PORTUGALIAE MATHEMATICA Vol. 54, No. 4, pp. 457-460 (1997) |
|
On the Diophantine Equation $D_{1}x^{2}+D_{2}^{m}=4y^{n}$Maurice MignotteUniversité Louis Pasteur, Mathématique,67084 Strasbourg - FRANCE E-mail: mignotte@math.u-strasbg.fr Abstract: Consider positive integers $D_{1}$, $D_{2}$ and let $h$ be the class-number of the imaginary quadratic field $Q(\sqrt{-D_{1}\,D_{2}})$. We study the equation $D_{1}x^{2}+D_{2}^{m}=4y^{n}$ when $m$ is an odd integer, $n$ an odd prime number, $\gcd(D_{1}x,D_{2}y)=1$, $n\nomid h$, and also $y>1$. Full text of the article:
Electronic version published on: 29 Mar 2001. This page was last modified: 27 Nov 2007.
© 1997 Sociedade Portuguesa de Matemática
|