or, si A est un anneau L-nilpotent engendré par un nombre fini d'éléments, on sait que $\mathcal{L}_2(A)$ est nilpotent [2]. Il en est donc de même pour $\lambda_2(A)$. En appliquant le Théorème 1, on en déduit que A est fortement L-nilpotent.

Proposition 2. Dans un anneau A tel que $\bigcap_{n\geq 1} L_n(A) = 0$, tout élément inversible à gauche (ou à droite) est inversible.

Démonstration: Soit $x \in A$ un élément inversible à gauche par exemple. Il existe donc $x' \in A$ tel que x' x = 1. Pour montrer que [x, x'] = 0, plaçons nous d'abord dans le cas où A est un anneau L-nilpotent. Le sous-anneau B engendré par $\{x, x'\}$ est L-nilpotent donc fortement L-nilpotent d'après le Théorème 2. Nous allons montrer que $[x, x'] \in \mathcal{L}_n(B)$ pour tout entier $n \geq 1$, ce qui permet de conclure dans ce cas. La propriété étant triviale pour n = 1, supposons que $[x, x'] \in \mathcal{L}_{n-1}(B)$ pour un entier n > 1. Il vient $[[x, x'], x'] \in \mathcal{L}_n(B)$. De plus:

$$[[x, x'], x'] = x x'^2 - 2 x' x x' + x'^2 x = x x'^2 - 2 x' + x' = x x'^2 - x'.$$

En multipliant à droite par x, on obtient:

$$x x'^2 x - x' x = x x' - x' x = [x, x'] \in \mathcal{L}_n(B)$$
.

Dans le cas général, on se ramène au cas où l'anneau est L-nilpotent en considérant l'anneau quotient $A/L_n(A)$. Il en résulte que [x, x'] est dans $L_n(A)$ pour un entier n arbitraire, d'où [x, x'] = 0.

4 – Démonstration du Théorème 3

Si $x = (\xi_i)_{i \geq 1}$ est un élément non nul de \widehat{A} $(\xi_i \in A/\mathcal{L}_i(A))$, on note $\nu(x)$ le plus grand entier i tel que $\xi_i = 0$ et l'on pose $\nu(0) = +\infty$. Pour tout entier $n \geq 1$, l'ensemble des éléments $x \in \widehat{A}$ tel que $\nu(x) \geq n$ est un idéal de \widehat{A} noté \widehat{A}_n . La famille $(\widehat{A}_n)_{n \geq 1}$ forme un système fondamental de voisinage de 0 pour la topologie de \widehat{A} . Cette topologie peut aussi être définie par la distance $\delta(x,y) = 2^{-\nu(x-y)}$. Remarquons encore que $[\widehat{A}_n, \widehat{A}] \subseteq \widehat{A}_{n+1}$.

 $\mathbf{i}) \Rightarrow \mathbf{ii}$) Si c est un élément fixé de \widehat{A} , considérons l'application θ de \widehat{A} dans \widehat{A} définie par $\theta(x) = x + \varphi(1)^{-1}(c - \varphi(x))$. On peut écrire (pour tout $x, y \in \widehat{A}$):

$$\theta(x) - \theta(y) = x - y - \varphi(1)^{-1} (\varphi(x - y)) = x - y - \varphi(1)^{-1} \sum_{i=1}^{k} a_i (x - y) b_i$$

$$= x - y - \varphi(1)^{-1} \sum_{i=1}^{k} a_i [x - y, b_i] - \varphi(1)^{-1} \sum_{i=1}^{k} a_i b_i (x - y)$$

$$= -\varphi(1)^{-1} \sum_{i=1}^{k} a_i [x - y, b_i] .$$

Cette égalité montre que $x-y \in \widehat{A}_n$ entraı̂ne $\theta(x)-\theta(y) \in \widehat{A}_{n+1}$. En d'autres termes, on a l'inégalité $\delta(\theta(x),\theta(y)) \leq 2^{-1}\delta(x,y)$, qui prouve que l'application θ est contractante. D'après le théorème du point fixe, on en déduit que l'équation $\theta(x)=x$, équivalente à $\varphi(x)=c$, possède exactement une solution dans \widehat{A} . De plus, cette solution est donnée par la limite de la suite $(x_n)_{n\geq 1}$ définie par un premier terme arbitraire $x_1 \in \widehat{A}$ et la relation de récurrence $x_n=\theta(x_{n-1})$.

L'implication ii)⇒iii) est triviale.

 $\mathbf{iii})\Rightarrow\mathbf{i})$ Montrons d'abord simultanément par récurrence les deux propriétés suivantes: pour tout entier $n\geq 1$, il existe $y_n\in \widehat{A}$ tel que $z_n=y_n\,\varphi(1)-1\in \widehat{A}_n$ et l'on a l'inclusion $\varphi^{-1}(\widehat{A}_n)\subseteq \widehat{A}_n$. C'est clair pour n=1, en prenant y_1 arbitraire dans \widehat{A} . Supposons maintenant les deux propriétés établies pour n-1 (n>1) et considérons $z_{n-1}=y_{n-1}\,\varphi(1)-1\in \widehat{A}_{n-1}$. D'après l'hypothèse iii) du théorème, il existe $t\in \widehat{A}$ tel que $\varphi(t)=-z_{n-1}$. L'inclusion $\varphi^{-1}(\widehat{A}_{n-1})\subseteq \widehat{A}_{n-1}$ montre que $t\in \widehat{A}_{n-1}$. Vérifions que $y_n=y_{n-1}+t$ convient:

$$(y_{n-1} + t) \varphi(1) - 1 = z_{n-1} + t \sum_{i=1}^{k} a_i b_i$$

$$= z_{n-1} + \sum_{i=1}^{k} [t, a_i] b_i + \sum_{i=1}^{k} a_i t b_i$$

$$= \sum_{i=1}^{k} [t, a_i] b_i \in \widehat{A}_n.$$

Afin de prouver l'inclusion $\varphi^{-1}(\widehat{A}_n) \subseteq \widehat{A}_n$, considérons un élément $x \in \widehat{A}$ tel que $\varphi(x) \in \widehat{A}_n$. Les inclusions $\varphi^{-1}(\widehat{A}_{n-1}) \subseteq \widehat{A}_{n-1}$ et $\widehat{A}_n \subseteq \widehat{A}_{n-1}$ entraînent que x est dans \widehat{A}_{n-1} . On a

$$\varphi(x) = \sum_{i=1}^{k} a_i x b_i = \sum_{i=1}^{k} a_i [x, b_i] + \sum_{i=1}^{k} a_i b_i x ,$$

d'où $\sum_{i=1}^k a_i b_i x = \varphi(1) x \in \widehat{A}_n$. La classe de $\varphi(1)$ modulo \widehat{A}_n étant inversible à gauche, on en déduit que x est dans \widehat{A}_n .

Remarquons maintenant que $(y_n)_{n\geq 1}$ est une suite de Cauchy. En effet, on a $(y_{n+1}-y_n)\,\varphi(1)\in \widehat{A}_n$. La classe de $\varphi(1)$ modulo \widehat{A}_n étant inversible à gauche, elle l'est aussi à droite (Proposition 2), donc $(y_{n+1}-y_n)\in \widehat{A}_n$. La suite $(z_n)_{n\geq 1}$ tendant vers 0, on en déduit que $\varphi(1)$ admet pour inverse la limite de $(y_n)_{n\geq 1}$.

REFERENCES

- [1] Gupta, N. and Levin, F. On the Lie ideals of a ring, J. Algebra, 81 (1983), 225-231.
- [2] Jennings, S.A. On rings whose associated Lie rings are nilpotent, *Bull. Amer. Math. Soc.*, 53 (1947), 593–597.
- [3] MISSO, P. A note on strongly Lie nilpotency, *Rend. Circ. Mat. Palermo* (2), 40(1) (1991), 102–104.
- [4] Passi, I.B.S. Group rings and their augmentation ideals, Lecture Notes in Mathematics, Vol. 715, Springer-Verlag, Berlin, 1979.
- [5] Sehgal, S.K. Topics in group rings, Marcel Dekker, New York, 1978.

Gérard Endimioni,

Université de Provence, UFR-MIM, Unité de Recherche Associée au CNRS nº 225, 3, place Victor Hugo, F-13331 Marseille Cedex 3 – FRANCE