ONE PROPERTY OF TRIANGULAR NUMBERS *

M.N. Desphande

Introduction

The following set of four numbers

$$
[1,3,8,120]
$$

is well-known. This has a property that product of any two different numbers increased by the integer one is perfect square. Many attempts of generalising this result have been made. Hoggatt and Bergum [1] have shown that the property is satisfied by the following set of four numbers

$$
\left[F_{2 n}, F_{2 n+2}, F_{2 n+4}, F_{2 n+1}, F_{2 n+2}, F_{2 n+3}\right]
$$

where $n \geq 1$ and F_{n} denotes the $n^{\text {th }}$ Fibonacci members.
Horadam [2] has obtained a few more similar result and has given a good historical account.

In this note we explain a new procedure of obtaining similar sets of four numbers (possessing the property) from a triangular number. We also consider a further generalisation.

[^0]
New procedure

Let T be any triangular number (It may be recalled that $T=m(m+1) / 2$, m being a positive integer). Further more let a and b be two real numbers such that

1) $a<b$,
2) $a b=2 T$ and
3) $2 a$ and $2 b$ are positive integers.

By s we shall denote the positive square root of $8 T+1$. (It is obvious that s is an integer).

Theorem. The set of the following four numbers satisfies the property mentioned in the Introduction

$$
\begin{equation*}
\left[2 a, 2 b, 2 a+2 b+2 s, 8 s^{3}+8 s^{2}(a+b)-4 s\right] \tag{1}
\end{equation*}
$$

Proof. By using the fact that $4 a b=8 T=s^{2}-1$ it is easy to show that
1)

$$
(2 a)(2 b)+1=s^{2}
$$

2)

$$
2 a(2 a+2 b+2 s)+1=(2 a+s)^{2}
$$

3)

$$
2 a\left(8 s^{3}+8 s^{2}(a+b)-4 s\right)+1=\left(2 s^{2}+4 a s-1\right)^{2}
$$

4)

$$
2 b(2 a+2 b+2 s)+1=\left(2 b+s^{2}\right)
$$

5)

$2 b\left(8 s^{3}+8 s^{2}(a+b)-4 s\right)+1=\left(2 s^{2}+4 b s-1\right)^{2}$,
6) $(2 a+2 b+2 s)\left(8 s^{3}+8 s^{2}(a+b)-4 s\right)+1=\left(4 s^{2}+4 s(a+b)-1\right)^{2}$.

Illustration. Let $T=6$ then $s=7$; we get 5 sets

a	b	set
0.5	24	$(1,48,63,12320)$
1	12	$(2,24,40,7812)$
1.5	8	$(3,16,33,6440)$
2	6	$(4,12,30,5852)$
3	4	$(6,8,28,5460)$

Further extension

Let n be a positive integer and a and b be real numbers such that

1) $a<b$
2) $2 a$ and $2 b$ are positive integers and
3) $4 a b+n$ is a perfect square, say u^{2}.

We consider the following set of four positive integers

$$
\begin{equation*}
\left(2 a, 2 b, 2 a+2 b+2 u, 8 u^{3}+8 u^{2}(a+b)-4 u n\right) . \tag{2}
\end{equation*}
$$

This set has the property that the product of any two different numbers of the set increased by n or n^{2} is a perfect square.

For notational convenience, let us denote these numbers by $\left(a_{1}, a_{2}, a_{3}, A_{1}\right)$. Then we can easily check that the following six terms are perfect squares

$$
\begin{array}{lll}
a_{1} a_{2}+n, & a_{1} a_{3}+n, & a_{2} a_{3}+n \\
a_{1} A_{1}+n^{2}, & a_{2} A_{1}+n^{2}, & a_{3} A_{1}+n^{2}
\end{array}
$$

Remarks.

1) The set (1) and the set (2) have many similar things.
2) Such properties were considered by Horadam [2].
3) For $n=1$ this result coincides with the result obtained in the earlier section.

ACKNOWLEDGEMENT - The author is thankful to the referee.

REFERENCES

[1] Hoggatt, V.E. (Jr.) and Bergum, G.E. - A problem of Fermat and the Fibonacci sequence, The Fibonacci Quarterly, 15 (1977), 323-330.
[2] Horadam, A.F. - Generalisation of a result of Morgado, Portugaliae Mathematica, 44 (1987), 131-136.

> M.N. Desphande, Institute of Science, Nagpur -440001 (M.S.) - INDIA

[^0]: Received: November 25, 1996; Revised: February 14, 1997.

 * The paper is prepared under N:B.H.M. grant 48/06/94-R\&DV.

