PORTUGALIAE MATHEMATICA Vol. 53, No. 2, pp. 187-208 (1996) |
|
Perturbations Convexes et Non Convexes des Équations d'ÉvolutionH. Benabdellah and A. FaikUniversité Cadi Ayyad, Faculté des Sciences Semlalia,Département de Mathématiques, B.P.: S15-Marrakech - MAROC Université des Sciences et Techniques du Languedoc, Département de Mathématiques, Analyse Convexe, case 051, 34095 Montpellier - FRANCE Abstract: This paper is concerned with the evolution inclusion $x'\in-Ax+F(t,x)$, where $A$ is a $m$-accretive operator and $F$ is a weakly compact valued multifunction measurable in $t$, upper semicontinuous in $x$. We prove the existence of solutions under various assumptions on the operator $A$ and the perturbation $F$. Keywords: Accretive operator; upper semicontinuous multifunctions; subdifferenial. Classification (MSC2000): 47H20, 34A60, 54C65 Full text of the article:
Electronic version published on: 29 Mar 2001. This page was last modified: 27 Nov 2007.
© 1996 Sociedade Portuguesa de Matemática
|