PORTUGALIAE MATHEMATICA Vol. 56, No. 3, pp. 299-308 (1999) |
|
On Nonhomogeneous Biharmonic Equations Involving Critical Sobolev ExponentM. GueddaLAMFA, Faculté de Mathématiques et d'Informatique, Université de Picardie Jules Verne,33, rue Saint-Leu, 80039 Amiens - FRANCE Abstract: In this paper we consider the problem $\Delta^2 u=\lambda\,|u|^{q_c-2}\,u+f$ in $\Omega$, $u=\Delta u=0$ on $\partial\Omega$, where ${q_c}=2N/(N-4)$, $N>4$, is the limiting Sobolev exponent and $\Omega$ is a smooth bounded domain in ${\R}^N$. Under some restrictions on $f$ and $\lambda$, the existence of weak solution $u$ is proved. Moreover $u\geq0$ for $f\geq 0$ whenever $\lambda\geq 0$. Classification (MSC2000): 35J65, 35J20, 49J45. Full text of the article:
Electronic version published on: 31 Jan 2003. This page was last modified: 27 Nov 2007.
© 1999 Sociedade Portuguesa de Matemática
|