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THE DIOPHANTINE EQUATIONS

x2 − k = 2 · Tn

(
b2 ± 2

2

)

Gheorghe Udrea

It is the object of this note to demonstrate that the two equations of the

title have only finitely many solutions in positive integers x and n for any given

integers b and k, k 6= ±2. In these equations (Tn(x))n≥0 is the sequence of the

Chebyshev polynomials of the first kind.

1 – Chebyshev polynomials of the first kind, (Tn(x))n≥0, are defined by the

recurrence relation

(1.1) Tn+1(x) = 2x · Tn(x)− Tn−1(x) , ∀x ∈ C, ∀n ∈ N∗ ,

where T0(x) = 1 and T1(x) = x, C being the set of complex numbers.

Also, we have the sequence (T̃n(x))n≥0 of polynomials “associated” of the

Chebyshev polynomials (Tn(x))n≥0, defined as it follows:

(1.2) T̃n+1(x) = 2x · T̃n(x) + T̃n−1(x) , ∀x ∈ C, ∀n ∈ N∗ ,

with T̃0(x) = 1 and T̃1(x) = x.

The connection between the sequence (T̃n)n≥0 and the sequence (Tn)n≥0 is

given by the simple relations:

(1.3)





T̃k(x) =
Tk(i · x)

ik
,

Tk(x) =
T̃k(i·x)

ik
, k ∈ N, x ∈ C ,

where i2 = −1.
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Two important properties of the polynomials (Tn(x))n≥0 are given by the

formulas:

Tn(cosϕ) = cosnϕ , ϕ ∈ C, n ∈ N ,(1.4)

and

Tm(Tk(x)) = Tmk(x) , ∀m, k ∈ N, ∀x ∈ C .(1.5)

2 – We are going to prove the following lemmas:

Lemma 1. If (Tn(x))n≥0 is the sequence of Chebyshev polynomials of the

first kind, then one has

(2.1) Tn(a
2 − 1) = 2 ·

(
Tn

(
a√
2

))2

− 1 , ∀n ∈ N, ∀ a ∈ C .

Proof: Indeed, we have

Tn(a
2 − 1) = Tn

(
2 ·
(

a√
2

)2

− 1

)
= Tn

(
T2

(
a√
2

))

= T2

(
Tn

(
a√
2

))
= 2 ·

(
Tn

(
a√
2

))2

− 1 , q.e.d. .

Now, if we put in (2.1) a = b√
2
, we obtain

2 · Tn

(
b2 − 2

2

)
= z2

k − 2 ,

where zn = 2 · Tn(
b
2) ∈ Z, ∀n ∈ N, ∀ b ∈ Z.

Thus, we have

x2 − k = z2
n − 2 , k 6= 2 ,

i.e.,

x2 − z2
n = k − 2 , k 6= 2 .(2.2)

Lemma 2. If (T̃n(x))n≥0 is the sequence of polynomials “associated” of the

Chebyshev polynomials (Tn(x))n≥0, then one has:

(2.3)

a) T̃2n

(
b

2

)
= Tn

(
b2 + 2

2

)
, b ∈ C, n ∈ N ;

b) T̃2n

(
b

2

)
= 2 · T̃ 2

n

(
b

2

)
− (−1)n , b ∈ C, n ∈ N .
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Proof: We have:

a) T̃2n

(
b

2

)
=

T2n

(
i · b

2

)

i2n
= (−1)n · T2n

(
i · b

2

)

= (−1)n · Tn

(
T2

(
i · b

2

))
= (−1)n · Tn

(
2 ·
(
i · b
2

)2

− 1

)

= (−1)n · Tn

(
−
(
b2

2
+ 1

))
= (−1)2n · Tn

(
b2 + 2

2

)
, q.e.d.

b) T̃2n

(
b

2

)
=

T2n

(
i · b

2

)

i2n
= (−1)n · T2n

(
i · b

2

)

= (−1)n · T2

(
Tn

(
i · b

2

))
= (−1)n ·

(
2 · T 2

n

(
i · b

2

)
− 1

)

= (−1)n ·
(
2 ·
(
in · T̃n

(
b

2

))2

− 1

)

= (−1)n ·
(
2 · (−1)n · T̃ 2

n

(
b

2

)
− 1

)

= 2 · T̃ 2
n

(
b

2

)
− (−1)n , q.e.d. .

Now, from Lemma 2 we obtain:

2 · Tn

(
b2 + 2

2

)
= 2 · T̃2m

(
b

2

)
= 2 ·

(
2 · T̃ 2

n

(
b

2

)
− (−1)n

)

=

(
2 · T̃n

(
b

2

))2

− 2(−1)n

= z̃2
n − (−1)n · 2 ,

where z̃n = 2 · T̃n(
b
2) ∈ Z, ∀ b ∈ Z, ∀n ∈ N.

Thus, we have

x2 − k = z̃2
n − 2(−1)n ,(2.4)

or, equivalently,

x2 − z̃2
n = k ± 2 , k 6= ±2 .(2.5)

It will be observed that for given k ∈ Z, k 6= ±2, the set of values of x

satisfying equations (2.2) and (2.5) is finite and, accordingly, there are finitely

many values of n satisfying the equations x2 − k = 2 · Tn(
b2±2

2 ), n ∈ N, b ∈ Z.
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Thus, for each given k ∈ Z, k 6= ±2, there are finitely many possible values

of x, n ∈ N, satisfying the equation x2 − k = 2 · Tn(
b2+2

2 ), b ∈ Z. This concludes
the proof of the result of this paper.

Remarks.

α) For b = 1 in x2 − k = 2 · Tn(
b2+2

2 ), we obtain the equation

(2.6) x2 − k = L2n , n ∈ N ,

where (Ln)n≥0 is the sequence of the Lucas numbers, defined as it follows:

Ln+1 = Ln + Ln−1 , L0 = 2, L1 = 1 .

Clearly, in (2.6) we utilized the identity

(2.7) Tn

(
3

2

)
=

1

2
· L2n , ∀n ∈ N .

β) If we put k = 0 in (2.6) one obtains (see (2.5)) that the numbers L2n,

n ∈ N, are not perfect squares.

γ) For b = 4 in x2 − k = 2 · Tn(
b2+2

2 ), we obtain the equation

(2.8) x2 − k =
√
5 · F 2

6n + 4 , n ∈ N ,

where (Fn)n≥0 is the sequence of the Fibonacci numbers:

Fn+1 = Fn + Fn−1 , F0 = 0, F1 = 1 .

In (2.8) we utilized the identities

F6n = 8 · Un−1(9) , ∀n ∈ N ,

and

(2.10) T 2
n(x)− (x2 − 1) · U2

n−1(x) = 1 , ∀x ∈ C, ∀n ∈ N∗ ,

where (Un(x))n≥0 is the sequence of Chebyshev polynomials of the second kind

(2.11) Un+1(x) = 2x · Un(x)− Un−1(x) , x ∈ C, n ∈ N∗ ,

with U0(x) = 1 and U1(x) = 2x.
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δ) If we put k = 0 in (2.8) one obtains (see (2.5)) that the equation

(2.12) x4 − 5 · F 2
6n = 4

has not solutions (x, n) ∈ Z× N.
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