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ON THE PATHWISE UNIQUENESS OF SOLUTIONS
OF STOCHASTIC DIFFERENTIAL EQUATIONS

C. Sonoc

Abstract: A sufficient condition for uniqueness of solutions of ordinary differen-

tial equations is generalized to the setting of stochastic differential equations driven by

brownian motion. The result extends the classical theorem of Ito and is consistent with

respect to more recent pathwise uniqueness results.

1. Let Wt, 0 ≤ t ≤ T (T ∈ <+) denote an m-dimensional Wiener process

defined on the probability space (Ω,<, P ). Suppose {<t : 0 ≤ t ≤ T} is a

nonanticipating family of sub-σ-algebras of < with respect to the m-dimensional

Wiener process Wt.

We are concerned with the uniqueness of solutions for the Ito stochastic dif-

ferential equation

dXt = f(t,Xt) dt+ g(t,Xt) dWt , 0 ≤ t ≤ T ,

with initial data X0 = c or, in integral form,

(1) Xt = c+

∫ t

0
f(s,Xs) ds+

∫ t

0
g(x,Xs) dWs , 0 ≤ t ≤ T .

Here f(t, x) and g(t, x) are m-vector, respectively m×m-matrix valued Borel

measurable functions on [0, T ]×<m and c is a random variable independent of Wt

for 0 ≤ t. A solution of (1) on [0, T ] is an a.s. continuous, <t-adapted stochastic

process (Xt)t∈[0,T ] such that a.s.

∫ T

0
|f(s,Xs)|2 ds <∞ ,

∫ T

0
|g(s,Xs)|2 ds <∞ ,
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and equation (1) is satisfied a.s. Equation (1) has the pathwise uniqueness prop-

erty if any pair of solutions Xt and Yt with X0 = Y0 = c a.s. satisfy

P
{

sup
0≤t≤T

|Xt − Yt| > 0
}

= 0 .

Pathwise uniqueness implies that solutions are unique in the law sense (have the

same distributions) but pathwise uniqueness and law uniqueness are not equiva-

lent (see [9]).

Ito [6] (see also Arnold [1, page 105]) showed that (1) has the pathwise unique-

ness property if f and g satisfy a Lipschitz condition in the second variable and

a certain growth condition. For more recent pathwise uniqueness results we refer

to Constantin [3], Da Prato [5] and Taniguchi [5].

The aim of this note is to give a general theorem for the pathwise unique-

ness of the solution of (1) using the method proposed by Athanassov [2] in the

deterministic case.

2. The following lemma will be useful:

Lemma [2]. Let u(t) be a continuous function on [0, T ], u(t) > 0 for t > 0,

having derivative u′(t) ∈ L1[0, T ], u′(t) > 0 for t > 0. Let v(t) be a continuous,

nonnegative function on [0, T ] such that

lim
t→0+

v(t)

u(t)
= 0

and

v(t) ≤
∫ t

0+

u′(s)

u(s)
v(s) ds , 0 ≤ t ≤ T .

Then v(t) = 0 for 0 ≤ t ≤ T .

Let Lm
2k (here k = 1, 2) be the space of all random variables x : Ω→ Rm with

finite L2k-norm

‖x‖ =
{

m
∑

i=1

E|xi|2k
}

1

2k

, x = (x1, ..., xm) ∈ Lm
2k .

Theorem. Let us suppose that there exists a continuous function u(t) on

[0, T ] with u(t) > 0 for t > 0, having derivative u′(t) ∈ L1[0, T ], u′(t) > 0 for
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t > 0 and limt→0+ u′(t) =∞ such that for 0 < t ≤ T and x, y ∈ Rm,

∣

∣

∣f(t, x)− f(t, y)
∣

∣

∣

2
+

∣

∣

∣g(t, x)− g(t, y)
∣

∣

∣

2
≤ u′(t)

2u(t)
|x− y|2 ,(2)

and

|f(t, x)|2 + |g(t, x)|2 ≤ L+M |x|2 , x ∈ Rm, t ∈ [0, T ] .(3)

If c ∈ Lm
4 is independent of Wt for t ≥ 0 and f , g are continuous, then (1) has

the pathwise uniqueness property.

Proof. Since c ∈ Lm
4 and f , g are continuous and satisfy (3), there is at

least one solution to (1) on some interval [0, T ] with T > 0, cf. [7].

Let X, Y denote continuous solutions of (1) on an interval [0, t0] which, for

simplicity, is assumed to be contained in the unit interval. For n ∈ N , let

τn = inf
{

0 ≤ t : |Xt| > n or |Yt| > n
}

∧ t0 ,

and define

vn(t) = E
(

sup
s≤t

∣

∣

∣(X − Y )s ∧ τn

∣

∣

∣

2)

, 0 ≤ t ≤ t0 .

Using condition (2) we can write for 0 ≤ t ≤ t0

vn(t) ≤ 2

[

E

(
∫ τn∧t

0

∣

∣

∣f(s,Xs)− f(s, Ys)
∣

∣

∣

2
ds+

∫ τn∧t

0

∣

∣

∣g(s,Xs)− g(s, Ys)
∣

∣

∣

2
ds

)]

≤
∫ t0

0

u′(s)

u(s)
E
(

sup
r≤s∧τn

|Xr − Yr|2
)

ds =

∫ t0

0

u′(s)

u(s)
vn(s) ds .

Now let ε > 0. Choose γ > 0 such that

|f(t, x)|2 + |g(t, x)|2 ≤ ε

8
u′(t) , 0 < t ≤ γ, |x| ≤ n .

Since for a, b ∈ Rm the inequality

|a− b|2 =
m
∑

i=1

(ai − bi)
2 ≤ 2

(

m
∑

i=1

a2
i +

m
∑

i=1

b2i

)

= 2 |a|2 + 2 |b|2

holds, we deduce that

vn(t) ≤ 2

[

E

(
∫ τn∧t

0

∣

∣

∣f(s,Xs)− f(s, Ys)
∣

∣

∣

2
ds+

∫ τn∧t

0

∣

∣

∣g(s,Xs)− g(s, Ys)
∣

∣

∣

2
ds

)]

≤ 4E

(
∫ τn∧t

0
|f(s,Xs)|2 ds+

∫ τn∧t

0
|f(s, Ys)|2 ds

+

∫ τn∧t

0
|g(s,Xs)|2 ds+

∫ τn∧t

0
|g(s, Ys)|2 ds

)

≤ ε

∫ t

0
u′(s) ds = ε u(t) , 0 < t ≤ γ .
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We hence may apply the lemma and conclude that vn = 0. Since n is arbitrary

we have that Xt = Yt a.s. for every fixed t ∈ [0, t0] and hence for a countable

dense set S in [0, t0]. By the continuity of X and Y we have that coincidence in

S implies coincidence throughout the entire interval [0, t0] and hence

P
{

sup
0≤t≤t0

|Xt − Yt| > 0
}

= 0 .

This completes the proof of the theorem.

Corollary 1. Assume there exists a constant K > 0 such that
∣

∣

∣f(t, x)− f(t, y)
∣

∣

∣+
∣

∣

∣g(t, x)− g(t, y)
∣

∣

∣ ≤ K |x− y| , 0 ≤ t ≤ T, x, y ∈ Rm ,

|f(t, x)|2 + |g(t, x)|2 ≤ K2(1 + |x|2) , 0 ≤ t ≤ T, x ∈ Rm .

If f and g are continuous on [0, T ] × Rm and c ∈ Lm
4 is independent of Wt for

t ≥ 0, then (1) has the pathwise uniqueness property.

Proof. The hypothesis of Corollary 1 implies

∣

∣

∣f(t, x)− f(t, y)
∣

∣

∣

2
+

∣

∣

∣g(t, x)− g(t, y)
∣

∣

∣

2
≤ K2 |x− y|2 , 0 ≤ t ≤ T, x, y ∈ Rm .

We can apply our theorem with u(t) = exp(4K2
√
T
√
t), 0 ≤ t ≤ T .

Corollary 2. Assume there exists a constant 0 < α < 1
2 such that

∣

∣

∣f(t, x)− f(t, y)
∣

∣

∣

2
+

∣

∣

∣g(t, x)− g(t, y)
∣

∣

∣

2
≤ α

t
|x− y|2 , 0 < t ≤ T, x, y ∈ Rm ,

and constants K > 0 such that

|f(t, x)|2 + |g(t, x)|2 ≤ K + L |x|2 , 0 < t ≤ T, x ∈ Rm .

If f and g are continuous on [0, T ] × Rm and c ∈ Lm
4 is independent of Wt for

t ≥ 0, then (1) has the pathwise uniqueness property.

Proof. We apply our theorem with u(t) = t2α, 0 ≤ t ≤ T .

Remark 1. Our theorem is more general with respect to the problem of

pathwise uniqueness than the result given in [3].

We provide now a concrete example of a stochastic differential equation where

our result can be applied and the classical Lipschitz condition is not satisfied. We

also cannot apply Corollary 1, nor Proposition 1 from [8].
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Example 1. Let f, g : [0, 1]×R→ R be given by

f(t, x) = g(t, x) =











































x

3
√
t
, t > 0, 0 < x ≤ t,

√
t

3
, x > t, t > 0,

0, t = 0,

0, x ≤ 0 .

The hypotheses of Corollary 2 are satisfied for α = 2
9 , but the classical Lipschitz

condition is not satisfied: if it would hold, we would have

∣

∣

∣f(t, x)− f(t, y)
∣

∣

∣

2
≤ K |x− y|2 , t ≥ 0, x, y ∈ R ,

and for x = t
2 , y = 0, we would obtain t

6 = |f(t, t
2) − f(t, 0)|2 ≤ K t2

4 for t > 0

which is impossible (let t→ 0).

Remark 2. If f(t, x) = f(t), we can consider for our theorem less strong

hypotheses: we have the following

Proposition. In the same hypotheses of the theorem, for f(t, x) = f(t) and

∣

∣

∣g(t, x)− g(t, y)
∣

∣

∣

2
≤ u′(t)

u(t)
|x− y|2 , x, y ∈ Rm, t ∈ [0, T ] ,

instead of condition (2), the conclusion of the theorem holds.

Proof. Let X, Y denote continuous solutions of (1) on an interval [0, t0]

which, for simplicity, is assumed to be contained in the unit interval and define

vn for n ∈ N as in the proof of the theorem. We have

E
(
∣

∣

∣X(t)− Y (t)
∣

∣

∣

2)

= E

(
∫ t

0

∣

∣

∣g(s,Xs)− g(s, Ys)
∣

∣

∣

2
ds

)

≤

≤
∫ T

0

u′(s)

u(s)
E
(

sup |Xs − Ys|2
)

ds =

∫ T

0

u′(s)

u(s)
vn(s) ds

and further we follow the same lines as for the proof of the theorem.

Example 2. Let us consider a continuous function u(t) on [0, 1] with u(t) > 0

for t>0, having derivative u′(t)∈L1[0, 1], u
′(t)>0 for t>0 and limt→0+

u(t)
u′(t) =∞.
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We define f(t, x) = t for t ∈ [0, 1] and x ∈ R and let

g : [0, 1]×R→ R, g(t, x) =























































√

u′(t)

u(t)
x, t > 0, 0 ≤ x ≤ u(t)

u′(t)
,

√

u(t)

u′(t)
, t > 0, x >

u(t)

u′(t)
,

0, t = 0, x ∈ R,

0, t ≥ 0, x < 0 .

One can easily verify that the Proposition shows that (1) with the above choices

of f , g has pathwise unique solutions.
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