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OPTIMAL CONTROL FOR THE BOUNDARY FLUX
TO THE CONTINUOUS CASTING PROBLEM

F. Yi, T.M. Shih and J. Yong

Abstract: A three dimensional evolutionary continuous casting problem is consid-

ered. The problem is described by a singular parabolic equation with a singular con-

vection term and mixed boundary conditions. The problem of optimal control for the

boundary flux is discussed. Necessary conditions for the optimal control problem are

derived in the absence of mushy region.

1 – Introduction

In this paper we consider the following singular parabolic equation with a

singular convection term and mixed boundary conditions

(1.1)





∂tη + b ∂zη −∆u = 0, in D′(QT ),

u = hi, on ΣiT , i = 0, L,

−
∂u

∂n
= g, on ΣNT ,

η = η0(x, y, z), on t = 0,

η ∈ β(u) .

Here (x, y, z) ∈ Q ∈ R3, Q = Ω × [0, L], Ω = (0, a1) × (0, a2), Γi = Ω × {z = i},

i= 0, L, ΓD = Γ0∪ΓL, ΓN = ∂Ω× [0, L], ΣDT = ΓD× [0, T ] and Σ
N
T = ΓN× [0, T ],

n is the unit outward normal to Q on ΓN , u and η are the unknown temperature

and entropy respectively, β(·) is a maximum monotone graph, b is the extracting

velocity, g is the boundary flux. (1.1) is a mathematical model for the continuous

casting problem in the steel industry which describes the heat conduction phe-

nomena with phase change and singular convective effect (see [1]). The existence,
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uniqueness and regularity of the solutions as well as the asymptotic behavior were

known for both steady state and evolutionary cases (see [2]). If b = 0, (1.1) is

the Stefan problem. We refer the readers to [3], [4] for relevant results about

Stefan problem and to [5] and [6] for the related optimal control problems of the

two-phase Stefan problem.

The purpose of this paper is to study the optimal control of the boundary

flux g according to the requirement of the industry. Some necessary conditions

are derived for the optimal control and optimal state. We notice that even for

the two-phase Stefan problem (b = 0), the necessary conditions for boundary flux

control has not been obtained up to now (see [6]), p.213, Remark 7.9). Therefore

setting b = 0 in our case one can get the necessary conditions for the two-phase

Stefan problem.

Owing to the existence of convection and radiation in the boundary of sec-

ondary cooling region, it satisfies

−
∂T

∂n
= α(T − TH2O) + σ ε(T 4 − T 4ext) ,

where T is the absolute temperature, α is called the heat transfer coefficient which

is interpreted as the control parameter by controlling the water quality, TH2O is

the water temperature and Text is the temperature of the exterior environment,

σ and ε are positive constants. In our formulation the flux g is the controlling

term. When this is known, it is an easy task to determine α, which is important

for practical purposes, since TH2O and Text are given, and T , the optimal state,

can be obtained at same time with g.

The paper is organized as follows. In section 2 we state the assumptions,

recall the weak formulation and obtain an existence result of the optimal control

problem. In order to get the necessary conditions, in section 3 we construct

an approximating control problem and get some necessary conditions for this

approximating problem. In the last section we get the necessary conditions to

the original control problem based on uniform estimates and a limit procedure.

2 – The existence of the optimal control

Let us start with the following assumptions
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(H): The functions β, hi, b and g appeared in (1.1) satisfy the following

(2.1) β(u) =





c1 u+ 1 u > 0,

[0, 1] u = 0,

c2 u u < 0 .

Here we suppose the latent heat is 1, and ci (i = 1, 2) are positive constants.

(2.2) b > 0

is a constant (the extracting velocity).




∃h ∈ L2(0, T ;H1(Q)) : h = hi on Σ

i
T , i = 0, L;

|h|L∞(QT ) ≤M and ∂zh ∈ L1(QT ) ,
(2.3)

g ∈ L2(ΣNT ) , 0 ≤ g ≤M ,(2.4)

the physical background of g ≥ 0 is the cooling in industry andM is the maximum

flux.

(2.5)

{
η0 ∈ β(u0) a.e. in Q for some u0 ∈ L∞(Q) ,

|u0|L∞(Q) ≤M .

Next let us introduce the weak formulation of problem (1.1) as follows. A pair

(u, η) ∈ L2(0, T ;H1(Q))× L2(Q) is a weak solution of (1.1), if

η ∈ β(u) a.e. , u = h on ΣDT , and(2.6)

−

∫∫

QT

η(∂tζ + b ∂zζ) +

∫∫

QT

∇u∇ζ +

∫

ΣN
T

g ζ =

∫

Q

η0 ζ(0) , ∀ ζ ∈W0 ,(2.7)

where the space of test function is given by

W0 =
{
ζ ∈ H1(QT ); ζ|t=T = 0 and ζ = 0 on ΣDT

}
.

Proposition 2.1. Let (2.1)–(2.5) hold, then problem (2.6)–(2.7) has at least

one weak solution (u, η) with the following regularities

(2.8)





u ∈ L2(0, T ;H1(Q)) ∩ L∞(QT ) ,

η ∈ L∞(QT ) .
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Proof: Consider the following regularized problem

∂tβε(uε) + b ∂zβε(uε)−∆uε = 0 in QT ,

uε = h on ΣDT ,

−
∂uε
∂n

= g on ΣNT ,

uε|t=0 = u0(x, y, z) ,

where

βε(z) =

{
c1 z + 1 if z ≥ ε,

c2 z if z ≤ 0 ,

and βε(z) ∈ c2, min{c1, c2} < β′
ε ≤ 2 ε

−1.

The proof is composed with two parts. The first part is to get the following

uniform estimates

|uε|L∞(QT ) ≤M1 ,(2.9)

and

|uε|H1

loc
(QT )

+ |uε|L2(0,T ;H1(Q)) ≤M2 ,(2.10)

where M1, M2 are constants independent of ε > 0.

The second part is to take the limit. The whole proof is similar to the proof

of Theorem 1 in [2]. The only difference is the proof of (2.9) because the flux g

is different. Therefore only the proof of (2.9) will be given.

The method of estimating the maximum of uε is the same as in [2] because

g ≥ 0. In the following we estimate the minimum of uε.

Set

(2.11) Z(x, y, z, t) = exp

{(
x−

a1
z

)2
+

(
y −

a2
z

)2}

and

(2.12) uε = Z Vε ,

then Vε satisfies

(2.13)





Z−1 ∂tβε(Z Vε) + Z−1 ∂zβε(Z Vε)−∆Vε − 2
∇Z

Z
· ∇Vε −

∆Z

Z
Vε = 0 ,

Vε = Z−1h ,

−

[
∂Vε
∂n

+ Z−1 ∂Z

∂n
Vε

]
= Z−1g ,

Vε = Z−1 u0(x, y, z) .
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Notice that

∆Z

Z
=

(
x−

a1
2

)2
+

(
y −

a2
2

)2
+ 2 > 0 ,

Z−1 ∂Z

∂n
=

{
a1 on x = 0, a1,

a2 on y = 0, a2 .

So the boundary condition (2.13)3 can be written in the form

−
∂Vε
∂n

=





a1

(
Vε +

1

a1 z
g

)
, x = 0, a1,

a2

(
Vε +

1

a2 z
g

)
, y = 0, a2 .

Considering 0 ≤ Z(x, y, z, t) = Z(x, y) ≤ C0, we multiply the equation (2.13)1
by (Vε −N)−, where

f− =

{
0 if f ≥ 0,

f if f < 0 ,

N = min

{
Z−1 h, −

1

a1 Z
g, −

1

a2 Z
g

}
,

and integrate over QT . Recalling β(u) = c2 u if u < 0, after a calculation we

have, for all ε > 0,

Vε ≥ N .

By the definition (2.12) we get

uε ≥ −M1 .

Here M1 only depends on M , M and C0.

(2.9) and (2.10) follows that there is function u ∈ L2(0, T ;H1(Q)) ∩ L∞(QT )

such that

(2.14)





uε → u strongly in L2(QT ),

uε ⇀ u weakly in L2(0, T ;H1(Q)),

βε(uε)⇀ η weakly in L2(QT ) .

And (u, η) satisfies (2.6) and (2.7) (see [2]).

Remark. Set SδT = {(x, y, z, t) ∈ QT ; 0 ≤ z ≤ δ}. If

(2.15) ∃ δ > 0; u ≥ ρ > 0 a.e. in Sδ
T ,
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then the solution of (2.6) and (2.7) is unique (see [2]).

Especially, the condition

(2.16)





h ∈ C0(Σ
D
T ) , u0 ∈ C0(Q) and

h|t=0 = u0 on ΓD , h > 0 on Σ
D
T ∩ {z = 0} ,

implies that u is continuous in QT and satisfies (2.15) (see [2]).

The task of this paper is to find (u∗, g∗), such that

(2.17) J(u∗, g∗) = minimizeJ(u, g) , u ∈ Gad ,

where

(2.18) J(u, g) =
1

2

∫∫

QT

(u− ud)
2 +

1

2

∫

ΣN
T

g2 ,

ud ∈ L2(QT ) is a known function.

Gad =
{
g ∈ L2(ΣNT ); 0 ≤ g ≤M

}
,(2.19)

(u, η) satisfies (2.6) and (2.7) .(2.20)

The existence of the problem (2.17)–(2.20) depends on the following proposi-

tion.

Proposition 2.2. Under the assumptions (2.1)–(2.5) and (2.16), let Gad 3

gn ⇀ g weakly in L2(ΣNT ), (un, ηn), (u, η) denote the solutions of (2.6) and (2.7)

corresponding to gn, g, then

un ⇀ u weakly in L2(0, T ;H1(Q)) ,(2.21)

ηn ⇀ η weakly in L2(QT ) .

Proof: gn ∈ Gad and gn ⇀ g weakly in L2(ΣNT ) implies g ∈ Gad. Consider

approximation problem




∂tβε(uεn) + b ∂zβε(uεn)−∆uεn = 0 in QT ,

uεn = h on ΣDT ,

−
∂uεn
∂n

= gn on ΣNT ,

uεn|t=0 = u0(x, y, z) .
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We can get estimate (2.9) and (2.10) which are uniformly with respect to ε and n.

So we first take the limit ε→ 0 to get (2.6) and (2.7) corresponding to (un, ηn),

gn, and than let n → ∞ to get (2.6) and (2.7) corresponding to (u, η) and g

because of the uniqueness.

Theorem 2.3. The control problem (2.17)–(2.20) has at least one optimal

pair (u∗, g∗). Foremore there exists η∗ ∈ L2(QT ), such that (u
∗, η∗) is the solution

of (2.6) and (2.7) corresponding to g = g∗.

Proof: If (un, gn) ∈ L2(0, T ;H1(Q))×L2(ΣNT ) is a minimizing sequence, we

may suppose

gn ⇀ g∗ weakly in L2(ΣNT ) ,

then from Proposition 2.2, it follows that for the corresponding states un ⇀ u∗

weakly in L2(0, T ;H1(Q)) and u∗ is the state corresponding to g∗.

The weak lower semicontinuity of J ends the proof.

3 – Approximation problem

Consider the following approximating optimal control problem:

Find a pair (u∗ε, g
∗
ε) such that

(3.1) Jε(u
∗
ε, g

∗
ε) = min Jε(uε, gε) , gε ∈ Gad ,

where

(3.2) Jε(uε, gε) =
1

2

∫∫

ΩT

(uε − ud)
2 +

1

2

∫

ΣN
T

g2ε +
1

2

∫

ΣN
T

(gε − g∗)2 ,

subject to

(3.3)





∂tβε(uε) + b ∂zβε(uε)−∆uε = 0 in QT ,

uε = h on ΣDT ,

−
∂uε
∂n

= gε on ΣNT ,

uε = u0(x) on t = 0 .

According to the result in the previous section, the (smooth) optimal control

problem (3.1)–(3.3) has an optimal pair (u∗ε, g
∗
ε).
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Theorem 3.1. Under the assumptions of (2.1)–(2.5) and (2.16),

(3.4)





g∗ε → g∗ strongly in L2(ΣNT ),

u∗ε → u∗ strongly in L2(QT ),

u∗ε ⇀ u∗ weakly in L2(0, T ;H1(Q)) .

Proof: We may suppose g∗ε ⇀ g weakly in L2(ΣNT ), and u is the solution of

(2.6), (2.7) corresponding to g = g. It follows that u∗
ε → u strongly in L2(QT )

and weakly in L2(0, T ;H1(Q)) by the uniqueness of the problem (2.6) and (2.7).

In the following we prove g = g∗, u = u∗ and g∗ε → g∗ strongly in L2(ΣNT ). In

fact,

Jε(u, g) =
1

2

∫∫

QT

(u− ud)
2 +

1

2

∫

ΣN
T

g2 +
1

2

∫

ΣN
T

(g − g∗)2

≤ lim
ε→0

[
1

2

∫∫

QT

(u∗ε − ud)
2 +

1

2

∫

ΣN
T

g∗2ε +
1

2

∫

ΣN
T

(g∗ε − g∗)2
]

≤ lim
ε→0

[
1

2

∫∫

QT

(ûε − ud)
2 +

1

2

∫

ΣN
T

g∗2
]
.

Here ûε is the solution of (3.3) corresponding to g = g∗ and we used the property

Jε(u
∗
ε, g

∗
ε) ≤ Jε(ûε, g

∗) for every ε > 0 in the last step. Considering ûε → u∗

strongly in L2(QT ), so we have

Jε(u, g) ≤
1

2

∫∫

QT

(u∗ − ud)
2 +

1

2

∫

ΣN
T

g∗2

= J(u∗, g∗)

≤ J(u, g) .

It follows that g = g∗ and then u = u∗.

At last, we prove g∗ε → g∗ strongly in L2(ΣNT ). From Jε(u
∗
ε, g

∗
ε) ≤ Jε(ûε, g

∗)

we have

lim
ε→0

Jε(u
∗
ε, g

∗
ε) ≤ lim

ε→0
Jε(ûε, g

∗) .

Considering u∗ε → u∗, ûε → u∗ strongly in L2(QT ), we obtain

lim
ε→0

[∫

ΣN
T

g∗ε
2 +

∫

ΣN
T

(g∗ε − g∗)2
]
≤

∫

ΣN
T

g∗2 .
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On other hand

lim
ε→0

[∫

ΣN
T

g∗ε
2 +

∫

ΣN
T

(g∗ε − g∗)2
]
≥ lim

ε→0

∫

ΣN
T

g∗ε
2 + lim

ε→0

∫

ΣN
T

(g∗ε − g∗)2

and ∫

ΣN
T

g∗2 ≤ lim
ε→0

∫

ΣN
T

g∗ε
2 .

So we get

lim
ε→0

∫

ΣN
T

(g∗ε − g∗)2 ≤ 0 .

This completes the proof.

Now we study the necessary conditions for the optimal pair (u∗
ε, g

∗
ε) of the

problem (3.1)–(3.3).

Define

G̃ε =
{
g ∈ L2(ΣNT ); g∗ε + λg ∈ Gad, for all sufficiently small λ > 0

}
.

Suppose uλε satisfy

(3.5)





∂tβε(u
λ
ε ) + b ∂zβε(u

λ
ε )−∆uλε = 0 in QT ,

uλε = h on ΣDT ,

−
∂uλε
∂n

= g∗ε + λ g on ΣNT ,

uλε = u0(x, y, z) on t = 0 .

Proposition 3.2. Define W λ
ε =

uλε−u
∗
ε

λ . Then

|W λ
ε |L2(QT ) ≤ C|g|L2(ΣN

T
) ,

where C is independent of ε and λ.

Proof: Assume ϕ ∈ H1(QT ), ∆ϕ ∈ L2(QT ) and ϕ = 0 on ΣDT .

Multiplying the equation (3.5)1 by ϕ and integrating over QT we have

(3.6) −

∫∫

QT

βε(u
λ
ε ) (∂tϕ+ b ∂zϕ)−

∫∫

QT

uλε ∆ϕ+

+

∫ T

0

∫

∂Ω

∂ϕ

∂n
uλε +

∫

ΣN
T

(g∗ε + λg)ϕ = 0 .
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For u∗ε, the similar equality holds:

(3.7) −

∫∫

QT

βε(u
∗
ε) (∂tϕ+ b ∂zϕ)−

∫∫

QT

u∗ε∆ϕ+

∫ T

0

∫∫

∂Ω

∂ϕ

∂n
u∗ε +

∫

ΣN
T

g∗ε ϕ .

From (3.6) and (3.7) we get, if ∂ϕ∂n = 0 on Σ
N
T ,

(3.8)

∫∫

QT

[
βε(u

λ
ε )− βε(u

∗
ε)
]
(∂tϕ+ b ∂zϕ+ α∆ϕ) =

∫

ΣN
T

λ g ϕ ,

where

α =
uλε − u∗ε

βε(uλε )− βε(u∗ε)
.

Consider the following problem:

(3.9)





∂tϕ+ b ∂zϕ+ α∆ϕ = uλε − u∗ε in QT ,

ϕ = 0 on ΣDT ,

∂ϕ

∂n
= 0 on ΣNT ,

ϕ(x, y, z, T ) = 0 .

For fixed ε > 0, in spite of the boundary ∂Q is only Lipschitz continuous we

still have ϕ ∈ W 2,1
2 (QT ), due to uλε and u∗ε are continuous in QT . In fact the

regularity on the corner can be obtained by odd extension with respect to ΣDT
and even extension with respect to ΣNT .

From (3.8) and (3.9) we have

(3.10)

∫∫

QT

(uλε − u∗ε)
2 ≤

∫∫

QT

[
βε(u

λ
ε )− βε(u

∗
ε)
]
(uλε − u∗ε)

=

∫

ΣN
T

λ g ϕ

≤ λ|g|L2(ΣN
T
) |ϕ|L2(ΣN

T
) .

In the following we prove

(3.11) |ϕ|L2(ΣN
T
) ≤ C

{∫∫

QT

[
βε(u

λ
ε )− βε(u

∗
ε)
]
(uλε − u∗ε)

}1/2
,

Here C is independent of ε and λ. (3.10) and (3.11) end the proof.
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Multiplying the equation (3.9)1 by ∆ϕ and integrating over Qt = Q × [t, T ],

we obtain∫∫

Qt

∂tϕ∆ϕ+ b

∫∫

Qt

∂zϕ∆ϕ+

∫∫

Qt

α(∆ϕ)2 =

=

∫∫

Qt

(uλε − u∗ε)∆ϕ

≤
1

2

∫∫

Qt

α(∆ϕ)2 +
1

2

∫∫

Qt

[
βε(u

λ
ε )− βε(u

∗
ε)
]
(uλε − u∗ε) .

Notice that ∫∫

Qt

∂tϕ∆ϕ =
1

2

∫

Q

|∇ϕ|2(·, t) ,

∫∫

Qt

∂zϕ∆ϕ = −
1

2

∫ T

t

∫

z=0

|∇ϕ|2 +
1

2

∫ T

t

∫

z=L

|∇ϕ|2 .

Therefore

(3.12)

∫

Q

|∇ϕ|2(·, t) +

∫∫

Qt

α|∆ϕ|2 ≤

≤

∫∫

Qt

[
βε(u

λ
ε )− βε(u

∗
ε)
]
(uλε − u∗ε) + b

∫ T

t

∫

z=0

|∂zϕ|
2 .

On other hand, according to (2.15),

α = C−1
1 in SδT

if ε is small enough.

Let ζ = ζ(z) be a cut off function such that

ζ =

{
1, 0 ≤ z ≤ δ/2,

0, δ ≤ z ≤ L .

Multiply (3.9) by ζ; we have

(3.13)





∂t(ζ ϕ) + b ∂z(ζ ϕ) + C−1
1 ∆(ζ ϕ) =

= ζ(uλε − u∗ε) + b(∂zζ)ϕ+ C−1
1 (2∇ζ∇ϕ+∆ζϕ),

ζ ϕ = 0 on ΣDT ,

∂(ζϕ)

∂n
= 0 on ΣNT ,

ζ ϕ|t=T = 0 .
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The trace theorem and the W 2,1
2 -estimate of (3.13) produce

∫ T

t

∫

z=0

|∂zϕ|
2 =

∫ T

t

∫

z=0

|∂z(ζ ϕ)|2

≤ C

∫ T

t
|ϕ|2H2(Q)

≤ C
(
|uλε − u∗ε|

2
L2(Qt)

+ |∇ϕ|2L2(Qt)

)
.

Substitute it into (3.12), by the Gronwall inequality, we have

|∇ϕ|2L2(QT )
≤ C

∫∫

QT

[
βε(u

λ
ε )− βε(u

∗
ε)
]
(uλε − u∗ε) ,

which is just (3.11) by the trace theorem.

From the result of Proposition 3.2, there exists a Wε ∈ L2(QT ) such that

(3.14) W λ
ε ⇀ Wε weakly in L2(QT ) (λ→ 0) ,

and Wε is the L2(QT ) weak solution of the following problem

(3.15)





∂t[β
′
ε(u

∗
ε)Wε] + b ∂z[β

′
ε(u

∗
ε)Wε]−∆Wε = 0,

Wε = 0 on ΣDT ,

−
∂Wε

∂n
= g on ΣNT ,

Wε = 0 on t = 0 .

In fact, from (3.6) and (3.7), we have

∫∫

QT

{[∫ 1

0
β′
ε

(
τ uλε + (1− τ)u∗ε

)
dτ

]
(∂tϕ+ b ∂zϕ) + ∆ϕ

}
W λ

ε =

∫

ΣN
T

g ϕ ,

for any ϕ ∈ C2,1(QT ), ϕ = 0 on t = T and ΣDT ,
∂ϕ
∂n = 0 on Σ

N
T .

Since βε ∈ C2, min{c1, c2} < β′
ε ≤

2
ε , u

λ
ε → u∗ε strongly in L2(QT ), so for a.e.

(x, y, z, t) ∈ QT ,

τ uλε + (1− τ)u∗ε → u∗ε a.e. in [0, 1] (λ→ 0) ,

the Lebesgue theorem shows that

(3.16)

∫ 1

0
β′
ε

(
τ uλε + (1− τ)u∗ε

)
dτ → β′

ε(u
∗
ε) a.e. in QT
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and then strongly in L2(QT ) if λ→ 0.

Sending λ→ 0, considering (3.14), we get

(3.17)

∫∫

QT

[
β′
ε(u

∗
ε) (∂tϕ+ b ∂zϕ) + ∆ϕ

]
Wε =

∫

ΣN
T

g ϕ .

This is just the weak formulation of (3.15).

Now we introduce the following adjoint problem

(3.18)





β′
ε(u

∗
ε) (∂tp

∗
ε + b ∂zp

∗
ε) + ∆p∗ε = u∗ε − ud in QT ,

p∗ε = 0 on ΣDT ,

−
∂p∗ε
∂n

= 0 on ΣNT ,

p∗ε(x, y, z, T ) = 0 ,

where p∗ε is the adjoint state.

Proposition 3.3. For the problem (3.17), we have the following uniform

estimates

(3.19)





|∇p∗ε|L∞(0,T ;L2(Q)) ≤ C ,

|∂tp
∗
ε|L2(QT ) ≤ C,

∫∫

QT

1

β′
ε(u

∗
ε)
(∆p∗ε)

2 ≤ C ,

where C is independent of ε > 0.

Proof: The equation (3.18)1 is equivalent to

(3.20) ∂tp
∗
ε + b ∂zp

∗
ε +

1

β′
ε(u

∗
ε)
∆P ∗

ε =
1

β′
ε(u

∗
ε)
(u∗ε − ud) .

Multiplying the equation (3.20) by ∆p∗ε, integrating overQt, the similar procedure

to the problem (3.9) produces the estimate (3.19)1 and (3.19)3. Multiplying the

equation (3.20) by ∂tp
∗
ε, integrating over Qt yields (3.19)2.

The proof of Proposition 3.3 is completed.

On other hand, by the optimality of (u∗ε, g
∗
ε), we have

0 ≤
1

λ

{
1

2

∫∫

QT

(
|uλε − ud|

2 − |u∗ε − ud|
2
)
+
1

2

∫

ΣN
T

[
(g∗ε + λ g)2 − g∗ε

2
]

+
1

2

∫

ΣN
T

[
(g∗ε + λ g − g∗)2 − (g∗ε − g∗)2

]}
.
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Letting λ→ 0, we obtain

(3.21) 0 ≤

∫∫

QT

(u∗ε − ud)Wε +

∫

ΣN
T

g∗ε g +

∫

ΣN
T

(g∗ε − g∗) g for any g ∈ G̃ε .

Taking into account of (3.18)1 and (3.17), from (3.21), we get

(3.22) 0 ≤

∫∫

QT

(p∗ε + 2 g
∗
ε − g∗) g for any g ∈ G̃ε .

Up to now we get that the necessary (optimal) conditions for the smooth

optimal control problem (3.1)–(3.3) are (3.18) and (3.22).

4 – Necessary conditions

In this section we take the limits in (3.18) and (3.22) to get the necessary

conditions for the optimal control problem (2.17)–(2.20).

At first, from the uniform estimates (3.19), we know that there exists a p∗ ∈

L∞(0, T ;H1(Q)), such that ∂tp
∗ ∈ L2(QT ) and

(4.1)





p∗ε → p∗ strongly in L2(QT ),

∇p∗ε ⇀ ∇p∗ weakly in L∞(0, T ;L2(Q)),

∂tp
∗
ε ⇀ ∂tp

∗ weakly in L2(QT ) .

Taking ε→ 0 in (3.22) and recalling (3.4)1, we get

0 ≤

∫∫

QT

(p∗ + g∗) g for any g ∈ G̃ .

Here

G̃ =
{
g ∈ L2(ΣNT ), g∗ + λg ∈ Gad, for all sufficiently small λ > 0

}
,

because g∗ε + λg ∈ G̃ε follows g
∗ + λg ∈ G̃ by (3.4)1.

In the following we want to take the limit in (3.18). It is a very difficult

problem even if b = 0 and

(4.2) meas
{
(x, y, z, t) ∈ QT : u

∗(x, y, z, t) = 0
}
= 0

because of the absence of the uniform estimate for |∂tu
∗
ε|L2(QT ) (see [6], p. 213,

Remark 7.9).
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In order to take the limit in (3.18), we let

(4.3) βε(τ) =





c1 τ + 1 if τ ≥
ε

1− c1 ε
,

1

ε
τ 0 < τ <

ε

1− c1 ε
,

c2 τ if τ ≤ 0 .

Here βε is not a C2-function and it is only Lipschitz continuous. The unique

place in previous proofs where we need βε ∈ C2 is in (3.16). Notice that under

the condition (4.2), the limit procedure in (3.16) is also true if βε is defined as

(4.3). In this case

τ β′
ε(τ) =





c1 τ if τ ≥
ε

1− c1 ε
,

1

ε
τ if 0 < τ <

ε

1− c1 ε
,

c2 τ if τ ≤ 0 .

So

(4.4) τ β′
ε(τ) = βε(τ)−

1

1− c1 ε
H

(
τ −

ε

1− c1 ε

)
,

where H is the Heaviside function.

Multiplying the equation (3.18)1 by u∗ε and using (4.4), we have

(4.5)

[
βε(u

∗
ε)−

1

1− c1 ε
H

(
u∗ε−

ε

1− c1 ε

)]
(∂tp

∗
ε+b ∂zp

∗
ε)+u∗ε∆p∗ε = (u

∗
ε−ud)u

∗
ε .

Notice that

(4.6)
u∗ε∆p∗ε = ∇(u

∗
ε∇p∗ε)−∇u∗ε∇p∗ε

= ∇(u∗ε∇p∗ε)−∇(p
∗
ε∇u∗ε) + p∗ε∆u∗ε .

Taking into account of the equation (3.3)1, we obtain

(4.7)

p∗ε∆u∗ε = p∗ε

[
∂tβε(u

∗
ε) + b ∂zβε(u

∗
ε)
]

= ∂t[βε(u
∗
ε) p

∗
ε] + b ∂z[βε(u

∗
ε) p

∗
ε]

− βε(u
∗
ε) (∂tp

∗
ε + b ∂zp

∗
ε) .

Substituting (4.6) and (4.7) into (4.5) we get

(4.8) ∂t[βε(u
∗
ε) p

∗
ε]+b ∂z[βε(u

∗
ε) p

∗
ε]−

1

1− c1 ε
H

(
u∗ε−

ε

1− c1 ε

)
(∂tp

∗
ε+b ∂zp

∗
ε)+

+∇(u∗ε∇p∗ε)−∇(p
∗
ε∇u∗ε) = u∗ε(u

∗
ε − ud) .
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Since

(4.9)





βε(u
∗
ε)→ β(u∗) strongly in L2(QT ),

H

(
u∗ε −

ε

1− c1 ε

)
→ H(u∗) strongly in L2(QT ) ,

by (4.2) and Lebesgue theorem. Notice that β(u∗) has a meaning by (4.2).

So if we multiply the equation (4.8) by a test function ζ ∈ C1(QT ) satisfying

ζ = 0 on t = 0 and ΣDT , we get

−

∫∫

QT

βε(u
∗
ε) p

∗
ε(∂tζ + b ∂zζ)−

1

1− c1 ε

∫∫

QT

H

(
u∗ε −

ε

1− c1 ε

)
(∂tp

∗
ε + b ∂zp

∗
ε) ζ −

−

∫∫

QT

u∗ε∇p∗ε∇ζ +

∫∫

QT

p∗ε∇u∗ε∇ζ +

∫

ΣN
T

p∗ε g
∗
ε ζ =

∫∫

QT

u∗ε(u
∗
ε − ud) ζ .

Considering (3.4), (4.1) and (4.9), let ε→ 0, we obtain at last

(4.10)

∫∫

QT

β(u∗) p∗(∂tζ + b ∂zζ) +

∫∫

QT

H(u∗) (∂tp
∗ + b ∂zp

∗) ζ +

+

∫∫

QT

u∗∇p∗∇ζ −

∫∫

QT

p∗∇u∗∇ζ −

∫

ΣN
T

p∗ g∗ ζ +

∫∫

QT

u∗(u∗ − ud) ζ = 0 .

Up to now we get

Theorem 4.1. If (u∗, g∗) is an optimal pair for the problem (2.17)–(2.20)

from Theorem 2.3, under the assumption (4.2), there is a function p∗ ∈

L∞(0, T ;H1(Q)) such that ∂tp
∗ ∈ L2(QT ), moreover

(4.11)





∂t[β(u
∗) p∗] + b ∂z[β(u

∗) p∗]−H(u∗) (∂tp
∗ + b ∂zp

∗) +

+∇(u∗∇p∗)−∇(p∗∇u∗) = u∗(u∗ − ud),

p∗ = 0 on ΣDT ,

∂p∗

∂n
= 0 on ΣNT ,

p∗(x, y, z, T ) = 0 ,

in the weak sense of (4.10) and

(4.12) 0 ≤

∫

ΣN
T

(p∗ + g∗) g for any g ∈ G̃ ,
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(4.11) and (4.12) are necessary conditions of the optimal control problem (2.17)–

(2.20).

Remark. Condition (4.2) means no mushy region. Under some reasonable

conditions, one can get (4.2) (see [7]).
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