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ON H-SEPARABLE AND GALOIS EXTENSIONS OF RINGS

George Szeto

Abstract: Let S be a ring with 1, G a finite automorphism group of S of order n,

and S∗G the skew group ring of G over S. Assume n is a unit in S. If S is a G-Galois

and an H-separable extension of SG, then S∗G is an Azumaya algebra if and only if S is

Azumaya. Moreover, the structure theorem for a central Galois algebra of F.R. DeMeyer

is generalized to a G-Galois extension with an inner Galois group.

1 – Introduction

Galois extensions of rings and Galois algebras have been intensively investi-

gated (see References). In particular, central Galois algebras with an inner Galois

group was shown to be Azumaya projective group algebras ([2] and [3]), and the

concept of a central Galois algebra was generalized to an H-separable Galois ex-

tension of a noncommutative ring ([8]). The purpose of the present paper is to

characterize an H-separable Galois extension in terms of skew group rings and to

generalize the structure theorem of a central Galois algebra with an inner Galois

group as given by F.R. DeMeyer ([2] and [3]) to an H-separable Galois extension.

Let S be a ring with 1, G a finite automorphism group of S, C the center of S,

SG the subring of the elements fixed under each element in G, and S∗G the skew

group ring of G over S. Assume S is an H-separable extension of SG. If the

order of G is a unit in S we show that S is an Azumaya algebra if and only if so

is S∗G. In this case, S is Galois over SG with Galois group G. Moreover, if S is a

G-Galois extension of SG with an inner Galois group G, we give a sufficient and

necessary condition for the commutator subring of SG in S to be a central Galois
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algebra with an inner Galois group. This generalizes the structure theorem of a

central Galois algebra with an inner Galois group of F.R. DeMeyer ([2]).

2 – Definitions and notations

Throughout, we let S be a ring with 1, G a finite automorphism group of

S, SG = {s in S / g(s) = s for each g in G}, and S∗G the skew group ring

such that g s = g(s) g for each s in S and g in G. Then S is called a G-Galois

extension of SG if there exist {ai, bi in S, i = 1, 2, ..., m, for some integer m}

such that
∑

ai bi = 1 and
∑

ai g(bi) = 0 for each g 6= 1 in G. The set {ai, bi}

is called a G-Galois system for S. A ring extension R ⊂ T is called a separable

extension if there exist {si, ti in T , i = 1, 2, ..., k, for some integer k} such that
∑

a si⊗ti =
∑

si⊗ti a for all a in T where ⊗ is over R, and
∑

ai bi = 1. R ⊂ T is

called an H-separable extension if T ⊗R T is isomorphic to a direct summand of a

finite direct sum of T as a T -bimodule (see [5]). It is known that an H-separable

extension is a separable extension. A separable algebra over its center is also

called an Azumaya algebra.

3 – Azumaya skew group rings

In this section, if the order of G is a unit in S we characterize an Azumaya

skew group ring S∗G in terms of the Azumaya algebra S. Let ∆ = VS(S
G), the

commutator subring of SG in S, C = the center of S, C ′ = the center of ∆, and

Z = the center of S∗G.

Lemma 3.1. If S is an H-separable and G-Galois extension of SG, then

S∗G ∼= ∆ ⊗C S◦ where S◦ is the opposite ring of S. Moreover, the center of

SG = C ′ = the center of ∆.

Proof: Since S is a G-Galois extension of SG, S∗G ∼= HomSG(S, S) ([3],

Theorem 1). Since S is an H-separable extension of SG, HomSG(S, S) ∼= ∆⊗C S◦

([8], Definition 1 or [9], p. 106) and VS(VS(S
G)) = SG ([8], Proposition 4). Hence

VS(∆) = SG. Thus C ′ = V∆(∆) ⊂ SG. Moreover, noting that ∆ = VS(S
G), we

have that C ′ ⊂ the center of SG and that C ′ ⊃the center of SG; and so C ′ =the

center of SG.

In the following, the order of G, n is assumed to be a unit in S.
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Theorem 3.2. Let S be an H-separable extension of SG and faithful over

S∗G. If S∗G is an Azumaya algebra, then S is also an Azumaya algebra and a

G-Galois extension of SG.

Proof: Since S is projective as a left S-module, it is also projective as a left

S∗G-module. This follows because n is a unit in S. That is, for any exact sequence

of left S∗G-modules, p : M → S → 0, there exists a splitting S-homomorphism

q : S → M . Then it is straightforward to check that q′ : S → M by q′(s) =
1
n

∑

gi q(g
−1
i s) for all s in S and gi in G is a left S∗G-splitting homomorphism

of p, where gi s = gi(s). But S∗G is an Azumaya algebra over Z, so S is finitely

generated and projective over Z by the transitivity of finitely generated and

projective modules. Since Z is a commutative ring and S is faithful over Z,

S is a progenerator Z-module. Noting that S∗G is an Azumaya Z-algebra, we

have that S is also a progenerator S∗G-module ([6], Lemma 1). But then, by

Morita’s theorem, SG ∼= HomS∗G(S, S) implies that S∗G ∼= HomSG(S, S) and S

is a finitely generated and projective right SG-module. This proves that S is a G-

Galois extension of SG. Moreover, since S is anH-separable extension of SG, ∆ is

a finitely generated and projective C-module ([8], Proposition 4). By Lemma 3.1,

S∗G ∼= ∆⊗C S◦ ∼= ∆⊗C′ C ′ ⊗C S◦ so the center of ∆⊗C′ C ′ ⊗C S◦ is C ′. Thus

∆ and C ′ ⊗C S◦ are Azumaya algebras over C ′ ([4], Theorem 4.4). Since ∆ is

an Azumaya C ′-algebra, C ′ is a C ′-direct summand of ∆. Hence C ′ is a finitely

generated and projective C-module because ∆ is so over C ([8], Proposition 4).

Noting that C ′ is faithful over C, we have that C ′ is a progenerator over C.

Thus C is a C-direct summand of C ′. Therefore, that C ′⊗C S◦ is separable over

C ′ implies that S is separable over C ([4], Theorem 3.8, p. 55). Thus S is an

Azumaya C-algebra.

In the proof of Theorem 3.2, we note that S is a G-Galois extension of SG.

Next is the converse of the theorem.

Theorem 3.3. Let S be an H-separable and G-Galois extension of SG.

If S is an Azumaya algebra, then so is S∗G.

Proof: Since S is an H-separable and G-Galois extension of SG, S∗G ∼=

HomSG(S, S) ∼= ∆⊗C S◦ ∼= ∆⊗C′ (C ′⊗C S◦) as given in the proof of Theorem 3.2.

By hypothesis, S is an Azumaya C-algebra, C ′ ⊗C S◦ is an Azumaya C ′-algebra

([4], Lemma 5.1). Moreover, since n is a unit in S, ∆ is a separable algebra over

C ([8], Proposition 4). But then ∆ is an Azumaya C ′-algebra ([4], Theorem 3.8).

Thus ∆ ⊗C′ (C ′ ⊗C S◦) is an Azumaya C ′-algebra; and so S∗G is an Azumaya

algebra.
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4 – Galois extensions

In this section, we shall generalize the structure theorem of a central Galois

algebra with an inner Galois group to a Galois extension with an inner Galois

group. We recall that KGf is a projective group algebra of a group G over a

commutative ring K if it is a K-algebra with a K-basis {Ui / gi in G} such that

UiUj = Uij f(gi, gj) where f : G × G → the group of units in K is a factor set.

A similar definition of a projective group ring of G over a ring with 1 is defined

where the factor set f has images in the group of units in the center of the ring

([2) and [10]). We keep the notations as given in Section 3: ∆ = VS(S
G) and

C ′ = the center of ∆.

Lemma 4.1. Let Ji = {a in S / a s = gi(s) a for all s in S} for each gi in G.

If S is a G-Galois extension of SG, then ∆ =
∑

Ji C
′ for all gi in G.

Proof: By Proposition 1 in [7], p. 311, ∆ =
∑ ⊕

Ji. Since C ⊂ C ′, the

lemma holds.

Clearly, ∆ is a G-invariant subring of S. Let I∆ = {gi / gi(d) = d for all d in

∆}. Then I∆ is a normal subgroup of G, and we denote the quotient group G/I∆
by G′. K. Sugano ([8]) gives several equivalent conditions for a central G′-Galois

extension ∆. Next is another one when S is a G-Galois extension with an inner

Galois group G. This generalizes the structure theorem of F.R. DeMeyer for a

central Galois algebra with an inner Galois group ([2]).

Theorem 4.2. Let S be a G-Galois extension of SG with an inner Galois

group G. Then, ∆ is a central G′-Galois extension of C ′ if and only if {Ui / g′i in

G′} are linearly independent over C ′ where g′i(s) = Ui s U−1
i .

Proof: Since S is a G-Galois extension with an inner Galois group G such

that g′i(s) = Ui s U−1
i for some Ui in S and all s in S, S is an H-separable

extension of SG ([8], Corollary 3). For any gi in G, since gi(t) = t for each t in

SG, so Ui is in ∆ (for ∆ = VS(S
G)). Hence ∆ is a G-invariant subring of S. Now

for gi in I∆, gi(d) = d for each d in ∆, so Ui is in C ′. Also, clearly, if Ui is in

C ′, then gi is in I∆. Thus G′ is an inner automorphism group of ∆ such that

g′i(d) = Ui d U−1
i for each d in ∆. Moreover, since the order of G is a unit in S,

∆ is an Azumaya C ′-algebra ([8], Proposition 4). But then J−1
i = Ui C

′, where

J ′
i = {d in ∆ / da = g′i(a) d for all a in ∆} ([8]). Furthermore, since S is G-Galois

over SG, ∆ =
⊕ ∑

Ji as C-modules for all gi in Gi ([7], Proposition 1, p. 311).

Noting that Ji ⊂ J ′
i for each gi in G, we have that ∆ =

∑

J ′
i for all g

′
i in G′ as a

sum of C ′-modules. Thus ∆ =
∑

Ui C
′ for all g′i in G′. Therefore, {Ui / g′i in G′}
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are linearly independent over C ′ if and only if the sum is direct, ∆ =
⊕ ∑

Ui C
′

for g′i in G′. This is equivalent to that ∆ is a central G′-Galois algebra over C ′

(for J ′
i J ′

j = C ′ where g′j = (g
′
i)
−1) ([7], Theorem 1, p. 344).

Corollary 4.3. Let S be a G-Galois extension of SG with an inner Galois

group G. If {Ui / g′i in G′} are linearly independent over C ′, then VS(C
′) = SGG′

f ,

a projective group ring of G′ over SG.

Proof: By Theorem 4.2, ∆ is a central G′-Galois algebra with an inner Galois

group G′, so it is a projective group algebra over C ′, C ′ G′

f ([2], Theorem 3). Since

the order of G is a unit in S, VS(C
′) = SG∆ ∼= SG ⊗C ∆ ([8], Theorem 6). This

is a projective group ring of G′ over SG.

Corollary 4.4. By keeping the hypotheses of Corollary 4.3, if G ∼= G′, then

S ∼= SGGf , the skew group ring of G over SG.

Proof: By Theorem 4.2, ∆ is a central G′-Galois algebra. Now G ∼= G′,

SG∆ is a G-Galois extension of SG. But S is also a G-Galois extension of SG,

so S = SG Gf .

The following are more consequences of Theorem 4.2 on the skew group ring

S∗G. Let S be a G-Galois extension of SG with Galois group G not necessarily

inner. Then G induces an inner automorphism group G∗ of S∗G; that is, for any

gi in G, and
∑

si gi in S∗G, gj(
∑

si gi) =
∑

gj(si) (gj gi g
−1
j ) = gj(

∑

si gi) g
−1
j .

Using the G-Galois system for S as a G∗-Galois system for S∗G, we conclude

that S∗G is also a G∗-Galois extension of (S∗G)G
∗

. Denote VS∗G((S
∗G)G

∗

) by

∆∗, its automorphism group (G∗)′ induced by G∗, and center by (C∗)′.

Corollary 4.5. Let S be a G-Galois extension of SG. If ∆∗ is a (G∗)′-Galois

extension, then it is a central (G∗)′-Galois algebra over (C∗)′ and VS∗G((C
∗)′) is

a projective group ring of (G∗)′ over (C∗)′.

Proof: Since S is a G-Galois extension, S∗G is a G∗-Galois extension with

an inner Galois group G∗ by the above remark. Hence S∗G is also an H-separable

extension of (S∗G)G
∗

([8], Corollary 3). By hypothesis, ∆∗ is a (G∗)′-Galois ex-

tension, so it is a central (G∗)′-Galois extension by Corollary 4.3 and VS∗G((C
∗)′)

is a projective group ring of (G∗)′ over (C∗)′ by Corollary 4.3.

Corollary 4.6. If S∗G is an Azumaya Z-algebra, then the subalgebra ZG

generated by the elements of G is a projective group algebra of (G∗)′ over the

center of ZG, where (G∗)′ is the automorphism group of ZG induced by G∗.
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Proof: Since S∗G is an Azumaya Z-algebra, S is a G-Galois extension by

the proof of Theorem 3.2. The order of G is a unit in S, so ZG is a separa-

ble Z-algebra. Hence ZG = VS∗G(VS∗G(ZG)) ([4], Theorem 4.3). Noting that

VS∗G(ZG) = (S∗G)(G
∗)′ we have that ZG = VS∗G((S

∗G)(G
∗)′). Thus by Corol-

lary 4.5, ZG is a projective group algebra.

We remark that Corollary 4.4 is a generalization of the structure theorem of

a central Galois algebra with an inner Galois group as given by F.R. DeMeyer

([3], Theorem 6).

5 – Examples

In this section, we give two examples of Galois extensions, one H-separable

and the other not an H-separable extension.

(I) Let J be the ring of integers, Q = J [i, j, k] the quaternion ring over J ,

S = Q×Q the direct product of Q, and g : S → S by g(a, b) = (b, a) for all (a, b)

in S.

Then g is an automorphism of S of order 2.

Let G = {1, g}. Then,

(1) SG = {(a, a) / a in Q}.

(2) S is a G-Galois extension of SG because {a1 = (1, 0), a2 = (0, 1); b1 =

(1, 0), b2 = (0, 1)} is a G-Galois system for S.

(3) The center C of S = J × J .

(4) S is not an H-separable extension of SG, because C is not contained in

SG.

(II) Let Q = R[i, j, k] be the quaternion ring over the real field R, S = Q×Q,

g : S → S by g(a, b) = (b, a) for all (a, b) in S, and G = {1, g}. Then

(1) S is a G-Galois extension but not an H-separable extension of SG.

(2) The order of G is a unit in S.

(3) S is an Azumaya algebra over C.

(4) S∗G is an Azumaya algebra over CG.

(5) S∗G is a G-Galois extension of (S∗G)G
∗

where G∗ is an inner Galois

group induced by G. Thus S∗G is also an H-separable extension (see

Corollary 4.6).
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