PORTUGALIAE MATHEMATICA Vol. 56, No. 1, pp. 81-113 (1999) |
|
Orthogonal Polynomials and Quadratic TransformationsFrancisco Marcellán and José PetronilhoDepto. de Matemáticas, Escuela Politécnica Superior, Univ. Carlos III de Madrid,Butarque 15, 28911 Leganés, Madrid - SPAIN E-mail: pacomarc@ing.uc3m.es Depto. de Matemática, Faculdade de Ciências e Tecnologia, Univ. Coimbra, Apartado 3008, 3000 Coimbra - PORTUGAL E-mail: josep@mat.uc.pt Abstract: Starting from a sequence $\{P_n\}_{n\geq 0}$ of monic polynomials orthogonal with respect to a linear functional ${\bf u}$, we find a linear functional ${\bf v}$ such that $\{Q_n\}_{\geq 0}$, with either $Q_{2n}(x)=P_n(T(x))$ or $Q_{2n+1}(x)=(x-a)\,P_n(T(x))$ where $T$ is a monic quadratic polynomial and $a\in\C$, is a sequence of monic orthogonal polynomials with respect to ${\bf v}$. In particular, we discuss the case when ${\bf u}$ and ${\bf v}$ are both positive definite linear functionals. Thus, we obtain a solution for an inverse problem which is a converse, for quadratic mappings, of one analyzed in [11]. Keywords: Orthogonal polynomials; recurrence coefficients; polynomial mappings; Stieltjes functions. Classification (MSC2000): 42C05. Full text of the article:
Electronic version published on: 31 Jan 2003. This page was last modified: 27 Nov 2007.
© 1999 Sociedade Portuguesa de Matemática
|