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ZONOIDS AND CONDITIONALLY POSITIVE
DEFINITE FUNCTIONS

M. Burger

Abstract: It is well-known in convex geometry that a centrally symmetric convex

body Z ⊂ Rd is a zonoid (a limit of sums of line segments), if and only if its support

function h has the property that -h is conditionally positive definite. Here, we give a new

proof of this result using extreme point methods.

1 – Introduction

In Rd, let 〈·, ·〉 denote the scalar product, ‖ · ‖ the Euclidean norm and

Ωd−1 =
{
x ∈ Rd | ‖x‖ = 1

}

the unit sphere. C(Rd) is the space of all continuous functions f : Rd→R, and

Cc(Rd) the subspace of all continuous functions with compact support.

A zonoid is a convex body in Euclidean space Rd which can be approximated,

in the sense of the Hausdorff metric, by finite vector sums of line segments.

A zonoid has a centre of symmetry, and this may be assumed to be the origin of

Rd.

A locally integrable function f : Rd → R is said to be positive definite if, for

all functions g ∈ Cc(Rd),
∫

Rd

∫

Rd
f(u− v) g(u) g(v) du dv ≥ 0 .(1)

If f satisfies (1) at least for functions g with the additional property
∫

Rd
g(u) du = 0 ,

then f is called conditionally positive definite. We deduce that the function
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f ∈ C(Rd) is positive definite if and only if, for all natural numbers k, all real

numbers wi and all xi ∈ Rd,

k∑

i,j=1

f(xi − xj)wiwj ≥ 0 .(2)

A continuous f is conditionally positive definite if and only if f satisfies (2) at

least for all real numbers wi with the additional property
k∑
i=1

wi = 0.

It is well known (see Bolker [2]) that a convex body Z is a zonoid if and only

if its support function h is of the form

h(u) =

∫

Ωd−1

|〈x, u〉| dµ(x)(3)

with some even measure µ on Ωd−1. Here by a measure on Ωd−1 we understand a

nonnegative, σ-additive, real valued function on the Borel subsets of Ωd−1. The

measure µ is uniquely determined by Z.

The following classical result describes the connection between support func-

tions of zonoids and conditionally positive definite functions. Note that in Rd the

support function of a convex body, which is centrally symmetric to the origin, is

a seminorm.

Theorem. For a seminorm h on Rd, the following conditions are equivalent:

(a) h is the support function of a zonoid, i.e.,

h =

∫

Ωd−1

|〈x, ·〉| dµ(x) ,

with an even measure µ on Ωd−1.

(b) −h is conditionally positive definite.

The implication from (a) to (b) is relatively straight forward. Suppose h

has the integral representation (3). Kelly [8] has shown that, if | · | denotes the

absolute value function, then −| · | is conditionally positive definite. This implies

that −|〈x, ·〉| is a conditionally positive definite function on Rd, for each x ∈ Rd.

Clearly this extends to the integral representation (3) because the measure µ is

nonnegative. The difficult part of the theorem concerns the reverse implication

from (b) to (a). For a proof of this result, most authors in convex geometry (see

e.g. Choquet [3, Vol. III, pp. 55–59], Witsenhausen [12], Goodey–Weil [5]) refer

to Lévy’s [10] general results on stable probability distributions. Lévy’s classical
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approach uses the fact that (b) implies e−h to be positive definite. By Bochner’s

theorem, e−h is the Fourier transform of a probability measure which can then be

used to establish (a). In connection with embedding results for finite dimensional

Banach spaces, the Lévy representation (3) of seminorms has been generalized

and studied further in recent years (see Koldobsky [9], for a survey and further

references).

Bochner’s theorem is a typical example of an integral representation which can

be obtained directly by extreme point methods. Choquet [3, Vol. II, pp. 245–262]

gives a proof of that kind and emphasizes the role of extreme point methods in

connection with integral representations (see also Edwards [4]). Other examples

include a proof of a Lévy–Khintchin formula by Johansen [6]. It is therefore a

natural question whether the implication from (b) to (a) can also be obtained by

a suitable application of the Krein–Milman theorem (or Choquet’s extension of

that result). It is the aim of this paper to provide a proof of that kind.

Our attempt is motivated by the fact that the set H of all support functions

of zonoids is a closed convex cone with compact base in C(Rd). The extreme rays

of this cone consist of the functions

|〈·, x〉| , x ∈ Rd ,(4)

and thus (3) gives the extremal representation of the functions in H. Hence, for

the implication from (b) to (a), one has to prove that the seminorms h which

fulfill (b) form a closed convex cone D as well and that the extreme rays of D

consist exactly of the functions (4). Here, the difficult part is to show that only

the functions (4) are elements of an extreme ray of D. To overcome this problem,

we will have to remove the homogeneity property and thus consider a larger cone

C, for which it is possible to determine the extreme rays. We will then embed

C in L∞(Rd) and use the weak-∗ topology to obtain a compact base. Applying

Choquet’s theorem we get an integral representation for the functions in C. From

this, we finally deduce that a seminorm h in Rd, which fulfills (b), can be written

in the form (3).

2 – Extreme points of a class of conditionally positive definite functions

Let C denote the cone of all conditionally positive definite even functions

f ∈ C(Rd) satisfying f(0) = 0. A base B of C is given by the set of all f ∈ C

with ∫

I
f(u) du = −1 , I = [−1, 1]d .
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From (2) we deduce that the functions in C are nowhere positive.

To get some information about the set extB of extreme points of the convex

set B, we need two lemmata. For these lemmata we can generalize a proof for

the one-dimensional case from Johansen [6] without effort.

For f : Rd→R, w ∈ Rd and ε ∈ R, we use the notation fw,ε for the function

fw,ε(u) := f(u) + ε
(
f(u+ w) + f(u− w)− 2 f(w)

)
, u ∈ Rd .

Lemma 1. Let w ∈ Rd, ε ∈ [−12 ,
1
2 ], and f : Rd→R be a locally integrable

function. If f is conditionally positive definite, then fw,ε is also conditionally

positive definite. For f ∈ C, we have fw,ε ∈ C.

Proof: Let g ∈ Cc(Rd) with
∫
Rd g(u) du = 0, then

∫

Rd

∫

Rd
2 ε f(w) g(u) g(v) du dv = 0 .

So, it is sufficient to show that

f(u) + ε
(
f(u+ w) + f(u− w)

)

is conditionally positive definite. For x ∈ R we define h : Rd→R by

h(u) = g(u) + x g(u+ w) , u ∈ Rd ,

and we have
∫

Rd
h(u) du =

∫

Rd
g(u) du + x

∫

Rd
g(u+ w) du = 0 .(5)

Because f is conditionally positive definite, we get

0 ≤

∫

Rd

∫

Rd
f(u− v)h(u)h(v) du dv

=

∫

Rd

∫

Rd

(
f(u− v) g(u) g(v) + x f(u− v) g(u) g(v + w)

+ x f(u− v) g(u+ w) g(v) + x2 f(u− v) g(u+ w) g(v + w)

)
du dv

=

∫

Rd

∫

Rd

(
f(u− v) g(u) g(v) + x f(u− v + w) g(u) g(v)

+ x f(u− v − w) g(u) g(v) + x2 f(u− v) g(u) g(v)

)
du dv .
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This means that, for x ∈ R, the function

u 7→ (1 + x2) f(u) + x
(
f(u+ w) + f(u− w)

)
,(6)

is conditionally positive definite. The range of values of the function x 7→ x/(1+x2)

is the interval [−12 ,
1
2 ], and this completes the proof. Finally we remark that

x = −1 implies (5) for every g ∈ Cc(Rd). Hence, for x = −1, the function (6) is

positive definite.

Lemma 2. If f ∈ C, n ∈ N, u ∈ Rd, then f(nu) ≥ n2 f(u).

Proof: Lemma 1 shows that f ∈ C implies fu,−1/2 ∈ C. So we have

fu,−1/2(v) ≤ 0, v ∈ Rd, and for v = k u, k ∈ N, we get

f
(
(k + 1)u

)
− f(k u) ≥ f(k u)− f

(
(k − 1)u

)
+ 2 f(u) .

Summing over k we get for all n ∈ N

n∑

m=1

m∑

k=1

(
f
(
(k + 1)u

)
− f(k u)

)
≥

n∑

m=1

m∑

k=1

(
f(k u)− f

(
(k − 1)u

)
+ 2 f(u)

)
,

which gives

n∑

m=1

(
f
(
(m+ 1)u

)
− f(u)

)
≥

n∑

m=1

(
f(mu) + 2mf(u)

)
,

and we arrive at

f
(
(n+ 1)u

)
≥ (n+ 1)2 f(u) .

Proposition 1. f ∈ extB implies either that there is a positive semidefinite

(d×d)-matrix A such that

f(u) = −u A u> ,(7)

or that there exists a v ∈ Rd\{0} and a constant c(v) such that

f(u) = c(v) (cos〈u, v〉 − 1) .(8)

Proof: Let f ∈ extB and

g(w) := −

∫

I

(
f(u+ w) + f(u− w)− 2 f(w)

)
du , w ∈ Rd .
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The functions fw,±1/2 are nonpositive, and so we have ‖g‖∞ ≤ 2. For fixed

w ∈ Rd we get the convex combination

f =
1 + g(w)/3

2
·

fw,1/3
1 + g(w)/3

+
1− g(w)/3

2
·

fw,−1/3
1− g(w)/3

with
fw,1/3

1+g(w)/3 ,
fw,−1/3

1−g(w)/3 ∈ B.

From f ∈ extB we deduce, for all w ∈ Rd,

f =
fw,1/3

1 + g(w)/3
=

fw,−1/3
1− g(w)/3

,

and we get

g(w) f(u) = f(u+ w) + f(u− w)− 2 f(w) .(9)

Interchanging w and u and subtracting the equations gives us

g(w) f(u)− g(u) f(w) = 2 f(u)− 2 f(w) ,

which means

(g(w)− 2) f(u) = (g(u)− 2) f(w) .

Case 1: g ≡ 2.

Then, for all w, u ∈ Rd, (9) yields

f(u+ w) + f(u− w)− 2 f(w)− 2 f(u) = 0 .

The nonpositive solutions of this functional equation are precisely the functions

f(u) = −u A u> ,

with A a positive semidefinite (d×d)-matrix (see Aczél and Dhombres [1, p. 166]).

Case 2: There exists a w0 ∈ Rd such that g(w0) 6= 2.

We define

c :=
f(w0)

g(w0)− 2
,

and have

f(u) = c (g(u)− 2) , u ∈ Rd .(10)

Substituting (10) into (9) and using the fact that c 6= 0, we get

g(w) g(u) = g(u+ w) + g(u− w) , w, u ∈ Rd .
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All nontrivial solutions of this functional equation are

g(u) = 2 cos〈v, u〉 or g(u) = 2 cosh〈v, u〉

with v ∈ Rd (see Kannappan [7]). The function g(u) = 2 cosh〈v, u〉 cannot oc-

cur in our situation, since we have ‖g‖∞ ≤ 2. So the only solution in Case 2

is

f(u) = 2 c (cos〈v, u〉 − 1) , u ∈ Rd ,

with v ∈ Rd.

We denote the set of all functions f with representation (7) by E1 and use

the notation fA for f , in this case. The set of all functions f with representation

(8) is denoted by E2, and we will write fv for f , in this case. Further, we put

E :=E1 ∪ E2. Note that if f has representation (8), then

2 c(v) = −

(∫

I
(cos〈u, v〉 − 1) du

)−1
,

and, as a function of v, c is continuous.

3 – Application of Choquet’s theorem

The following lemma shows that we can identify B with the continuous func-

tions in B̂, the set of all measurable, even, conditionally positive definite functions

f : Rd→R, which are essentially bounded in any neighbourhood of 0, and fulfill

sup ess f = 0 and

∫

I
f(u) du = −1 .

Lemma 3. For each f ∈ B̂ there is a g ∈ B such that f = g almost surely

with respect to the Lebesgue measure.

Proof: The proof of Lemma 1 shows that, for every w ∈ Rd, the function

u 7→ 2 f(u)− f(u+ w)− f(u− w)

is positive definite. By integration over w and Fubini’s theorem we get that the

function

2df(u) −
1

2

∫

I

(
f(u+w) + f(u−w)

)
dw = 2df(u)− 2

∫

I+u
f(w) dw(11)
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is also positive definite. Now we make use of the well-known fact that there

is a continuous function which equals the function (11) almost surely (see, e.g.,

Edwards [4, pp. 719]). The continuity of

u 7→

∫

I+u
f(w) dw

shows that there is an even positive definite function g ∈ C(Rd) with f= g

almost surely. The positive definiteness of g implies

2 g(0)− 2 g(u) ≥ 0 , u ∈ Rd ,

and together with sup g = sup ess f= 0 we get g(0) = 0.

Choquet’s theorem requires a compact set, therefore we embed B̂ in the space

L∞(Rd), supplied with the weak-∗ topology. To do so, we need the following

result.

Lemma 4. There exists a constant c0 such that, for all f ∈ B,

|f(u)| ≤ c0(1 + ‖u‖
2) , u ∈ Rd .

Proof: We denote the smallest integer greater than a real number x by r(x),

then Lemma 2 gives

0 ≥ f(u) = f

(
r(‖u‖)

u

r(‖u‖)

)
≥ r2(‖u‖) f

(
u

r(‖u‖)

)
,

which implies

|f(u)| ≤ (‖u‖+ 1)2 ·max {|f(u)| | ‖u‖≤1} .

For w ∈ Rd,
∫
I fw,1/2(u) du is nonpositive and we get

0 ≥ −1− 2df(w) +
1

2

(∫

I
f(u+ w) du +

∫

I
f(u− w) du

)

= −1− 2df(w) +
1

2

(∫

I+w
f(u) du +

∫

I+w
f(−u) du

)

= −1− 2df(w) + 2d
∫

1

2
(I+w)

f(2u) du

≥ −1− 2df(w) + 2d+2
∫

1

2
(I+w)

f(u) du ,
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where we have used Lemma 2 in the last inequality. If ‖w‖<1, then 1
2(I+w) ⊂ I,

and we deduce

2df(w) ≥ −1− 2d+2 ,

which means

|f(w)| ≤ 2−d + 4 ≤ 5 .

This completes the proof.

Let c0 ≥ 1 fulfill the assertion of Lemma 4, then we define the function

g0 : Rd→R as

g0(u) = c0(1 + ‖u‖
2) ,

the set

B̂/g0 :=

{
f

g0
| f ∈ B̂

}
,

and, analogously, the sets E/g0, E1/g0 and E2/g0.

From Lemma 4 we deduce that B̂/g0 is a subset of the unit sphere of L∞(Rd)

which, when supplied with the weak-∗-topology, is compact. We easily verify that

B̂/g0 is closed and therefore also compact.

The theorem of Choquet now shows that, for all s ∈ B̂/g0, there is a proba-

bility measure µ on L∞(Rd) with

L(s) =

∫

ext(B̂/g0)
L(t) dµ(t)(12)

for all continuous linear functionals L on L∞(Rd).

4 – Transformation of the integral representation

Our next goal is to use the integral representation (12) which was obtained

for functions in B̂/g0, to get the representation

f(u) = −

∫

Ωd−1

|〈u, x〉| dµ̄(x)

for continuous, conditionally positive definite, positively homogeneous, even f .

Proposition 1 shows that t ∈ ext(B̂/g0) implies t ∈ E/g0. More precisely,

each equivalence class of ext(B̂/g0) contains a continuous representative t with
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t = g/g0 and g ∈ E. Further the sets E1/g0 and E2/g0 are measurable. We

therefore get from (12), for each function f ∈ B, a probability measure µ with

∫

Rd
f(u)

g0(u)
h(u) du =

∫

E/g0

∫

Rd
t(u)h(u) du dµ(t)(13)

for all h ∈ L1(Rd).

Proposition 2. If f ∈ B is positively homogeneous, then there is a proba-

bility measure ν on Rd with

f(u) =

∫

Rd
fv(u) dν(v) .

Proof: Let U be an arbitrary neighborhood of zero, λ a positive number,

and

hλ(u) :=




−g0(u) for u ∈

1

λ
U ,

0 elsewhere .

The functions in E/g0 are nonpositive, and so
∫

E2/g0

∫

Rd
t(u)hλ(u) du dµ(t) ≥ 0 ,

which implies
∫

1

λ
U
−f(u) du ≥

∫

E1/g0

∫

1

λ
U
−t(u) g0(u) du dµ(t) .

We deduce

λd
∫

U
−f(λu) du ≥ λd

∫

E1/g0

∫

U
−t(λu) g0(λu) du dµ(t) ,

and because f is positive homogeneous we get

λ

∫

U
−f(u) du ≥ λ2

∫

E1/g0

∫

U
−t(u) g0(u) du dµ(t) .

Since λ is an arbitrary positive number, it follows that
∫

E1/g0

∫

U
−t(u) g0(u) du dµ(t) = 0

and ∫

U
f(u) du =

∫

E2/g0

∫

U
t(u) g0(u) du dµ(t) .(14)
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Hence the measure µ in (13) is concentrated on E2/g0. We consider the equiva-

lence relation ∼ on Rd,

x ∼ y if and only if x = ±y ,

and supply (Rd\{0})/∼ with the quotient topology. Using the bijective function

G :





(Rd\{0})/∼ → E2/g0 ,

ṽ →
fv
g0

,

we define the measure η as the image of the restriction of µ to E2/g0, with respect

to the mapping G−1. For this, we have to prove that G−1 is measurable.

To do so, let A be an arbitrary Borel set of (Rd\{0})/∼. Using

Bk :=

{
ṽ ∈ (Rd\{0})/∼ |

1

k
≤ ‖v‖ ≤ k

}
, k ∈ N ,

and Gk : Bk→G(Bk), with Gk(ṽ) = G(ṽ), ṽ ∈ Bk, we have

G(A) =
∞⋃

k=1

Gk(A ∩Bk) .

Gk is bijective, and we prove that G(A) is a Borel set by showing that G−1k is

continuous. Since Bk is compact, it is sufficient to prove that Gk is continuous.

We use the fact that there is a countable set of functions gn ∈ L1(Rd), n ∈ N,

with ‖gn‖ = 1 so that the unit sphere of L∞(Rd) supplied with the weak-∗

topology is metrizable by

d(h1, h2) =
∞∑

n=1

2−n
∣∣∣∣
∫

Rd
gn(u) (h1−h2)(u) du

∣∣∣∣ , h1, h2 ∈ L∞(Rd) .

For each g ∈ L1(Rd) with ‖g‖ = 1 and v1, v2 ∈ Rd we have
∣∣∣∣
∫

Rd
g(u)

(
G(v1)−G(v2)

)
(u) du

∣∣∣∣ =

=

∣∣∣∣
∫

Rd

(
g

g0

)
(u)

(
c(v1) cos〈u, v1〉 − c(v2) cos〈u, v2〉 − c(v1) + c(v2)

)
du

∣∣∣∣

≤ c(v1)

∫

Rd

∣∣∣∣
(
g

g0

)
(u)

∣∣∣∣
∣∣∣cos〈u, v1〉 − cos〈u, v2〉

∣∣∣ du

+
∣∣∣c(v1)− c(v2)

∣∣∣
∫

Rd

(
| cos〈u, v2〉|+ 1

) ∣∣∣∣
(
g

g0

)
(u)

∣∣∣∣ du .
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Using |cos〈u, v1〉 − cos〈u, v2〉| ≤ ‖u‖ ‖v1− v2‖ we get
∣∣∣∣
∫

Rd
g(u)

(
G(v1)−G(v2)

)
(u) du

∣∣∣∣ ≤

≤ c(v1)

∫

Rd
‖u‖ ‖v1− v2‖

∣∣∣∣
(
g

g0

)
(u)

∣∣∣∣ du + 2
∣∣∣c(v1)− c(v2)

∣∣∣
∫

Rd

∣∣∣∣
(
g

g0

)
(u)

∣∣∣∣ du

≤ c(v1) ‖v1− v2‖+ 2
∣∣∣c(v1)− c(v2)

∣∣∣ .

For an arbitrary ε > 0 exists an m ∈ N with

d
(
G(v1), G(v2)

)
≤

ε

2
+

m∑

n=1

2−n
∣∣∣∣
∫

Rd
gn(u)

(
G(v1)−G(v2)

)
(u) du

∣∣∣∣ .

Furthermore, since the function c(v) is continuous, there exists for fixed

v1 ∈ Rd\{0} a positive δ such that ‖v1− v2‖ < δ implies
∣∣∣∣
∫

Rd
g(u)

(
G(v1)−G(v2)

)
(u) du

∣∣∣∣ <
ε

m
.

Thus G is continuous at v1 and, since v1 was arbitrary, G is continuous.

From equation (14) we now get
∫

U
f(u) du =

∫

(Rd\{0})/∼

∫

U
fv(u) du dη(ṽ)

for each neighborhood U of zero and arrive at

f(u) =

∫

(Rd\{0})/∼
fv(u) dη(ṽ) .

Let π denote the canonical projection from Rd\{0} to (Rd\{0})/∼, then we define

the even measure ϑ on Rd\{0} by

ϑ(A) = η(π(A)) for all centrally symmetric Borel sets A of Rd\{0} .

We get

f(u) =

∫

Rd\{0}
fv(u) dϑ(v) ,

and complete the proof by defining the measure ν,

ν(A) = ϑ(A\{0})

for all Borel sets A ⊂ Rd.

The measure µ is concentrated on E2/g0, hence ν is a probability measure.
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We now transform the integral representation of Proposition 2 and show a

corresponding uniqueness result.

Proposition 3. For each positively homogeneous function in B, there exists

a unique even measure η such that

f(u) =

∫

Rd
cos〈u, v〉 − 1

‖v‖2
dη(v) .

Proof: We use Proposition 2 and define η as the measure, absolutely con-

tinuous with respect to ν, and with density

v 7→

{
‖v‖2 c(v) for v 6= 0,

0 for v = 0 .

The desired representation then follows directly. For the uniqueness, we first

observe that
∫

u+I
cos〈v, w〉 dw =

∫

I
cos〈v, w + u〉 dw

=

∫

I

(
cos〈v, w〉 cos〈v, u〉 − sin〈v, w〉 sin〈v, u〉

)
dw

= cos〈v, u〉

∫

I
cos〈v, w〉 dw

= cos〈v, u〉

(
2d −

1

c(v)

)
,

for v ∈ Rd\{0}, u ∈ Rd. It follows that
∫

Rd
cos〈v, u〉 dν(v) +

∫

Rd
c(v)

∫

u+I

(
cos〈v, w〉 − 1

)
dw dν(v) =

=

∫

Rd
cos〈v, u〉 dν(v) +

∫

Rd
c(v)

(
−2d + cos〈v, u〉

(
2d −

1

c(v)

))
dν(v)

= 2d
∫

Rd
c(v)

(
cos〈v, u〉 − 1

)
dν(v) = 2df(u) .

Since ν is an even measure, we have
∫

Rd
sin〈v, u〉 dν(v) = 0 ,

and we arrive at

2df(u) =

∫

Rd
ei〈v,u〉 dν(v) +

∫

u+I
f(w) dw .(15)
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If there is a second even measure ν̄ such that

f(u) =

∫

Rd
c(v)

(
cos〈u, v〉 − 1

)
dν̄(v) ,

then equation (15) is also true for the measure ν̄ instead of ν. This gives ν = ν̄,

because the two measures have the same Fourier transform.

We finally use this result to give the Proof of the implication (b)→(a) in the

Theorem.

Let h be a seminorm on Rd with the property that −h is conditionally positive

definite.

Using c :=

∫

I
h(u) du, we have −h/c ∈ B, and from Proposition 3 we obtain

the existence of an unique even measure η such that

h(u) = c

∫

Rd
1− cos 〈u, v〉

‖v‖2
dη(v) .

Matheron [11] has shown that this integral representation implies (3). For com-

pleteness we reproduce the short proof.

Since h is positively homogeneous we get for positive α

cα

∫

Rd
1− cos 〈u, v〉

‖v‖2
dη(v) = αh(u) = h(αu)

= c α2
∫

Rd
1− cos 〈αu, v〉

‖α v‖2
dη(v) .

Let

f(u, v) := c
1− cos〈u, v〉

‖v‖2
,

then we have for all u ∈ Rd and all positive α
∫

Rd
f(u, v) dη(v) = α

∫

Rd
f(u, α v) dη(v) .(16)

For each positive number α, we define an even measure να on Rd by

να(A) := α η(α−1A)

for all Borel sets A of Rd. Equation (16) gives
∫

Rd
f(u, v) dη(v) =

∫

Rd
f(u, v) dνα(v) ,

for all u ∈ Rd.
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Since the measure η is unique we have η = να, thus for all positive α and all

Borel sets A of Rd,

η(αA) = α η(A) .

Let A be an arbitrary Borel set in the unit sphere Ωd−1, then

Ã :=
⋃

0≤β≤1

β A ,

is a Borel set in Rd, and we define the measure ϕ on Ωd−1 by ϕ(A) := η(Ã).

Fubini’s theorem gives

h(u) = c

∫

Rd

1− cos
(
‖v‖ 〈u, v

‖v‖〉
)

‖v‖2
dη(v)

= c

∫

Ωd−1

∫ ∞

0

1− cos(β〈u, x〉)

β2
dβ dϕ(x) ,

(17)

because αϕ(A) = η(αÃ), for all positive numbers α. Using the equation

4

π

∫ ∞

0

1− cos (γβ)

β2
dβ = |γ| , γ ∈ R ,

it follows that

|〈u, x〉| =
4

π

∫ ∞

0

1− cos(β〈u, x〉)

β2
dβ ,

and from (17) we deduce

h(u) = c
4

π

∫

Ωd−1

|〈u, x〉| dϕ(x) ,

which completes the proof. The uniquess of ϕ follows from that of η.
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