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THE DIOPHANTINE EQUATIONS

2
2ok, (P22)

GHEORGHE UDREA

It is the object of this note to demonstrate that the two equations of the
title have only finitely many solutions in positive integers  and n for any given
integers b and k, k # £2. In these equations (7, (z))n>0 is the sequence of the
Chebyshev polynomials of the first kind.

1 — Chebyshev polynomials of the first kind, (7,(z))n>0, are defined by the
recurrence relation

(1.1) Toi1(x) =22 -Tp(z) — Th-1(z), VaxeC, VneN*"

where Tp(z) = 1 and Ti(x) = z, C being the set of complex numbers.
Also, we have the sequence (7),(z))n>0 of polynomials “associated” of the
Chebyshev polynomials (7}, (z)),>0, defined as it follows:

(1.2) Tnii(z) =22 - Tp(z) + T 1(z), VzeC, VneN*,

with Ty(z) = 1 and T (2) = z.
The connection between the sequence (T,),>0 and the sequence (1},)n>0 is
given by the simple relations:

Tk(x):%, keN, zeC,

where i2 = —1.
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Two important properties of the polynomials (7}, (z))n,>0 are given by the
formulas:

(1.4) T, (cosp) =cosny, ¢eC, neN,
and
(1.5) Ton(T(z)) = Thp(z), Vm,keN, VazeC.

2 — We are going to prove the following lemmas:

Lemma 1. If (T,,(z))n>0 is the sequence of Chebyshev polynomials of the
first kind, then one has

a

2
E» —1, VneN, VaeC.

(2.1) Th(a*—1)=2- (Tn<

Proof: Indeed, we have
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where 2, =2-T,(5) € Z,Yn e N, Vb € Z.
Thus, we have

3:2—/@:,22—2, k#2,
ie.,

(2.2) et —2l=k—-2, k#2.u

Lemma 2. If (T,())n>0 is the sequence of polynomials “associated” of the
Chebyshev polynomials (T,,(x))n>0, then one has:

<b2+2

a) T2n< ), beC, neN;

)-
) 3()—(—1)”, beC, neN.
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Proof: We have:

b
T (l b

a) T (g) = TZ> =(=1)" T (Z : g)
o) - ()

~ (b
=2.77 <§> —(=D", qed..
Now, from Lemma 2 we obtain:

b2 + 2 -
2'Tn( + >:2-T2m

2

where z, =2-T,(4) € Z, Vb€ Z,Vn € N.
Thus, we have
(2.4) 2 —k=22—2(-1)",
or, equivalently,
(2.5) 2B =k+2, k#£2.

It will be observed that for given k € Z, k # 42, the set of values of =
satisfying equations (2.2) and (2.5) is finite and, accordingly, there are finitely

many values of n satisfying the equations 22 —k =2 - Tn(b2§:2), neN, beZ.
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Thus, for each given k € Z, k # £2, there are finitely many possible values
of x, n € N, satisfying the equation 2> — k =2 - Tn(b2;'2), b € Z. This concludes
the proof of the result of this paper. n

Remarks.
a)Forb=1ina2? -k =2- Tn(bQTH), we obtain the equation
(2.6) > —k=1Ly,, neN,
where (Ly,)n>0 is the sequence of the Lucas numbers, defined as it follows:

Ln+1:Ln+Ln717 L0:2> lel-

Clearly, in (2.6) we utilized the identity

3 1

B) If we put £ = 0 in (2.6) one obtains (see (2.5)) that the numbers Loy,
n € N, are not perfect squares.

v)Forb=4inz? k=2 Tn(sz“), we obtain the equation
(2.8) a2 —k=1/5-F2 +4, neN,
where (F},),>0 is the sequence of the Fibonacci numbers:

Foi1=Fy+ Foq, Fo=0, Fj=1.
In (2.8) we utilized the identities
Fon=8-Up_1(9), V¥YneN,

and
(2.10) T2(x) — (2> = 1)- U2 ((z) =1, VzeC, ¥YneN*,
where (Up(z))n>0 is the sequence of Chebyshev polynomials of the second kind
(2.11) Upnt1(z) =2z - Uy(x) — Up—1(x), z€C, neN"

with Up(z) =1 and U;(x) = 2.
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) If we put £ =0 in (2.8) one obtains (see (2.5)) that the equation
(2.12) ' —5-F2 =4

has not solutions (z,n) € Z x N.
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