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REPRESENTATION OF CURVES OF CONSTANT WIDTH
IN THE HYPERBOLIC PLANE

P.V. Araújo *

Abstract: If γ is a curve of constant width in the hyperbolic plane H2, and l is a

diameter of γ, the track function x(θ) gives the coordinate of the point of intersection

l(x(θ)) of l with the diameter of γ that makes an angle θ with l. We show that x(θ)

determines the shape of γ up to the choice of a constant; this provides a representation

of all curves of constant width in H2. The track function is locally Lipschitz on (0, π),

satisfies |x′(θ) sin θ| < 1 − ε for some ε > 0, and, if l is appropriately chosen, has a

continuous extension to [0, π] such that x(0) = x(π); conversely, any function satisfying

these three conditions is the track function of some curve of constant width. As a

by-product of the representation thus obtained, we prove that each curve of constant

width in H2 can be uniformly approximated by real analytic curves of constant width,

and extend to all curves of constant width some results previously established under

restrictive smoothness assumptions.

1 – Introduction

A closed convex curve γ in the Euclidean plane is said to have constant width

W if the distance between every two distinct parallel lines of support of Ω is

equal to W; equivalently, γ has constant width W if, for each p ∈ γ, the maxi-

mum distance from p to other points of γ is equal to W. This latter condition

can be taken as the definition of constant width for simple closed curves in ar-

bitrary metric spaces: here we are concerned with such curves in the hyperbolic
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plane with Gaussian curvature −1, denoted throughout by H2 (an alternative
approach to constant width in H2, based on horocycles, appears in [3]). (A word
on terminology: by lines or segments in H2 we understand geodesics or segments

of geodesic.)

Let γ be a simple closed curve in H2 with constant width W: if p, q ∈ γ are

such that |p q| = W, the segment p q is called a diameter of γ; thus diameters

are maximal chords, and each point of γ belongs to at least one diameter. Every

diameter is a double normal of γ, cutting γ orthogonally at both ends (more

precisely, the perpendicular line at each extremity of each diameter is a line of

support of γ); and every chord of γ that is orthogonal to γ at one end is a

diameter, and therefore a double normal (see [1] and [2]).

It was observed in [2] that any two distinct diameters must intersect each

other. Let us now fix a diameter l(x) of γ, where x is the arc-length parameter

(thus we are also fixing an orientation of l in the sense of increasing xx): letting p

start at the positive end of l, the angle θ that the oriented diameters with positive

end p make with l increases strictly and continuously from 0 to 2π as p performs

one counterclockwise revolution around γ. (Notice that each corner point of γ is

an end of more than one diameter; these diameters spread an angle and must he

taken up in succession.) We let l(x(θ)) be the point of intersection of l and the

oriented diameter lθ that cuts l at an angle θ, and let f(θ) be the distance from

l(x(θ)) to the positive end of lθ: we call x(θ) the track function, and f(θ) the

intersection function, of the curve γ (relative, of course, to the fixed diameter l).

Thus, both the track and intersection functions of the circle are constant; but we

refer the reader to [2, Example 7] for a more instructive example. Below we list

some properties of x(θ) and f(θ) that follow readily from the definition:

Lemma 1. Both the track function x(θ) and the intersection function f(θ)

are continuous on each interval (0, π) and (π, 2π). Furthermore, we have for

θ ∈ (0, π):

a) x(θ + π) = x(θ);

b) 0 ≤ f(θ) ≤ W;

c) f(θ) + f(θ + π) =W.

We show in Section 2 that it is possible to choose l in such a way that x(θ)

has a continuous extension to [0, 2π]; then f(θ) also has a continuous extension

to [0, 2π], and x(θ) and f(θ) are then extended to R by periodicity, so that a),
b), c) remain valid on R.
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It is clear that x(θ) and f(θ) completely determine the shape of γ, but these

functions are not independent of each other: under the assumption that γ is at

least C3, we prove in [2] that

(1) f ′(θ) = −x′(θ) cos θ ;

as a result of (1), we see that f(θ) determines x(θ) up to the choice of a constant;

since this constant merely corresponds to a translation along the line l, we see that

f(θ) embodies all the information about the shape of γ (this is [2, Remark 9]);

in particular, f(θ) is constant if and only if γ is a circle. On the other hand,

x(θ) also determines f(θ) up to a constant, and the different possible choices of

this constant lead to a family of parallel curves. It is therefore only a matter of

convenience which of the functions f(θ) and x(θ) do we decide to work with, and

convenience suggests that we choose x(θ).

For general curves of constant width we prove in Section 2 (Proposition 2)

that the track function is locally Lipschitz (L.L.) on (0, π); and, in Section 4

(Theorem 10), we prove that f(θ) = λ −
∫ θ
0 x

′(φ) cosφdφ for some constant λ,

thus showing that f(θ) is also L.L. on (0, π) and that (1) is valid for almost

every θ ∈ R. As a consequence, we obtain (Theorem 10) a general parame-

terization γ(θ) of curves of constant width, which is L.L. on R\{nπ : n ∈ Z}.
Using this parameterization, we prove in Theorem 11 that each such curve γ(θ)

can be uniformly approximated by analytic curves γ̃(θ) of constant width (i.e.,

max0≤θ≤2π |γ(θ)− γ̃(θ)| can be made as small as we wish). [The analogous result

for the Euclidean plane E2 was established in [7] by Wegner.] These results are
then used in Section 5 to generalize results previously known only for differen-

tiable curves (Theorem 12), and to prove some new results (Theorem 13).

Another question is whether any continuous function x(θ), periodic of period

π and L.L. on (0, π), is the track function of some curve of constant width. Not

all functions will do: it is necessary that |x′(θ) sin θ| be bounded away from 1;

but it turns out that this condition is also sufficient. This is proved in Section

3 (Theorem 7) for differentiable functions, and in full generality in Section 4

(Theorem 8).

This paper owes some inspiration to the work of Hammer and his co-authors

([4]–[6]), but the parameterization γ(θ) that we obtain, although also based on the

diameters of γ, is not the direct analogue for H2 of the representation Hammer
obtains in [5] for curves of constant width in E2, for the parameterizing angle
he uses is different. We believe our approach is justified by the results so far

obtained (including the main result in [2] and those in Section 5 here).
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2 – Families of lines in H2

Consider a curve γ ⊆ H2 of constant width W. Let L be the set of lines in H2
that extend the diameters of γ. This set L possesses the following properties:

i) any two distinct lines in L intersect each other;

ii) the distance between any two such intersection points is not greater than

W;

iii) given a line l0 ∈ L and θ ∈ (0, π), there exists exactly one line lθ ∈ L such

that the angle from l0 to lθ equals θ.

In this section we work in the abstract with a set L of lines satisfying i)–iii):

it is of no consequence how such set originated. We start by fixing a line l0(x)

in L parameterized by the the arc-length x. As before, the track function x(θ)

of the family L (relative to the line l0) gives the coordinate in l0 of the point in

l0 ∩ lθ.

Proposition 2. The track function x(θ) is locally Lipschitz on (0, π); hence

it possesses a derivative almost everywhere. Moreover, the quantity x′(θ) sin θ is

bounded.

Proof: Given 0 < θ0 <
π
2 , we show that x(θ) satisfies a Lipschitz condition

on [θ0, π − θ0]. Take θ1 and θ2 in this interval: if x(θ1) 6= (θ2), then the lines lθ1 ,

lθ2 and l0 form a triangle whose angles adjacent to l0 are either θ1 and π − θ2,

or π − θ1 and θ2; in both cases, the third angle, which we denote by α(θ1, θ2),

is less than |θ1 − θ2|. By condition ii) above, no side of this triangle exceeds W.

Applying the law of sines for hyperbolic triangles, we have

sinh
(
|x(θ1)− x(θ2)|

)

sin
(
α(θ1, θ2)

) ≤
sinhW

sin θ1
,

and therefore

(2)
∣∣∣x(θ1)− x(θ2)

∣∣∣ ≤
sinhW

sin θ1
|θ1 − θ2| ≤

sinhW

sin θ0
|θ1 − θ2| ,

which establishes the Lipschitz condition on [θ0, π− θ0]. If x
′(θ1) exists, then the

first inequality in (2) also shows that |x′(θ1) sin θ1| ≤ sinhW, and this proves our

second assertion.
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Lemma 3. For fixed θ1 ∈ (0, π), and denoting by α(θ1, θ) ∈ [0,
π
2 ] the

smallest of the two angles between lθ1 and lθ, we have θ → θ1 if and only if

α(θ1, θ)→ 0.

Proof: The only if part is obvious, since α(θ1, θ) ≤ |θ1 − θ| by the proof

of Proposition 2. We now assert that θ 7→ α(θ1, θ) is continuous: indeed, and

ignoring degenerate cases, the lines lθ1 , lθ and lθ′ , form a triangle ∆(θ1, θ, θ
′)

whose sides do not exceed W and one of whose angles is smaller than |θ − θ′|;

hence, as θ′ → θ, the area of ∆(θ1, θ, θ
′) becomes arbitrarily small and the sum

of its other two angles approaches π, which means that α(θ1, θ
′) → α(θ1, θ) and

proves our assertion. In conclusion, as θ → θ1 from above or from below, the

angle α(θ1, θ) takes on all possible small values; and this proves the if part since,

by condition iii) above, there are, for each 0 < ϕ ≤ π
2 , at most two angles θ such

that α(θ1, θ) = ϕ.

We notice that Proposition 2 also holds for sets of lines in the Euclidean plane

E2 satisfying i)–iii): the proof is virtually the same. (For lines in E2, this result,
with a different proof, is implicit in the work of Hammer and Sobczyk [4].) This

fact is used in the proof of our next proposition, which, together with Lemma

3, says that, for almost all choices of the fixed line l0 ∈ L, the resulting track

function x(θ) has a continuous extension to [0, π] satisfying x(0) = x(π). For

θ 6= θ′, we denote by p(θ, θ′) the intersection point of lθ and lθ′ .

Proposition 4. There exists limθ′→θ p(θ, θ
′) for almost every θ ∈ (0, π).

Proof: We make use of the existence of a geodesic mapping H between H2
and the open unit disk U ⊆ E2: H is a C∞ diffeomorphism H2 → U that sends
the geodesics of H2 onto chords of U (this is of course just a fancy presentation of
the so-called Beltrami disk model for hyperbolic geometry). Consider the setM

of straight lines in E2 that extend the segments H(l), l ∈ L. This setM has the

properties i)–iii) listed above: this is obvious for i) and ii) (although the constant

in ii) may change), and less obvious for iii); we now prove iii).

Let r0(t) be the line in M corresponding to the fixed line l0(x) in L: here

t is the arc-length parameter along r0, and we assume that the function t =

T (x) such that H(l0(x)) = r0(T (x)) is monotonous increasing. Now consider

the differentiable function h : R × [0, π] → [0, π] defined as follows: if the line

l in H2 intersects l0 at l0(x) and the angle from l0 to l is θ, then the angle

from r0 to H(l) is h(x, θ); also h(x, 0) = 0 and h(x, π) = π. The continuous

function φ(θ) = h(x(θ), θ) then gives the angle from r0 to H(lθ); and, since x(θ)

is bounded, we have limθ→0 φ(θ) = 0 and limθ→π φ(θ) = π, which shows that φ(θ)

assumes all values in (0, π) and proves iii).
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The expression for ϕ = φ(θ) shows that this function is L.L. on (0, π); but the

whole argument can be reversed to show that φ−1 is also L.L. (just observe that,

by Proposition 2, the track function t(ϕ) relative to r0 of the set M, is L.L.).

Hence, a set R ⊆ (0, π) has measure zero if and only if φ(R) has measure zero.

Denoting by rϕ the line in M that makes the angle ϕ with r0, and by q(ϕ,ϕ
′)

the intersection point of rϕ and rϕ′ , it therefore suffices to prove the following:

Claim. There exists limϕ′→ϕ q(ϕ,ϕ
′) for almost every ϕ ∈ (0, π).

(This result is Theorem 2 in [4], but we reproduce the proof here for the

reader’s convenience.) We assume that the line r0 is the horizontal axis in E2 and
that r0(0) is the origin, and put u(ϕ) = (cosϕ, sinϕ), u

′(ϕ) = (− sinϕ, cosϕ).

The line rϕ is then given by

(3) rϕ(λ) = a(ϕ)u′(ϕ) + λu(ϕ) , λ ∈ R ,

where a(ϕ) = −t(ϕ) sinϕ. Notice that, letting a(0) = a(π) = 0, a(ϕ) is continu-

ous on [0, π] and (3) is the equation of r0 when ϕ = 0; also, a(ϕ) is L.L. on (0, π).

(In fact, a(ϕ) is uniformly Lipschitz on [0, π], since a′(ϕ) = t(ϕ) cosϕ+t′(ϕ) sinϕ

is bounded by Proposition 2.) Hence a′(ϕ) exists almost everywhere, and we

conclude the proof of the claim by showing that limϕ′→ϕ q(ϕ,ϕ
′) exists whenever

a′(ϕ) does. Indeed, we have q(ϕ,ϕ′) = rϕ(λ), where

λ =
−a(ϕ)

〈
u
′(ϕ),u′(ϕ′)

〉
+ a(ϕ′)

〈
u(ϕ),u′(ϕ′)

〉

=

−a(ϕ)

〈
u
′(ϕ),

u
′(ϕ′)− u

′(ϕ)

ϕ′ − ϕ

〉
+
a(ϕ′)− a(ϕ)

ϕ′ − ϕ〈
u(ϕ),

u
′(ϕ′)− u

′(ϕ)

ϕ′ − ϕ

〉 ,

and, if a′(ϕ) exists, this converges to −a′(ϕ) when ϕ′ → ϕ.

Now we consider the differentiability properties of the set of lines L: if the

track function x(θ) is Ck (1 ≤ k ≤ ω), we could say by definition that L is Ck

provided we were certain that all track functions of L (relative to each line of L)

were also Ck. That this does indeed happen is more or less obvious, but we think

the following indirect argument might be of interest. We first claim that x(θ) and

the track function ofM, t(ϕ), are of the same differentiability class: for if x(θ) is

Ck then so is φ(θ) = h(x(θ), θ); since φ−1 is Lipschitz, φ′(θ) never vanishes and

therefore φ−1 is also Ck; finally, t(ϕ) = (T ◦ x ◦ φ−1)(ϕ) is also Ck; and, since



CURVES OF CONSTANT WIDTH IN THE HYPERBOLIC PLANE 361

we can reverse the argument, this proves our claim. Now, we define the set of

lines M in E2 to be Ck if the function a(ϕ) appearing in (3) is Ck — or, more

precisely, if the periodic extension of a(ϕ), given by a(ϕ + π) = −a(ϕ), is Ck:

it is clear that the differentiability class of a(ϕ) is independent of the choice of

reference frame. But, since a(ϕ) = −t(ϕ) sinϕ, we have:

Proposition 5. M is of class Ck (1 ≤ k ≤ ω) if and only if the track

function t(ϕ) relative to any line is Ck and has bounded kth-derivative on (0, π),

and has a Ck−1 periodic extension of period π to R. [If k =∞ or k = ω, then by

k − 1 we understand k.]

This complicated wording now gives the definition for sets of lines in H2: we
say L is Ck if its track function x(θ) relative to l0 ∈ L has the properties just

listed for t(ϕ); our discussion shows this is independent of the choice of l0. This

definition, however, is not very practical, but this is easily remedied:

L is of class Ck if and only if the track function
relative to each of its lines is Ck on (0, π).

For proving the if part, we observe that then all track functions t(ϕ) ofM are

Ck on (0, π), and this implies that a(ϕ) in (3) is Ck; hence each t(ϕ) also satisfies

the additional conditions set forth in Proposition 5, and therefore so does each

x(θ).

3 – Existence of curves of constant width with given track function

We first carry out the details of the construction on the assumption that x(θ)

is sufficiently smooth: thus x(θ) is at least C2, and periodic of period π; and we

assume, for a reason that will be clear later on, that |x′(θ) sin θ| is bounded away

from 1.

We fix any line l(x) in H2, where x is the arc-length, and let lθ(ρ) be the line,
again parameterized by arc-length, which starts at l(x(θ)) and makes an angle θ

with l: thus we have lθ+π(ρ) = lθ(−ρ). Consider the mapping Ψ(ρ, θ) = lθ(ρ),

and let (u1,u2) be the positively oriented orthonormal moving frame defined by

u1 =
∂Ψ
∂ρ . We define the coefficients λ1, λ2 by

(4)
∂Ψ

∂θ
= λ1 u1 + λ2 u2 ;
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it is proved in [2, Lemma 8] that

(5) λ1(ρ, θ) = x′(θ) cos θ , λ2(ρ, θ) = −x
′(θ) sin θ cosh ρ+ sinh ρ .

We now define geodesic rectangular coordinates Φ(u, v) based on l: for each

u, the curve v 7→ Φ(u, v) is the unit-speed geodesic that cuts l orthogonally at

l(u) = Φ(u, 0), in such a way that the angle from l′(u) to ∂Φ
∂v (u, 0) is positive.

Thus Φ(u, v) is a coordinate chart covering the whole of H2, and (∂Φ∂u ,
∂Φ
∂v ) is a

positive orthogonal frame at each point.

Lemma 6. For all ρ ∈ R and 0 < θ < π (resp. π < θ < 2π), we have

〈
u2(ρ, θ),

∂Φ

∂u

〉
< 0 (resp.

〈
u2(ρ, θ),

∂Φ

∂u

〉
> 0) .

Proof: Since u2(ρ, θ + π) = −u2(−ρ, θ), it suffices to prove the lemma for

0 < θ < π. It is clear that the desired inequality holds for ρ = 0; and we can

never have 〈u2(ρ, θ),
∂Φ
∂u 〉 = 0 when 0 < θ < π, since the line Ψ(·, θ) can cut no

line Φ(u, ·) at right angles.

We now look for a curve of constant width γ(θ) in the form Ψ(f(θ), θ), and

such that the lines Ψ(·, θ) are the (extended) diameters of γ: the track function

of such a curve relative to the diameter l(x) is obviously x(θ). Since γ ′(θ) is to

be orthogonal to Ψ(·, θ), and hence collinear with u2, equations (4) and (5) give

(6) f ′(θ) = −x′(θ) cos θ ,

(7) γ′(θ) =
{
−x′(θ) sin θ cosh(f(θ)) + sinh(f(θ))

}
u2 .

Put fλ(θ) = λ−
∫ θ
0 x

′(ϕ) cosϕdϕ and γλ(θ) = Ψ(fλ(θ), θ); notice that fλ(θ)+

fλ(θ+π) is constant, and γλ has period 2π. We now show that γλ(θ) has constant

width for λ large enough:

Theorem 7. If λ is such that

(8) fλ(θ) ≥ 0 and − x′(θ) sin θ cosh(fλ(θ)) + sinh(fλ(θ)) ≥ 0

for all θ ∈ [0, 2π], then γλ(θ) is a curve of constant widthW = 2λ−
∫ π
0 x

′(θ) cos θ dθ.

A few remarks are in order. First, if both inequalities (8) degenerate for all

θ ∈ [0, π] then λ = 0 and x(θ) is constant; hence γ0 reduces to a point. In all
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other cases, when x(θ) is not constant and (8) holds, γλ is a curve of constant

width in the proper sense. Second, it follows from (8) that

∣∣∣x′(θ) sin θ
∣∣∣ ≤ max

{
tanh(f(θ)), tanh(f(θ + π))

}
≤ tanhW ,

which shows that there exists λ satisfying (8) if and only if |x′(θ) sin θ| is bounded

away from 1. Finally, the set of λ’s that satisfy (8) is an interval of the form

[λ0,+∞), with λ0 ≥ 0 (the second inequality may be rewritten as tanh(fλ(θ)) ≥

x′(θ) sin θ, and tanh is an increasing function), and (γλ)λ≥λ0
is a family of parallel

curves.

Now we prove Theorem 7. We start by assuming that λ > λ0: hence, both

inequalities (8) are strict for all θ. We first prove that γλ(θ) is a simple closed

curve: if 0 ≤ θ1 < θ2 < 2π then γ(θ1) 6= γ(θ2). It is clear that if 0 < θ1 < π and

π < θ2 < 2π then γ(θ1) 6= γ(θ2), since these points are in opposite sides of the

line l. Hence it suffices to show that the restriction of γ to each of the intervals

[0, π] and [π, 2π] is injective. Put γ(θ) = Φ(u(θ), v(θ)): Lemma 6, together with

(7) and (8), shows that u′(θ) < 0 on (0, π) and u′(θ) > 0 on (π, 2π); therefore γ is

indeed injective on [0, π] and on [π, 2π]. It remains to prove that γλ has constant

width. Let p q be a diameter of γλ: then p q is a double normal of γλ (see [1,

Claim 1], for instance), and it follows that p = γλ(θ0), q = γλ(θ0 + π) for some

θ0; since

∣∣∣γλ(θ) γλ(θ + π)
∣∣∣ = fλ(θ) + fλ(θ + π) = 2λ−

∫ π

0
x′(θ) cos θ dθ =W

for all θ, we see that γλ has constant width W.

For λ = λ0, we take a sequence (λn)n≥1 decreasing to λ0, and notice that

γλ0
is the uniform limit of (γλn

)n≥1: a straightforward argument shows that

γλ0
has constant width 2λ0 −

∫ π
0 x

′(θ) cos θ dθ, equal to the limit of the widths

2λn −
∫ π
0 x

′(θ) cos θ dθ of the curves γλn
. (We remark that, letting γλ0

(θ) =

Φ(u(θ), v(θ)), the same argument as above shows that u(θ) is non-increasing on

[0, π] and non-decreasing on [π, 2π]; from this and the fact that γλ0
has constant

width we deduce that γλ0
is a simple curve, in the sense that if γλ0

(θ1) = γλ0
(θ2)

with 0 ≤ θ1 < θ2 < 2π, then γλ0
constant on [θ1, θ2].)

4 – The Lipschitz case

It follows from Proposition 4 that the track function x(θ) of a curve of constant

width is, at the worst, L.L. on (0, π); and, by Proposition 4, we can always assume
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x(θ) has a continuous extension of period π to the whole real line. In this section

we prove the converse: any function satisfying these conditions, and such that

|x′(θ) sin θ| is bounded away from 1, is the track function of some curve of constant

width.

We consider the mapping Ψ(ρ, θ) defined as in Section 3. Explicitly, we have

(9) Ψ(ρ, θ) = expl(x(θ))(ρu(θ)) ,

where u(θ) is the vector making an angle θ with l. From (9) we see that, whenever

x′(θ) exists, ∂Ψ∂θ (ρ, θ) exists for all ρ. Defining u1, u2, λ1 and λ2 as in Section 3,

we claim that formulas (5) still hold (almost everywhere). We fix an interval

[θ0, π − θ0] with 0 < θ0 <
π
2 : on this interval x(θ) is uniformly Lipschitz, and

therefore x′(θ) is bounded and belongs to L1([θ0, π−θ0]). We take a C
2 sequence

(yn)n≥1 defined on [θ0, π − θ0], converging in L1-norm to x′(θ): by taking a

subsequence, we may assume that, for almost all θ, (yn(θ))n≥1 converges to x
′(θ).

Define

(10) xn(θ) = x(θ0) +

∫ θ

θ0
yn(ϕ) dϕ , Ψn(ρ, θ) = expl(xn(θ))(ρu(θ)) ;

then (xn)n≥1 converges uniformly to x, and (Ψn)n≥1 converges uniformly to Ψ

when ρ is restricted to some bounded interval. For each θ such that yn(θ)→ x′(θ),

and for all ρ, we see that ∂Ψn

∂θ (ρ, θ) →
∂Ψ
∂θ (ρ, θ); since formulas (5) hold for Ψn,

it follows that they also hold for Ψ at each such θ — that is, at almost all

θ ∈ [θ0, π − θ0]. Since θ0 is arbitrary, this proves (5) for a.e. θ ∈ [0, π], and by

periodicity for a.e. θ ∈ R.
With the same notation as before, let fλ(θ) = λ−

∫ θ
0 x

′(ϕ) cosϕdϕ and γλ(θ) =

Ψ(fλ(θ), θ): then fλ(θ) is L.L. on (0, π) and fλ(θ) + fλ(θ + π) is constant. We

now prove Theorem 7 in full generality:

Theorem 8. If λ is such that

(11)
fλ(θ) ≥ 0 for all θ and

− x′(θ) sin θ cosh(fλ(θ)) + sinh(fλ(θ)) ≥ 0 for a.e. θ ,

then γλ(θ) is a curve of constant width W = 2λ−
∫ π
0 x

′(θ) cos θ dθ.

Proof: Inequalities (11) hold for a set of a parameters [λ0,+∞]; and, as

before, it suffices to prove the theorem for λ > λ0. Thus there exists ε(λ) > 0

such that

(12)
fλ(θ) ≥ ε(λ) for all θ, and

τ(θ, λ) :=−x′(θ) sin θ cosh(fλ(θ)) + sinh(fλ(θ)) ≥ ε(λ) for a.e. θ .
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Now the argument used in the proof of Theorem 7 also shows that γλ(θ) is a

simple closed curve, and it follows from (5) that γ ′λ(θ) is orthogonal to the line

Ψ(·, θ) for a.e. θ ∈ R. We shall now prove that in fact Ψ(·, θ) cuts γλ orthogonally
for all θ: this proves our theorem, since the proof can then be finished as that of

Theorem 7.

For convenience, we prove slightly more than what is needed: namely, that if

the second inequality (12) holds in some interval [θ1, θ2], then Ψ(·, θ) cuts γλ
∣∣∣
[θ1,θ2]

orthogonally for all θ ∈ [θ1, θ2]. Since γλ is L.L., its arc-length is given by

S(θ) =

∫ θ

θ1
|γ′λ(ϕ)| dϕ =

∫ θ

θ1
τ(ϕ, λ) dϕ ,

and, since τ(θ, λ) is bounded above by some constant k(λ), we have by (12) that

ε(λ) |θ − θ′| ≤ |S(θ)− S(θ′)| ≤ k(λ) |θ − θ′| .

Hence both S and S−1 are Lipschitz. Letting αλ(s) = γλ(S
−1(s)) be the

parameterization of γλ by arc-length, it follows that, letting θ = S
−1(s), we have

α′λ(s) = u2(fλ(θ), θ) for a.e. s (u2 is as in Section 3). Thus we have the following

situation: αλ(s), s ∈ [0, s0], is a Lipschitz curve, and there is a set R ⊆ [0, s0] of

measure zero such that, for every s ∈ [0, s0], there exists

(13) lim
t→s; t/∈R

α′λ(t) .

We claim that then α′λ(s) exists for every s and is given by the above limit. Since

in our case the limit (13) is u2, we see that Ψ(·, θ) is orthogonal to γλ, as we

wished to prove. It clearly suffices to prove the claim for curves in E2; and, by
considering its component functions, the claim follows directly from the lemma

below, which also concludes the proof of Theorem 8.

Lemma 9. Let g : [a, b]→ R be an absolutely continuous function. If there

exists a null set R ⊆ [a, b] such that limt→s; t/∈R g
′(t) exists for each s, then g′(s)

exists for all s and is given by the above limit.

Proof: Since, for t 6= s, we have g(t) − g(s) =
∫ t
s g
′(u) du =

∫
[s,t]\R g

′(u) du,

it follows that

inf
u∈[s,t]\R

g′(u) ≤
g(t)− g(s)

t− s
≤ sup

u∈[s,t]\R
g′(u) ,

from which the lemma is obvious.
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An important question is whether Theorem 8 describes all curves of constant

width. The (affirmative) answer is given by our next theorem:

Theorem 10. Let γ be a curve of constant width, and let x(θ) and f(θ) be

its track and intersection functions relative to some fixed diameter l0 (chosen so

that x(θ) has a continuous periodic extension to R). Then x(θ) and f(θ) are L.L.
on R\{nπ : n ∈ Z}, and there exists some λ ∈ R such that

(14) f(θ) = fλ(θ) :=λ−

∫ θ

0
x′(φ) cosφdφ .

Proof: Only the last assertion needs proof. By substituting an exterior par-

allel for γ if necessary, we may assume that all intersections of distinct diameters

are inside γ and at a distance at least δ > 0 from it. For 0 < δ ′ ≤ δ, let U(γ, δ′)

be the open set containing γ and its exterior, and also the points inside γ swept

by the (half-open) line segments of length δ′ and orthogonal to γ. Each point of

U(γ, δ) is of the form Ψ(ρ, θ) for a unique (ρ, θ) with ρ > 0 and −π < θ ≤ π;

hence the vector field u2(ρ, θ), with ρ > 0, is well-defined on U(γ, δ); and, since

x(θ) is L.L. on (0, π), u2 is L.L. on U(γ, δ)\l0. By the proof of Theorem 8 each

arc of γλ(θ) inside U(γ, δ) is a trajectory of u2 provided that, for each 0 < δ′ < δ,

ε(δ′) > 0, there exists ε(δ′) > 0 such that

(15) τ(θ, λ) ≥ ε(δ′)

whenever γλ(θ) ∈ U(γ, δ′). Assuming this is so, it then follows by the uniqueness

of trajectories of u2 through each point of U(γ, δ)\l0 that there exist λ1 and λ2
such that γ(θ) = γλ1

(θ) for 0 < θ < π and γ(θ) = γλ2
(θ) for −π < θ < 0; and of

course λ1 = λ2 for otherwise the two portions of γ would not fit together. This

proves Theorem 10, subject to the proof below.

Proof of (15): The inequality τ(θ, λ) ≥ 0 is equivalent to tanh(fλ(θ)) ≥

x′(θ) sin θ; and, since λ 7→ tanh(fλ(θ)) is strictly increasing by a rate independent

of θ, it follows that if τ(θ, λ) were not bounded away from zero on U(γ, δ ′) for

δ′ < δ, then it would assume negative values at some point in U(γ, δ). Thus we

only have to prove that τ(θ, λ) < 0 is impossible when γλ(θ) ∈ U(γ, δ). Assume

this is not so, and that τ(θ0, λ) < 0 for some 0 < θ0 < π (the case −π < θ0 < 0

is similar). Then, for some ε > 0 and all θ0 < θ < θ0+ ε, the point γλ(θ) and the

half-line l0(x), x > x(θ0), are on the same side of the line Ψ(·, θ0), and it follows

that x(θ) > x(θ0); hence the segment Ψ(ρ, θ), 0 ≤ ρ ≤ fλ(θ), does not intersect

Ψ(·, θ0), and neither does, for obvious geometric reasons, the half-line Ψ(ρ, θ),
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ρ < 0. Thus the two lines must intersect at a point Ψ(ρ, θ) with ρ > fλ(θ) —

that is, at a point in U(γ, δ), contradicting the definition of this set.

Theorem 11. Every curve of constant width can be uniformly approximated

by analytic curves of constant width.

Proof: Let x(θ) be the track function of the given curve, which we as-

sume to be of the form γλ with λ > λ0. We have to show that for each ε > 0

we can find an analytic function x̃(θ), with associated curve of constant width

γ̃λ(θ) = expl(x̃(θ))(f̃λ(θ)u(θ)) [where f̃λ(θ) = λ −
∫ θ
0 x̃

′(ϕ) cosϕdϕ], such that

|γλ(θ) γ̃λ(θ)| < ε for all θ.

In each step of the proof we approximate x(θ) by a better behaved x̃(θ) so

that γ̃λ is close to γλ. We call x̃(θ) a good approximation of x(θ) if it satisfies,

for the same λ, both (strict) inequalities (11), with f̃λ(θ) replacing fλ(θ); this

ensures γ̃λ also has constant width. Since in general x̃
′(θ) is not uniformly close

to x′(θ), some care is needed to obtain good approximations.

Step 1: there are good approximations x̃(θ) of x(θ) which are (uniformly)

Lipschitz.

Since λ > λ0, there exists η > 0 such that

tanh(fλ(θ)) ≥ η for all θ, and(16)

tanh(fλ(θ)) ≥ x′(θ) sin θ + η for a.e. θ .(17)

We now take a small θ0 > 0 (to be specified later), let α = x(θ0)−x(π−θ0)
π and

define {
x̃′(θ) = α if 0 ≤ θ ≤ θ0 or π − θ0 ≤ θ ≤ π ,

x̃′(θ) = x′(θ) + α if θ0 < θ < π − θ0 ;

and also put x̃′(θ + π) = x̃′(θ). [Notice that x̃′(θ) is only defined almost ev-

erywhere.] The number α is chosen so that
∫ π
0 x̃

′(θ) dθ = 0; hence x̃(θ) =

x(0) +
∫ θ
0 x̃

′(ϕ) dϕ is periodic of period π; and, since x(θ) is uniformly Lips-

chitz on [θ0, π−θ0], it follows that x̃(θ) is uniformly Lipschitz on [0, π]. From the

definitions of fλ(θ) and f̃λ(θ) we can check that

|f̃λ(θ)− fλ(θ)| ≤ max
−θ0≤ϕ≤θ0

|fλ(ϕ)− fλ(0)|+ max
π−θ0≤ϕ≤π+θ0

|fλ(ϕ)− fλ(π)|+ |α| ;

and also

|x̃(θ)− x(θ)| ≤ max
−θ0≤ϕ≤θ0

|x(ϕ)− x(0)|+ max
π−θ0≤ϕ≤π+θ0

|x(ϕ)− x(π)|+ |απ| .



368 P.V. ARAÚJO

From these inequalities we see that we can choose θ0 so that γ̃λ(θ) is as close to

γλ(θ) as we wish. We may also choose |f̃λ(θ)− fλ(θ)| and α to be so small that

tanh(f̃λ(θ)) ≥ tanh(fλ(θ))−
η

4
and |α sin θ| ≤

η

4
for all θ :

with this choices we check that inequalities (16) and (17) hold when we replace

fλ(θ), x
′(θ) and η by f̃λ(θ), x̃

′(θ) and η
2 respectively. This ensures that both

inequalities (11) hold strictly for x̃(θ) and this λ (and also for parameter values

slightly smaller than λ), and therefore x̃(θ) is a good approximation of x(θ).

Step 2: there are good approximations of x(θ) which are piecewise linear.

By Step 1, we may assume that x(θ) is Lipschitz; hence there exists K such

that |x′(θ)| ≤ K for all θ. We may also assume that inequalities (16) and (17)

hold. We choose δ > 0 so that

tanh(fλ(θ)) ≥ tanh(fλ(φ))−
η

4
and K| sin θ − sinφ| ≤

η

4

whenever |θ − φ| ≤ δ. Then, for every interval J with length ≤ δ, we have, for

all θ, φ ∈ J ,

tanh(fλ(θ)) ≥ x′(φ) sin θ +
η

2
,

and therefore, letting aJ = infφ∈J x
′(φ) and bJ = supφ∈J x

′(φ),

(18) tanh(fλ(θ)) ≥ y sin θ +
η

2
for all θ ∈ J and y ∈ [aJ , bJ ] .

Choose a step function y(θ) such that y(θ) = y(θ+π) and
∫ π
0 |y−x

′| dθ ≤ ε, where

ε > 0 is to be specified later. We consider a partition 0 = θ0 < θ1 < ... < θk = π

of [0, π] with diameter less than δ and such that y(θ) is constant, equal to yi, on

each interval Ji = [θi−1, θi). We may assume that yi ∈ [aJi
, bJi
], for if not we

replace yi by either of aJi
or bJi

, whichever is closest to yi: this can only decrease

the value of
∫ π
0 |y − x′| dθ. It then follows from (18) that

(19) tanh(fλ(θ)) ≥ y(θ) sin θ +
η

2
for all θ ∈ R .

We let α = − 1π
∫ π
0 y dθ: then we have |α| ≤

ε
π , and define x̃(θ) = x(0)+

∫ θ
0 {y(φ)+

α} dφ; thus x̃(θ) is piecewise linear, periodic of period π, and we have the following

estimates:

|x̃′(θ)− y(θ)| = |α| < ε ,(20)
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|f̃λ(θ)− fλ(θ)| =
∣∣∣
∫ θ

0
{x̃′(φ)− x′(φ)} cosφdφ

∣∣∣

≤
∣∣∣
∫ θ

0
{y(φ)− x′(φ)} cosφdφ

∣∣∣+
∣∣∣
∫ θ

0
α cosφdφ

∣∣∣

≤ ε+ |α| < 2 ε ,

(21)

|x̃(θ)− x(θ)| ≤ 2 ε .(22)

Since ε is arbitrarily small, it follows that γ̃λ(θ) can be arbitrarily close to γλ(θ).

It also follows from (19), (20) and (21) that we may choose ε so small that

inequalities (16) and (17) hold when we replace fλ(θ), x
′(θ) and η by f̃λ(θ), x̃

′(θ)

and η
4 , respectively. This completes Step 2.

Step 3: there are good approximations of x(θ) which are C1.

By Step 2, we may assume that x(θ) is piecewise linear and that (16) and

(17) hold. Given ε > 0, we find y(θ) continuous, periodic of period π, and such

that
∫ π
0 |y−x

′| dθ ≤ ε; furthermore, we require that, for each θ, y(θ) and x′(θ) be

of the same sign and |y(θ)| ≤ |x′(θ)|. It follows easily that (17) still holds when

x′(θ) is replaced by y(θ): this means we have

(23) tanh(fλ(θ)) ≥ y(θ) sin θ + η for all θ .

Now, just like in Step 2, we define x̃(θ) = x(0) +
∫ θ
0 {y(φ) + α} dφ so that x̃ is

periodic and |α| ≤ ε
π . The estimates (20)–(22) still hold; and therefore, in view

of (23), we may choose ε so that x̃(θ) satisfies (16) and (17) with η
2 substituted

for η. This completes Step 3.

Step 4: there are good approximations of x(θ) which are analytic.

We assume, as we may by Step 3, that x(θ) is C1; therefore we can find

an analytic periodic function y(θ) (a trigonometric polynomial, say) such that

max0≤θ≤π |y(θ)−x
′(θ)| ≤ ε. Then, letting as usual x̃(θ) = x(0)+

∫ θ
0 {y(φ)+α} dφ,

the functions fλ, x and x
′ are uniformly close to f̃λ, x̃ and x̃

′, respectively, which

ensures that (16) and (17) hold for the latter functions (with η
2 instead of η) when

ε is small enough. This completes Step 4 and the proof of Theorem 11.

5 – Applications

The representation given in Theorem 10, combined with Theorem 11, allows

us to extend results previously known only for differentiable curves to all curves

of constant width. In this section we give some examples of this sort of extension.
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We consider an arbitrary curve γ(θ) of constant width with associated func-

tions x(θ) and f(θ). We have

(24) |γ′(θ)| = −x′(θ) sin θ cosh(f(θ)) + sinh(f(θ)) for a.e. θ ;

and, since γ(θ) is L.L., its length is L(γ) =
∫ 2π
0 |γ′(θ)| dθ. It then follows from

(24) and the proof of Theorem 11 that γ is the uniform limit of a sequence γn of

analytic curves such that L(γn)→ L(γ). (This is obvious if x′(θ) is bounded, for

then we find analytic functions xn such that x
′
n → x′ in L1([0, π]); otherwise we

check that in Step 1 of Theorem 11, where we construct good approximations x̃

of x with bounded derivative, the difference |L(γ)−L(γ̃)| can be made as small as

we like.) It is also clear that, denoting by A(γn) the area of the region bounded

by γ, we have A(γn) → A(γ), and that the widths of γn converge to the width

W of γ. From [1, Theorem B] we then obtain, this time without any restrictive

assumptions:

Theorem 12. If γ is a curve of constant width W in H2 having perimeter

L and enclosing a region of area A, then L = tanh(W2 ) (2π +A).

The differentiable version of Theorem 12 is the essential tool for proving the

main result in [2]: the Reuleaux triangle encloses a smaller area than any other

(at least piecewise C3) curve in H2 of the same constant width. Now that we have

Theorem 10, this result can easily be extended to include all curves of constant

width: the proof in [2] goes through with almost no changes; but we will not go

into the details.

We finish this article with a result whose differentiable version was also known

in part, but which has the additional interest of requiring an entirely different

proof.

Theorem 13. If γ is a curve of constant width in H2, then the two following

conditions are equivalent:

i) every diameter of γ bisects the area enclosed by γ;

ii) every diameter of γ bisects the perimeter of γ.

Furthermore, each of these conditions implies that γ is a circle.

The analogous result for the Euclidean plane is known (see [6]). Also, we

have established in [1, Theorem D] that if ii) is verified (and if γ is sufficiently

differentiable) then γ is a circle. Otherwise, Theorem 13 seems to be new.
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Proof: 1st part: ii) ⇒ γ is a circle.

Our hypothesis says that the length L(θ) of γ
∣∣∣
[θ,θ+π]

is constant, equal to L

2 .

By differentiating L(θ) =
∫ θ+π
θ |γ′(ϕ)| dϕ, we obtain, using (24) and Lemma 1,

−x′(θ) sin θ cosh(f(θ))+sinh(f(θ)) = x′(θ) sin θ cosh(W−f(θ))+sinh(W−f(θ))

for a.e. θ. This can be rewritten as

x′(θ) sin θ =
sinh(f(θ))− sinh(W − f(θ))

cosh(f(θ)) + cosh(W − f(θ))
=
sinh

(
f(θ)−

W

2

)

cosh
(
f(θ)−

W

2

) ;

multiplying both sides by (f(θ)− W
2 ) cos θ, we obtain, using (14),

f ′(θ) cosh

(
f(θ)−

W

2

)
sin θ + sinh

(
f(θ)−

W

2

)
cos θ = 0 ,

which means that the derivative of the L.L. function G(θ) = sinh(f(θ)− W
2 ) sin θ

vanishes almost everywhere, and therefore G(θ) is constant. Such a constant can

only be zero, and therefore f(θ) = W
2 for all θ, which means that γ is a circle.

2nd part: i)⇔ii).

Let A(θ) be the area bounded by γ
∣∣∣
[θ,θ+π]

and by the diameter γ(θ) γ(θ + π).

We have to prove that L(θ) is constant if and only if A(θ) is constant; this follows

at once from the formula

(25) A(θ) = tanh

(
W

2

)
L(θ) +

{
L

sinhW
− π

}
.

Since, for each θ, both sides of (25) behave well under (uniform) limits, it is

enough to prove the formula for differentiable curves: thus we parameterize γ

by the arc-length s, and assume γ(s) is at least C3. The point diametrically

opposite to γ(s) is given by γ(h(s)), where h : R → R is a diffeomorphism

satisfying h(s+ L) = h(s) + L and s < h(s) < s+ L; and, by [1, (16)], we have

(26) h′(s) = kg(s) sinhW − coshW ,

where kg(s) is the geodesic curvature of γ at γ(s). Now let A(s) = A(θ(s)). Using
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the Gauss–Bonnet Theorem and (26), we have

A(s) =

∫ h(s)

s
kg(t) dt− π

=
1

sinhW

{∫ h(s)

s
h′(t) dt

}
+
coshW

sinhW
(h(s)− s)− π

=
1

sinhW

{
h(h(s))− h(s)

}
+
coshW

sinhW
(h(s)− s)− π

=
coshW − 1

sinhW
(h(s)− s) +

{
L

sinhW
− π

}
;

and, since h(s)− s = L(θ(s)), this proves (25).
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