A PROBLEM OF DIOPHANTOS–FERMAT AND CHEBYSHEV POLYNOMIALS OF THE SECOND KIND

GHEORGHE UDREA

Abstract: One shows that, if $(U_n)_{n\geq 0}$ is the sequence of Chebyshev polynomials of the second kind, then the product of any two distinct elements of the set

$$\left\{U_m, U_{m+2r}, U_{m+4r}; \, 4 \cdot U_{m+r} \cdot U_{m+3r} \right\}, \quad m, r \in \mathbb{N} \ ,$$

increased by $U_a^2 \cdot U_b^2$, for suitable positive integers a and b, is a perfect square. This generalizes a result obtained by José Morgado in [4].

1 - Introduction

Chebyshev polynomials $(U_n)_{n\geq 0}$ are defined by the recurrence relation

$$(1.1) U_{n+1}(x) = 2 \cdot x \cdot U_n(x) - U_{n-1}(x), (\forall) x \in \mathbf{C}, (\forall) n \in \mathbf{N}^*,$$

where $U_0(x) = 1$ and $U_1(x) = 2x$.

An important property of these polynomials is given by the formula

(1.2)
$$U_{k-1}(\cos\varphi) = \frac{\sin k\varphi}{\sin\varphi}, \quad (\forall) \varphi \in \mathbf{C}, \quad \sin\varphi \neq 0, \quad (\forall) k \in \mathbf{N}^*.$$

Also one has the relations

(1.3)
$$U_k\left(\frac{i}{2}\right) = i^k \cdot F_{k+1}, \quad (\forall) \ k \in \mathbb{N} ,$$

where $i^2 = -1$ and $(F_n)_{n \ge 0}$ is the sequence of so-called Fibonacci numbers:

(1.4)
$$F_{n+1} = F_n + F_{n-1}, \quad (\forall) n \in \mathbb{N}^*, \quad F_0 = 0, \quad F_1 = 1.$$

Received: October 20, 1993; Revised: January 6, 1995.

 $\mathbf{2}$

We are going to prove the following

Theorem. If $(U_n)_{n\geq 0}$ is the sequence of Chebyshev polynomials of the second kind, then the product of any two distinct elements of the set

$$\{U_m, U_{m+2r}, U_{m+4r}; 4 \cdot U_{m+r} \cdot U_{m+2r} \cdot U_{m+3r}\}, \quad m, r \in \mathbb{N}$$

increased by $U_a^2 \cdot U_b^2$ for suitable positive integers a and b, is a perfect square, $(\forall) m, r \in \mathbb{N}$, $(\forall) x \in \mathbb{C}$.

Proof: One has the identity

$$(2.1) \ U_m \cdot U_{m+r+s} + U_{r-1} \cdot U_{s-1} = U_{m+r} \cdot U_{m+s} , \quad (\forall) \ x \in \mathbb{C}, \ (\forall) m, r, s \in \mathbb{N}^* .$$

Indeed, let x be an element of \mathbb{C} ; then $(\exists) \varphi \in \mathbb{C}$ such that $x = \cos \varphi$. One has

$$\begin{split} U_m(x) \cdot U_{m+r+s}(x) + U_{r-1}(x) \cdot U_{s-1}(x) = \\ &= U_m(\cos\varphi) \cdot U_{m+r+s}(\cos\varphi) + U_{r-1}(\cos\varphi) \cdot U_{s-1}(\cos\varphi) \\ &= \frac{\sin(m+1)\varphi}{\sin\varphi} \cdot \frac{\sin(m+r+s+1)}{\sin\varphi} + \frac{\sin r\varphi}{\sin\varphi} \cdot \frac{\sin s\varphi}{\sin\varphi} \\ &= \frac{\left[\cos(r+s)\varphi - \cos(2m+r+s+2)\varphi\right] + \left[\cos(r-s)\varphi - \cos(r+s)\varphi\right]}{2 \cdot \sin^2\varphi} \\ &= \frac{\cos(r-s)\varphi - \cos(2m+r+s+2)\varphi}{2 \cdot \sin^2\varphi} = \frac{\sin(m+r+1)\varphi}{\sin\varphi} \cdot \frac{\sin(m+s+1)\varphi}{\sin\varphi} \\ &= U_{m+r}(\cos\varphi) \cdot U_{m+s}(\cos\varphi) = U_{m+r}(x) \cdot U_{m+s}(x) \;, \; \text{q.e.d.} \end{split}$$

By setting s = r in (2.1), one obtains

(2.2)
$$U_m \cdot U_{m+2r} + U_{r-1}^2 = U_{m+r}^2, \quad m, r \in \mathbb{N}^* ,$$

which proves a part of the Theorem above, with a = r - 1, b = 0.

Now, let us replace, in (2.2), m by m + 2r; then

$$(2.3) U_{m+2r} \cdot U_{m+4r} + U_{r-1}^2 = U_{m+3r}^2 ,$$

which proves also a part of the Theorem above, with a = r - 1, b = 0.

By replacing, in (2.2), r by 2r, it results

$$(2.4) U_m \cdot U_{m+4r} + U_{2r-1}^2 = U_{m+2r}^2 (a = 2r - 1, b = 0).$$

From the identity (2.1), it follows

$$U_{r-1}^2 \cdot U_{s-1}^2 = (U_{m+r} \cdot U_{m+s} - U_m \cdot U_{m+r+s})^2$$

and so

(2.5)
$$4 \cdot U_m \cdot U_{m+r} \cdot U_{m+s} \cdot U_{m+r+s} + U_{r-1}^2 \cdot U_{s-1}^2 = (U_{m+r} \cdot U_{m+s} + U_m \cdot U_{m+r+s})^2, \quad m, r, s \in \mathbb{N}^*.$$

If, in (2.5), one sets s = 2r, one obtains

$$(2.6) 4 \cdot U_m \cdot U_{m+r} \cdot U_{m+2r} \cdot U_{m+3r} + U_{r-1}^2 \cdot U_{2r-1}^2 =$$

$$= (U_{m+r} \cdot U_{m+2r} + U_m \cdot U_{m+3r})^2 (a = r - 1, b = 2r - 1).$$

By replacing m by m + r, in (2.6), it follows

$$(2.7) 4 \cdot U_{m+r} \cdot U_{m+2r} \cdot U_{m+3r} \cdot U_{m+4r} + U_{r-1}^2 \cdot U_{2r-1}^2 = = (U_{m+2r} \cdot U_{m+3r} + U_{m+r} \cdot U_{m+4r})^2.$$

Finally, from (2.5), it results, for s=r and replacing m by m+r, (2.8)

$$4 \cdot U_{m+r} \cdot U_{m+2r}^2 \cdot U_{m+3r} + U_{r-1}^4 = (U_{m+2r}^2 + U_{m+r} \cdot U_{m+3r})^2 \quad (a = b = r - 1) .$$

The relations (2.2)–(2.8) show that the Theorem holds.

3

According to (1.3), from the relations (2.2)–(2.8) one obtains the following identities for Fibonacci numbers:

(3.1)
$$F_m \cdot F_{m+2r} + (-1)^m \cdot F_r^2 = F_{m+r}^2 ,$$

(3.2)
$$F_{m+2r} \cdot F_{m+4r} + (-1)^m \cdot F_r^2 = F_{m+3r}^2 ,$$

(3.3)
$$F_m \cdot F_{m+4r} + (-1)^m \cdot F_{2r}^2 = F_{m+2r}^2 ,$$

(3.4)
$$4 \cdot F_m \cdot F_{m+r} \cdot F_{m+2r} \cdot F_{m+3r} + F_r^2 \cdot F_{2r}^2 =$$

$$= (F_{m+r} \cdot F_{m+2r} + F_m \cdot F_{m+3r})^2 ,$$

304 G. UDREA

(3.5)
$$4 \cdot F_{m+r} \cdot F_{m+2r} \cdot F_{m+3r} \cdot F_{m+4r} + F_r^2 \cdot F_{2r}^2 = (F_{m+2r} \cdot F_{m+3r} + F_{m+r} \cdot F_{m+4r})^2,$$

(3.6)
$$4 \cdot F_{m+r} \cdot F_{m+2r}^2 \cdot F_{m+3r} + F_r^4 =$$

$$= (F_{m+2r}^2 + F_{m+r} \cdot F_{m+3r})^2, \quad m, r \in \mathbb{N}.$$

These identities show that the product of any two distinct elements of the set

$$\{F_m, F_{m+2r}, F_{m+4r}; 4 \cdot F_{m+r} \cdot F_{m+2r} \cdot F_{m+3r}\}, \quad m, r \in \mathbb{N},$$

increased by $F_a^2 \cdot F_b^2$ or $-F_a^2 \cdot F_b^2$, where F_a and F_b are suitable elements of the Fibonacci sequence $(F_n)_{n\geq 0}$, is a perfect square.

This remark is in fact the José Morgado's result given in [4].

Moreover, the José Morgado's result is also a generalization of some results of V.E. Hoggatt and E.G. Bergum, given in [1] and [2], about a problem of Diophantos–Fermat.

This problem claims to find four natural numbers such that the product of any two, added by unity, is a square.

REFERENCES

- [1] COHEN, E.L. Review of "A problem of Fermat and the Fibonacci sequence", by V.E. Hoggatt abd G.E. Bergum, *Fibonacci Quart.*, 15 (1977), 323–330, *M.R.*, 56 (1978), #15547.
- [2] Hoggatt, V.E. and Bergum, E.G. Autorreferat of "A problem of Fermat and the Fibonacci sequence", Zbl., 383 (1979), #10007.
- [3] MORGADO, J. Some remarks on an identity of Catalan concerning the Fibonacci numbers, *Portugaliae Math.*, 39(1–4) (1980), 341–348.
- [4] MORGADO, J. Generalization of a result of Hoggatt and Bergum on Fibonacci numbers, *Portugaliae Math.*, 42(4) (1983–1984), 441–449 (1986).

Gheorghe Udrea, Str. Unirii – Siret, Bl. 7A, SC. I., AP. 17, Târgu-Jiu, Codul 1400, Judetul Gorj – ROMÂNIA